
CS6220: DATA MINING TECHNIQUES

Instructor: Yizhou Sun
yzsun@ccs.neu.edu

November 12, 2013

Mining Graph/Network Data: Part I

mailto:sun22@illinois.edu

Announcement

• Homework 4 will be out tonight
• Due on 12/2

• Next class will be canceled
• I will still put the last set of slides online, you can learn it

by yourself

• I will be in office next Tuesday afternoon (2-5pm), as
the Wednesday office hour is in holiday

• Course project
• Everyone is required to attend both sessions (12/3 and

12/10)

• Presentation will be increased to 15 mins / group, as we
now have two sessions

• More details will be announced in Piazza

2

New course next semester

•Spring 2014, CS 7280 Special Topics in Data
Mining (Mining Information/Social Networks)

• Paper reading and presentation (20%)

• Homework (20%)

• Research project (50%)

• Participation (10%)

3

http://www.ccs.neu.edu/home/yzsun/classes/2014Spring_CS7280/index.html
http://www.ccs.neu.edu/home/yzsun/classes/2014Spring_CS7280/index.html
http://www.ccs.neu.edu/home/yzsun/classes/2014Spring_CS7280/index.html

Tentative Syllabus

• 1. Basics of Information/Social Networks
2. Ranking for infonet
3. Clustering / community detection
4. Matrix factorization
5. Classification / label propagation / node or
link profiling
6. Probabilistic models for infonets
7. Similarity search
8. Diffusion / Influence maximization
9. Recommendation
10. Link / relationship prediction
11. Trustworthy analysis
12. Large graph computation
13. Network evolution

 4

Mining Graph/Network Data: Part I

•Graph / Network Data

•Graph Pattern Mining

•Ranking on Graph / Network

•Summary

5

6

Graph, Graph, Everywhere

Aspirin Yeast protein interaction network

fr
o
m

 H
.
Je

o
n
g
 e

t
a
l
N

a
tu

re
 4

1
1
,
4
1
 (

2
0
0
1
)

Internet
Co-author network

7

Why Graph Mining?

• Graphs are ubiquitous

• Chemical compounds (Cheminformatics)

• Protein structures, biological pathways/networks (Bioinformactics)

• Program control flow, traffic flow, and workflow analysis

• XML databases, Web, and social network analysis

• Graph is a general model

• Trees, lattices, sequences, and items are degenerated graphs

• Diversity of graphs

• Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted,

with angles & geometry (topological vs. 2-D/3-D)

• Complexity of algorithms: many problems are of high complexity

Representation of a Graph

• 𝐺 =< 𝑉, 𝐸 >
• 𝑉 = {𝑢1, … , 𝑢𝑛}: node set

• 𝐸 ⊆ 𝑉 × 𝑉: edge set

• Adjacency matrix

• 𝐴 = 𝑎𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛

• 𝑎𝑖𝑗 = 1, 𝑖𝑓 < 𝑢𝑖 , 𝑢𝑗 >∈ 𝐸

• 𝑎𝑖𝑗 = 0, 𝑖𝑓 < 𝑢𝑖 , 𝑢𝑗 >∉ 𝐸

• Undirected graph vs. Directed graph

• 𝐴 = 𝐴T 𝑣𝑠. 𝐴 ≠ 𝐴T

• Weighted graph

• Use W instead of A, where 𝑤𝑖𝑗 represents the weight of edge
< 𝑢𝑖 , 𝑢𝑗 >

8

Mining Graph/Network Data: Part I

•Graph / Network Data

•Graph Pattern Mining

•Ranking on Graph / Network

•Summary

9

Graph Pattern Mining

•Mining Frequent Subgraph Patterns

•Graph Search

10

11

Mining Frequent Subgraph Patterns
• Frequent subgraphs

• A (sub)graph is frequent if its support (occurrence

frequency) in a given dataset is no less than a

minimum support threshold

• Applications of graph pattern mining

• Mining biochemical structures

• Program control flow analysis

• Mining XML structures or Web communities

• Building blocks for graph classification, clustering,

compression, comparison, and correlation analysis

Labeled Graph and Subgraph

• Labeled graph
• A label function maps each vertex or edge to a label

• E.g., a molecule is a labeled graph

• Subgraph
• A graph g is a subgraph of another graph g’ if there
exists a subgraph isomorphism from g to g’

• There exists a subgraph 𝑔0
′ ⊆ 𝑔′, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 g is graph

isomorphism to 𝑔0
′ , i.e., there is a bijective mapping

between nodes in g and 𝑔0
′ , such that for every edge in g,

the mapped node pair is also an edge in 𝑔0
′

• For labeled graph, we also required the labels after the
mapping are the same

12

Support of a Subgraph

•Given a graph database

• 𝐷 = {𝐺1, … , 𝐺𝑛}

•The support of a graph g, support(g), is:

• The number of graphs in the database that g is

a subgraph

•Frequent graph

• A graph whose support is equal or larger than

min_sup

13

14

Example: Frequent Subgraphs

GRAPH DATASET

FREQUENT PATTERNS

(MIN SUPPORT IS 2)

(A) (B) (C)

(1) (2)

15

EXAMPLE (II)

GRAPH DATASET

FREQUENT PATTERNS

(MIN SUPPORT IS 2)

16

How to Mine Frequent Subgraph
Pattern?

•Two steps

• Step 1: Generate frequent substructure

candidates

• Step 2: Calculate the support of these candidates

using subgraph isomorphism test (NP!)

•Two types of approaches

• Apriori-based approach

• Pattern-growth approach

17

Frequent Subgraph Mining Approaches

•Apriori-based approach
• AGM/AcGM: Inokuchi, et al. (PKDD’00)

• FSG: Kuramochi and Karypis (ICDM’01)

• PATH#: Vanetik and Gudes (ICDM’02, ICDM’04)

• FFSM: Huan, et al. (ICDM’03)

•Pattern growth approach
• MoFa, Borgelt and Berthold (ICDM’02)

• gSpan: Yan and Han (ICDM’02)

• Gaston: Nijssen and Kok (KDD’04)

18

Apriori-Based Approach

…

G

G1

G2

Gn

k-edge
(k+1)-edge

G’

G’’

JOIN

Apriori Approach Framework

19

20

Apriori-Based, Breadth-First Search

 Methodology: breadth-search, joining two graphs

 AGM (Inokuchi, et al. PKDD’00)

 generates new graphs with one more node

 FSG (Kuramochi and Karypis ICDM’01)

 generates new graphs with one more edge

21

Pattern Growth Method

…

G

G1

G2

Gn

k-edge

(k+1)-edge

…

(k+2)-edge

…

duplicate
graph

Pattern Growth Approach Framework

22

Need to avoid duplicate graphs!

23

GSPAN (Yan and Han ICDM’02)

Right-Most Extension

Theorem: Completeness

The Enumeration of Graphs
using Right-most Extension is

COMPLETE

24

DFS Code

•Flatten a graph into a sequence using
depth first search

0

1

2

3
4

e0: (0,1)

e1: (1,2)

e2: (2,0)

e3: (2,3)

e4: (3,1)

e5: (2,4)

25

*DFS Lexicographic Order

• Let Z be the set of DFS codes of all graphs. Two DFS codes a

and b have the relation a<=b (DFS Lexicographic Order in Z) if
and only if one of the following conditions is true. Let

 a = (x0, x1, …, xn) and

 b = (y0, y1, …, yn),

(i) if there exists t, 0<= t <= min(m,n), xk=yk for all
k, s.t. k<t, and xt < yt

(ii) xk=yk for all k, s.t. 0<= k<= m and m <= n.

26

*DFS Code Extension

• Let a be the minimum DFS code of a graph G and b be a non-
minimum DFS code of G. For any DFS code d generated from
b by one right-most extension,
(i) d is not a minimum DFS code,

(ii) min_dfs(d) cannot be extended from b, and

(iii) min_dfs(d) is either less than a or can be
extended from a.

THEOREM [RIGHT-EXTENSION]
The DFS code of a graph extended from a
Non-minimum DFS code is NOT MINIMUM

27

Graph Pattern Explosion Problem

• If a graph is frequent, all of its subgraphs are frequent

─ the Apriori property

• An n-edge frequent graph may have 2n subgraphs

• Among 422 chemical compounds which are confirmed

to be active in an AIDS antiviral screen dataset, there

are 1,000,000 frequent graph patterns if the minimum

support is 5%

• To mine closed graph pattern directly

• *CLOSEGRAPH (Yan & Han, KDD’03)

Graph Pattern Mining

•Mining Frequent Subgraph Patterns

•Graph Search

28

29

Graph Search

•Querying graph databases:
• Given a graph database and a query graph, find all the

graphs containing this query graph

query graph graph database

Scalability Issue

•Sequential scan

• Disk I/Os

• Subgraph isomorphism testing

•An indexing mechanism is needed

• DayLight: Daylight.com (commercial)

• GraphGrep: Dennis Shasha, et al. PODS'02

• Grace: Srinath Srinivasa, et al. ICDE'03

30

31

Indexing Strategy

Graph (G)

Substructure

Query graph (Q)

If graph G contains query

graph Q, G should contain

any substructure of Q

Remarks

 Index substructures of a query graph to
prune graphs that do not contain these
substructures

32

Indexing Framework

•Two steps in processing graph queries

Step 1. Index Construction

 Enumerate structures in the graph database,

build an inverted index between structures

and graphs

Step 2. Query Processing

 Enumerate structures in the query graph

 Calculate the candidate graphs containing

these structures

 Prune the false positive answers by

performing subgraph isomorphism test

33

Cost Analysis

QUERY RESPONSE TIME

 testingmisomorphisioqindex TTCT _

REMARK: make |Cq| as small as possible

fetch index number of candidates

34

Path-based Approach
GRAPH DATABASE

PATHS

0-length: C, O, N, S

1-length: C-C, C-O, C-N, C-S, N-N, S-O

2-length: C-C-C, C-O-C, C-N-C, ...

3-length: ...

(a) (b) (c)

Built an inverted index between paths and graphs

35

Path-based Approach (cont.)

QUERY GRAPH

0-edge: SC={a, b, c}, SN={a, b, c}

1-edge: SC-C={a, b, c}, SC-N={a, b, c}

2-edge: SC-N-C = {a, b}, …

…

Intersect these sets, we obtain the candidate

answers - graph (a) and graph (b) - which may

contain this query graph.

36

Problems: Path-based Approach

GRAPH DATABASE

(a) (b) (c)

QUERY GRAPH

Only graph (c) contains this query

graph. However, if we only index

paths: C, C-C, C-C-C, C-C-C-C, we

cannot prune graph (a) and (b).

37

gIndex: Indexing Graphs by Data Mining

•Our methodology on graph index:

• Identify frequent structures in the database, the

frequent structures are subgraphs that appear quite

often in the graph database

• Prune redundant frequent structures to maintain a

small set of discriminative structures

• Create an inverted index between discriminative

frequent structures and graphs in the database

38

IDEAS: Indexing with Two Constraints

structure (>106)

frequent (~105)

discriminative (~103)

39

Why Discriminative Subgraphs?

• All graphs contain structures: C, C-C, C-C-C

• Why bother indexing these redundant
frequent structures?
• Only index structures that provide more information than

existing structures

Sample database

(a) (b) (c)

40

Discriminative Structures

• Pinpoint the most useful frequent structures
• Given a set of structures and a new structure

𝑥, we measure the extra indexing power provided by 𝑥,

 When is small enough, is a discriminative structure

and should be included in the index

• Index discriminative frequent structures only
• Reduce the index size by an order of magnitude

  .,,, 21 xffffxP in 

nfff ,, 21

xP

41

Why Frequent Structures?

•We cannot index (or even search) all of
substructures

•Large structures will likely be indexed well
by their substructures

•Size-increasing support threshold

size

s
u
p
p
o
rt

 minimum
support threshold

42

Experimental Setting

• The AIDS antiviral screen compound dataset from

NCI/NIH, containing 43,905 chemical compounds

• Query graphs are randomly extracted from the

dataset

• GraphGrep: maximum length (edges) of paths is

set at 10

• gIndex: maximum size (edges) of structures is set

at 10

43

Experiments: Index Size

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1k 2k 4k 8k 16k

Path
Frequent Structure
Discriminative Frequent Structure

DATABASE SIZE

#
 O

F
 F

E
A

T
U

R
E

S

44

Experiments: Answer Set Size

0

20

40

60

80

100

120

140

4 8 12 16 20 24

GraphGrep

gIndex

Actual Match

QUERY SIZE

#
 O

F
 C

A
N

D
ID

A
T

E
S

45

Experiments: Incremental Maintenance

20

30

40

50

60

70

80

2K 4K 6k 8k 10k

From scratch Incremental

Frequent structures are stable to database updating

Index can be built based on a small portion of a graph

database, but be used for the whole database

Mining Graph/Network Data: Part I

•Graph / Network Data

•Graph Pattern Mining

•Ranking on Graph / Network

•Summary

46

Ranking on Graph / Network

•PageRank

•Personalized PageRank

47

The History of PageRank

• PageRank was developed by Larry Page (hence the name
Page-Rank) and Sergey Brin.

• It is first as part of a research project about a new kind of
search engine. That project started in 1995 and led to a
functional prototype in 1998.

• Shortly after, Page and Brin founded Google.

Ranking web pages

•Web pages are not equally “important”

• www.cnn.com vs. a personal webpage

• Inlinks as votes

• The more inlinks, the more important

•Are all inlinks equal?

• Recursive question!

49

http://www.cnn.com/

Simple recursive formulation

•Each link’s vote is proportional to the
importance of its source page

• If page P with importance x has n outlinks,
each link gets x/n votes

•Page P’s own importance is the sum of the
votes on its inlinks

50

Matrix formulation

• Matrix M has one row and one column for each web
page

• Suppose page j has n outlinks

• If j -> i, then Mij=1/n

• Else Mij=0

• M is a column stochastic matrix

• Columns sum to 1

• Suppose r is a vector with one entry per web page

• ri is the importance score of page i

• Call it the rank vector

• |r| = 1

51

Eigenvector formulation

•The flow equations can be written

r = Mr

•So the rank vector is an eigenvector of the
stochastic web matrix

• In fact, its first or principal eigenvector, with

corresponding eigenvalue 1

52

Example

Yahoo

M’soft Amazon

y 1/2 1/2 0

a 1/2 0 1

m 0 1/2 0

y a m

y = y /2 + a /2

a = y /2 + m

m = a /2

r = Mr

 y 1/2 1/2 0 y

 a = 1/2 0 1 a

 m 0 1/2 0 m

53

Power Iteration method

•Simple iterative scheme (aka relaxation)

•Suppose there are N web pages

• Initialize: r0 = [1/N,….,1/N]T

• Iterate: rk+1 = Mrk

•Stop when |rk+1 - rk|1 < 

• |x|1 = 1≤i≤N|xi| is the L1 norm

• Can use any other vector norm e.g., Euclidean

54

Power Iteration Example

Yahoo

M’soft Amazon

y 1/2 1/2 0

a 1/2 0 1

m 0 1/2 0

y a m

y

a =

m

1/3

1/3

1/3

1/3

1/2

1/6

5/12

 1/3

 1/4

3/8

11/24

1/6

2/5

2/5

1/5

. . .

𝒓0 𝒓1 𝒓2 𝒓3 … 𝒓
∗

Random Walk Interpretation

• Imagine a random web surfer
• At any time t, surfer is on some page P

• At time t+1, the surfer follows an outlink from
P uniformly at random

• Ends up on some page Q linked from P

• Process repeats indefinitely

•Let p(t) be a vector whose ith component
is the probability that the surfer is at page
i at time t
• p(t) is a probability distribution on pages

56

The stationary distribution

•Where is the surfer at time t+1?
• Follows a link uniformly at random

• p(t+1) = Mp(t)

•Suppose the random walk reaches a state
such that p(t+1) = Mp(t) = p(t)
• Then p(t) is called a stationary distribution for
the random walk

•Our rank vector r satisfies r = Mr
• So it is a stationary distribution for the random
surfer

57

Existence and Uniqueness

 A central result from the theory of random walks (aka Markov

processes):

 For graphs that satisfy certain conditions,
the stationary distribution is unique and
eventually will be reached no matter what
the initial probability distribution at time t
= 0.

58

Spider traps

•A group of pages is a spider trap if there
are no links from within the group to
outside the group

• Random surfer gets trapped

•Spider traps violate the conditions needed
for the random walk theorem

59

Microsoft becomes a spider trap

Yahoo

M’soft Amazon

y 1/2 1/2 0

a 1/2 0 0

m 0 1/2 1

y a m

y

a =

m

1/3

1/3

1/3

1/3

1/6

1/2

1/4

1/6

7/12

5/24

1/8

2/3

0

0

1

. . .

60

Random teleports

•The Google solution for spider traps

•At each time step, the random surfer has
two options:
• With probability , follow a link at random

• With probability 1-, jump to some page
uniformly at random

• Common values for  are in the range 0.8 to
0.9

•Surfer will teleport out of spider trap
within a few time steps

61

Random teleports ( = 0.8)

Yahoo

M’soft Amazon

1/2

1/2

0.8*1/2

0.8*1/2

0.2*1/3

0.2*1/3

0.2*1/3

y 1/2

a 1/2

m 0

y

 1/2

 1/2

 0

y

0.8*

 1/3

 1/3

 1/3

y

+ 0.2*

 1/2 1/2 0

 1/2 0 0

 0 1/2 1

 1/3 1/3 1/3

 1/3 1/3 1/3

 1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 13/15

0.8 + 0.2

62

Random teleports ( = 0.8)

Yahoo

M’soft Amazon

 1/2 1/2 0

 1/2 0 0

 0 1/2 1

 1/3 1/3 1/3

 1/3 1/3 1/3

 1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 13/15

0.8 + 0.2

y

a =

m

63

Matrix formulation

•Suppose there are N pages
• Consider a page j, with set of outlinks O(j)

• We have Mij = 1/|O(j)| when j->i and Mij = 0
otherwise

• The random teleport is equivalent to

• adding a teleport link from j to every other page
with probability (1-)/N

• reducing the probability of following each outlink
from 1/|O(j)| to /|O(j)|

• Equivalent: tax each page a fraction (1-) of its
score and redistribute evenly

64

PageRank

•Construct the N-by-N matrix A as follows
• Aij = Mij + (1-)/N

•Verify that A is a stochastic matrix

•The page rank vector r is the principal
eigenvector of this matrix
• satisfying r = Ar

•Equivalently, r is the stationary
distribution of the random walk with
teleports

65

Dead ends

•Pages with no outlinks are “dead ends” for
the random surfer

• Nowhere to go on next step

66

Microsoft becomes a dead end

Yahoo

M’soft Amazon

y

a =

m

1/3

1/3

1/3

1/3

0.2

0.2

0

0

0

. . .

 1/2 1/2 0

 1/2 0 0

 0 1/2 0

 1/3 1/3 1/3

 1/3 1/3 1/3

 1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 1/15

0.8 + 0.2

Non-
stochastic!

67

Dealing with dead-ends

•Teleport
• Follow random teleport links with probability
1.0 from dead-ends

• Adjust matrix accordingly

•Prune and propagate
• Preprocess the graph to eliminate dead-ends

• Might require multiple passes

• Compute page rank on reduced graph

• Approximate values for deadends by
propagating values from reduced graph

68

Computing PageRank

• Key step is matrix-vector multiplication
• rnew = Arold

• Easy if we have enough main memory to
hold A, rold, rnew

• Say N = 1 billion pages
• We need 4 bytes for each entry (say)

• 2 billion entries for vectors, approx 8GB

• Matrix A has N2 entries

• 1018 is a large number!

69

Rearranging the equation

r = Ar, where

Aij = Mij + (1-)/N

ri = 1≤j≤N Aij rj

ri = 1≤j≤N [Mij + (1-)/N] rj

 =  1≤j≤N Mij rj + (1-)/N 1≤j≤N rj

 =  1≤j≤N Mij rj + (1-)/N, since |r| = 1

r = Mr + [(1-)/N]N
where [x]N is an N-vector with all entries x

 70

Sparse matrix formulation

• We can rearrange the page rank equation:
• r = Mr + [(1-)/N]N

• [(1-)/N]N is an N-vector with all entries (1-)/N

• M is a sparse matrix!
• 10 links per node, approx 10N entries

• So in each iteration, we need to:
• Compute rnew = Mrold

• Add a constant value (1-)/N to each entry in rnew

71

Sparse matrix encoding

•Encode sparse matrix using only nonzero
entries

• Space proportional roughly to number of links

• say 10N, or 4*10*1 billion = 40GB

• still won’t fit in memory, but will fit on disk

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source
node

degree destination nodes

72

Basic Algorithm

• Assume we have enough RAM to fit rnew, plus some
working memory

• Store rold and matrix M on disk

Basic Algorithm:

• Initialize: rold = [1/N]N

• Iterate:
• Update: Perform a sequential scan of M and rold to update rnew

• Write out rnew to disk as rold for next iteration

• Every few iterations, compute |rnew-rold| and stop if it is below
threshold

• Need to read in both vectors into memory

73

Personalized PageRank

•Query-dependent Ranking

• For a query webpage q, which webpages are

most important to q?

• The relative important webpages to different

queries would be different

74

Calculation of P-PageRank
• Recall PageRank calculation:

• r = Mr + [(1-)/N]N or

• r = Mr + (1-) 𝑟0, where 𝑟0 =

1/𝑁
1/𝑁

…
1/𝑁

• For P-PageRank

• Replace 𝑟0 with 𝑟0 =

0
0
…
1
…
0

75

qth webpage

Mining Graph/Network Data: Part I

•Graph / Network Data

•Graph Pattern Mining

•Ranking on Graph / Network

•Summary

76

Summary

• Graph / Network Data
• Adjacency matrix

• Graph Pattern Mining
• Frequent subgraph mining

• gSpan

• Graph search

• gindex

• Ranking on Graph / Network
• PageRank

• Personalized PageRank

77

