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Instructor: Yizhou Sun 
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November 12, 2013 

Mining Graph/Network Data: Part I 
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Announcement 

• Homework 4 will be out tonight  
• Due on 12/2 

• Next class will be canceled 
• I will still put the last set of slides online, you can learn it 

by yourself 

• I will be in office next Tuesday afternoon (2-5pm), as 
the Wednesday office hour is in holiday 

• Course project 
• Everyone is required to attend both sessions (12/3 and 

12/10) 

• Presentation will be increased to 15 mins / group, as we 
now have two sessions 

• More details will be announced in Piazza  
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New course next semester 

•Spring 2014, CS 7280 Special Topics in Data 
Mining (Mining Information/Social Networks) 

• Paper reading and presentation (20%) 

• Homework (20%) 

• Research project (50%) 

• Participation (10%) 
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Tentative Syllabus 

• 1.      Basics of Information/Social Networks 
2.      Ranking for infonet 
3.      Clustering / community detection 
4.      Matrix factorization 
5.      Classification / label propagation / node or 
link profiling 
6.      Probabilistic models for infonets 
7.      Similarity search 
8.      Diffusion / Influence maximization 
9.      Recommendation 
10.    Link / relationship prediction 
11.    Trustworthy analysis 
12.    Large graph computation 
13.    Network evolution 
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Mining Graph/Network Data: Part I 

•Graph / Network Data 

 

•Graph Pattern Mining 

 

•Ranking on Graph / Network 

 

•Summary 
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Graph, Graph, Everywhere 

Aspirin Yeast protein interaction network 
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Why Graph Mining? 

• Graphs are ubiquitous 

• Chemical compounds (Cheminformatics) 

• Protein structures, biological pathways/networks (Bioinformactics) 

• Program control flow, traffic flow, and workflow analysis  

• XML databases, Web, and social network analysis 

• Graph is a general model 

• Trees, lattices, sequences, and items are degenerated graphs 

• Diversity of graphs 

• Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted, 

with angles & geometry (topological vs. 2-D/3-D)  

• Complexity of algorithms: many problems are of high complexity 



Representation of a Graph 

• 𝐺 =< 𝑉, 𝐸 > 
• 𝑉 = {𝑢1, … , 𝑢𝑛}: node set 

• 𝐸 ⊆ 𝑉 × 𝑉: edge set 

• Adjacency matrix 

• 𝐴 = 𝑎𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛 

• 𝑎𝑖𝑗 = 1, 𝑖𝑓 < 𝑢𝑖 , 𝑢𝑗 >∈ 𝐸 

• 𝑎𝑖𝑗 = 0, 𝑖𝑓 < 𝑢𝑖 , 𝑢𝑗 >∉ 𝐸 

• Undirected graph vs. Directed graph 

• 𝐴 = 𝐴T 𝑣𝑠. 𝐴 ≠ 𝐴T 

• Weighted graph 

• Use W instead of A, where 𝑤𝑖𝑗 represents the weight of edge 
< 𝑢𝑖 , 𝑢𝑗 > 
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Mining Graph/Network Data: Part I 

•Graph / Network Data 

 

•Graph Pattern Mining 

 

•Ranking on Graph / Network 

 

•Summary 
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Graph Pattern Mining 

•Mining Frequent Subgraph Patterns 

 

•Graph Search 
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Mining Frequent Subgraph Patterns 
• Frequent subgraphs 

• A (sub)graph is frequent  if its support (occurrence 

frequency) in a given dataset is no less than a 

minimum support threshold 

• Applications of graph pattern mining 

• Mining biochemical structures 

• Program control flow analysis 

• Mining XML structures or Web communities 

• Building blocks for graph classification, clustering, 

compression, comparison, and correlation analysis 



Labeled Graph and Subgraph 

• Labeled graph 
• A label function maps each vertex or edge to a label 

• E.g., a molecule is a labeled graph 

• Subgraph 
• A graph g is a subgraph of another graph g’ if there 
exists a subgraph isomorphism from g to g’ 

• There exists a subgraph 𝑔0
′ ⊆ 𝑔′, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 g is graph 

isomorphism to 𝑔0
′ , i.e., there is a bijective mapping 

between nodes in g and 𝑔0
′ , such that for every edge in g, 

the mapped node pair is also an edge in 𝑔0
′  

• For labeled graph, we also required the labels after the 
mapping are the same 
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Support of a Subgraph 

•Given a graph database 

• 𝐷 = {𝐺1, … , 𝐺𝑛} 

•The support of a graph g, support(g), is: 

• The number of graphs in the database that g is 

a subgraph 

•Frequent graph 

• A graph whose support is equal or larger than 

min_sup   

13 



14 

Example: Frequent Subgraphs 

GRAPH DATASET 

FREQUENT PATTERNS 

(MIN SUPPORT IS 2) 

(A) (B) (C) 

(1) (2) 
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EXAMPLE (II) 

GRAPH DATASET 

FREQUENT PATTERNS 

(MIN SUPPORT IS 2) 
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How to Mine Frequent Subgraph 
Pattern? 

•Two steps 

• Step 1: Generate frequent substructure 

candidates 

• Step 2: Calculate the support of these candidates 

using subgraph isomorphism test (NP!) 

•Two types of approaches 

• Apriori-based approach 

• Pattern-growth approach 
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Frequent Subgraph Mining Approaches 

•Apriori-based approach 
• AGM/AcGM: Inokuchi, et al. (PKDD’00) 

• FSG: Kuramochi and Karypis (ICDM’01) 

• PATH#: Vanetik and Gudes (ICDM’02, ICDM’04) 

• FFSM: Huan, et al. (ICDM’03) 

•Pattern growth approach 
• MoFa, Borgelt and Berthold (ICDM’02) 

• gSpan: Yan and Han (ICDM’02) 

• Gaston: Nijssen and Kok (KDD’04) 
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Apriori-Based Approach 

… 

G 

G1 

G2 

Gn 

k-edge 
(k+1)-edge 

G’ 

G’’ 

JOIN 



Apriori Approach Framework 
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Apriori-Based, Breadth-First Search 

 Methodology: breadth-search, joining two graphs 

 

 

 AGM (Inokuchi, et al. PKDD’00)  

 generates new graphs with one more node 
  

 FSG (Kuramochi and Karypis ICDM’01) 

 generates new graphs with one more edge 
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Pattern Growth Method 

… 

G 

G1 

G2 

Gn 

k-edge 

(k+1)-edge 

… 

(k+2)-edge 

… 

duplicate  
graph 



Pattern Growth Approach Framework 
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Need to avoid duplicate graphs! 
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GSPAN (Yan and Han ICDM’02) 

Right-Most Extension 

Theorem: Completeness 

The Enumeration of Graphs  
using Right-most Extension is  

COMPLETE 
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DFS Code 

•Flatten a graph into a sequence using 
depth first search 

0 

1 

2 

3 
4 

e0: (0,1) 

e1: (1,2) 

e2: (2,0) 

e3: (2,3) 

e4: (3,1) 

e5: (2,4) 
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*DFS Lexicographic Order 

• Let Z be the set of DFS codes of all graphs.  Two DFS codes a 

and b have the relation a<=b (DFS Lexicographic Order in Z) if 
and only if one of the following conditions is true.  Let 

        a = (x0, x1, …, xn) and  

        b = (y0, y1, …, yn), 

(i) if there exists t, 0<= t <= min(m,n), xk=yk for all 
k, s.t. k<t, and xt < yt 

(ii) xk=yk for all k, s.t.  0<= k<= m and m <= n. 
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*DFS Code Extension 

• Let a be the minimum DFS code of a graph G and b be a non-
minimum DFS code of G.  For any DFS code d generated from 
b by one right-most extension, 
(i) d is not a minimum DFS code, 

(ii) min_dfs(d) cannot be extended from b, and 

(iii) min_dfs(d) is either less than a or can be 
extended from a. 

THEOREM [ RIGHT-EXTENSION ] 
The DFS code of a graph extended from a  
Non-minimum DFS code is NOT MINIMUM 



27 

Graph Pattern Explosion Problem 

• If a graph is frequent, all of its subgraphs are frequent 

─ the Apriori property  

• An n-edge frequent graph may have 2n subgraphs 

• Among 422 chemical compounds which are confirmed 

to be active in an AIDS antiviral screen dataset, there 

are 1,000,000 frequent graph patterns if the minimum 

support is 5% 

• To mine closed graph pattern directly  

• *CLOSEGRAPH (Yan & Han, KDD’03) 

 



Graph Pattern Mining 

•Mining Frequent Subgraph Patterns 

 

•Graph Search 
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Graph Search 

•Querying graph databases:  
• Given a graph database and a query graph, find all the 

graphs containing this query graph 

query graph graph database 



Scalability Issue 

•Sequential scan 

• Disk I/Os 

• Subgraph isomorphism testing 

•An indexing mechanism is needed 

• DayLight:  Daylight.com (commercial) 

• GraphGrep: Dennis Shasha, et al. PODS'02 

• Grace: Srinath Srinivasa, et al. ICDE'03 
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Indexing Strategy 

Graph (G) 

Substructure 

Query graph (Q) 

If graph G contains query 

graph Q, G should contain 

any substructure of Q 

Remarks 

 Index substructures of a query graph to 
prune graphs that do not contain these 
substructures 
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Indexing Framework 

•Two steps in processing graph queries 

 
Step 1. Index Construction 

 Enumerate structures in the graph database, 

build an inverted index between structures 

and graphs 

Step 2. Query Processing 

 Enumerate structures in the query graph  

 Calculate the candidate graphs containing 

these structures 

 Prune the false positive answers by 

performing subgraph isomorphism test 



33 

Cost Analysis 

QUERY RESPONSE TIME 

 testingmisomorphisioqindex TTCT _

REMARK: make |Cq| as small as possible 

fetch index number of candidates 
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Path-based Approach 
GRAPH DATABASE 

PATHS 

0-length: C, O, N, S 

1-length: C-C, C-O, C-N, C-S, N-N, S-O 

2-length: C-C-C, C-O-C, C-N-C, ... 

3-length: ... 

(a) (b) (c) 

Built an inverted index between paths and graphs 
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Path-based Approach (cont.) 

QUERY GRAPH 

0-edge: SC={a, b, c}, SN={a, b, c} 

1-edge: SC-C={a, b, c}, SC-N={a, b, c} 

2-edge: SC-N-C = {a, b}, … 

… 

Intersect these sets, we obtain the candidate 

answers - graph (a) and graph (b) - which may 

contain this query graph. 
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Problems: Path-based Approach 

GRAPH DATABASE 

(a) (b) (c) 

QUERY GRAPH 

Only graph (c) contains this query 

graph. However, if we only index 

paths: C, C-C, C-C-C, C-C-C-C, we 

cannot prune graph (a) and (b). 
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gIndex: Indexing Graphs by Data Mining 

•Our methodology on graph index: 

• Identify frequent structures in the database, the 

frequent structures are subgraphs that appear quite 

often in the graph database 

• Prune redundant frequent structures to maintain a 

small set of discriminative structures 

• Create an inverted index between discriminative 

frequent structures and graphs in the database 
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IDEAS: Indexing with Two Constraints 

structure (>106) 

frequent (~105) 

discriminative (~103) 
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Why Discriminative Subgraphs? 

• All graphs contain structures: C, C-C, C-C-C 

• Why bother indexing these redundant 
frequent structures? 
• Only index structures that provide more information than 

existing structures 

Sample database 

(a) (b) (c) 
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Discriminative Structures 

• Pinpoint the most useful frequent structures 
• Given a set of structures                      and a new structure 

𝑥, we measure the extra indexing power provided by 𝑥, 

 

 
   When     is small enough,     is a discriminative structure 

and should be included in the index 

• Index discriminative frequent structures only 
• Reduce the index size by an order of magnitude 

  .,,, 21 xffffxP in 

nfff ,, 21

xP
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Why Frequent Structures? 

•We cannot index (or even search) all of 
substructures 

•Large structures will likely be indexed well 
by their substructures 

•Size-increasing support threshold 

 

 

size 

s
u
p
p
o
rt

 minimum 
support threshold 



42 

Experimental Setting 

• The AIDS antiviral screen compound dataset from 

NCI/NIH, containing 43,905 chemical compounds 

• Query graphs are randomly extracted from the 

dataset 

• GraphGrep: maximum length (edges) of paths is 

set at 10 

• gIndex: maximum size (edges) of structures is set 

at 10 
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Experiments: Index Size 
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Experiments: Answer Set Size 
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Experiments: Incremental Maintenance 

20
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2K 4K 6k 8k 10k

From scratch Incremental

Frequent structures are stable to database updating 

Index can be built based on a small portion of a graph 

database, but be used for the whole database 



Mining Graph/Network Data: Part I 

•Graph / Network Data 

 

•Graph Pattern Mining 

 

•Ranking on Graph / Network 

 

•Summary 
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Ranking on Graph / Network 

•PageRank 

 

•Personalized PageRank 
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The History of PageRank 

• PageRank was developed by Larry Page (hence the name 
Page-Rank) and Sergey Brin.    

 

• It is first as part of a research project about a new kind of 
search engine.  That project started in 1995 and led to a 
functional prototype in 1998.  

 

• Shortly after, Page and Brin founded Google. 



Ranking web pages 

•Web pages are not equally “important” 

• www.cnn.com vs. a personal webpage 

• Inlinks as votes 

• The more inlinks, the more important 

•Are all inlinks equal? 

• Recursive question!  
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Simple recursive formulation 

•Each link’s vote is proportional to the 
importance of its source page 

• If page P with importance x has n outlinks, 
each link gets x/n votes 

•Page P’s own importance is the sum of the 
votes on its inlinks 
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Matrix formulation 

• Matrix M has one row and one column for each web 
page 

• Suppose page j has n outlinks 

• If j -> i, then Mij=1/n 

• Else Mij=0 

• M is a column stochastic matrix 

• Columns sum to 1 

• Suppose r is a vector with one entry per web page 

• ri is the importance score of page i 

• Call it the rank vector 

• |r| = 1 
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Eigenvector formulation 

•The flow equations can be written  

r = Mr 

•So the rank vector is an eigenvector of the 
stochastic web matrix 

• In fact, its first or principal eigenvector, with 

corresponding eigenvalue 1 
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Example 

Yahoo 

M’soft Amazon 

y   1/2 1/2   0 

a    1/2  0    1 

m    0  1/2   0 

y    a     m 

y  = y /2 + a /2 

a  = y /2 + m 

m = a /2 

r = Mr 

 y       1/2 1/2   0     y 

 a   =  1/2   0    1     a 

 m       0  1/2   0     m 
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Power Iteration method 

•Simple iterative scheme (aka relaxation) 

•Suppose there are N web pages 

• Initialize: r0 = [1/N,….,1/N]T 

• Iterate: rk+1 = Mrk 

•Stop when |rk+1 - rk|1 <  

• |x|1 = 1≤i≤N|xi| is the L1 norm  

• Can use any other vector norm e.g., Euclidean 
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Power Iteration Example 

Yahoo 

M’soft Amazon 

y   1/2 1/2   0 

a    1/2  0    1 

m    0  1/2   0 

y    a     m 

y 

a    = 

m 

1/3 

1/3 

1/3 

1/3 

1/2 

1/6 

5/12 

 1/3 

 1/4 

3/8 

11/24 

1/6 

2/5 

2/5 

1/5 

. . . 

𝒓0          𝒓1              𝒓2                 𝒓3               …                            𝒓
∗ 



Random Walk Interpretation 

• Imagine a random web surfer 
• At any time t, surfer is on some page P 

• At time t+1, the surfer follows an outlink from 
P uniformly at random 

• Ends up on some page Q linked from P 

• Process repeats indefinitely 

•Let p(t) be a vector whose ith component 
is the probability that the surfer is at page 
i at time t 
• p(t) is a probability distribution on pages 
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The stationary distribution 

•Where is the surfer at time t+1? 
• Follows a link uniformly at random 

• p(t+1) = Mp(t) 

•Suppose the random walk reaches a state 
such that p(t+1) = Mp(t) = p(t) 
• Then p(t) is called a stationary distribution for 
the random walk 

•Our rank vector r satisfies r = Mr 
• So it is a stationary distribution for the random 
surfer 
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Existence and Uniqueness 

 A central result from the theory of random walks (aka Markov 

processes): 

 

 For graphs that satisfy certain conditions, 
the stationary distribution is unique and 
eventually will be reached no matter what 
the initial probability distribution at time t 
= 0. 
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Spider traps 

•A group of pages is a spider trap if there 
are no links from within the group to 
outside the group 

• Random surfer gets trapped 

•Spider traps violate the conditions needed 
for the random walk theorem 
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Microsoft becomes a spider trap 

Yahoo 

M’soft Amazon 

y   1/2 1/2   0 

a    1/2  0    0 

m    0  1/2   1 

y    a     m 

y 

a    = 

m 

1/3 

1/3 

1/3 

1/3 

1/6 

1/2 

1/4 

1/6 

7/12 

5/24 

1/8 

2/3 

0 

0 

1 

. . . 
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Random teleports 

•The Google solution for spider traps 

•At each time step, the random surfer has 
two options: 
• With probability , follow a link at random 

• With probability 1-, jump to some page 
uniformly at random 

• Common values for  are in the range 0.8 to 
0.9 

•Surfer will teleport out of spider trap 
within a few time steps 
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Random teleports ( = 0.8) 

Yahoo 

M’soft Amazon 

1/2 

1/2 

0.8*1/2 

0.8*1/2 

0.2*1/3 

0.2*1/3 

0.2*1/3 

y   1/2 

a    1/2 

m    0 

y 

     1/2 

     1/2 

       0 

y 

0.8* 

     1/3 

     1/3 

     1/3 

y 

+ 0.2* 

     1/2 1/2   0 

     1/2   0    0 

      0   1/2   1 

   1/3 1/3 1/3 

   1/3 1/3 1/3 

   1/3 1/3 1/3 

y   7/15  7/15   1/15 

a   7/15  1/15   1/15 

m  1/15  7/15  13/15 

0.8 + 0.2 

62 



Random teleports ( = 0.8) 

Yahoo 

M’soft Amazon 

     1/2 1/2   0 

     1/2   0    0 

      0   1/2   1 

   1/3 1/3 1/3 

   1/3 1/3 1/3 

   1/3 1/3 1/3 

y   7/15  7/15   1/15 

a   7/15  1/15   1/15 

m  1/15  7/15  13/15 

0.8 + 0.2 

y 

a    = 

m 
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Matrix formulation 

•Suppose there are N pages 
• Consider a page j, with set of outlinks O(j) 

• We have Mij = 1/|O(j)| when j->i and Mij = 0 
otherwise 

• The random teleport is equivalent to 

• adding a teleport link from j to every other page 
with probability (1-)/N 

• reducing the probability of following each outlink 
from 1/|O(j)| to /|O(j)| 

• Equivalent: tax each page a fraction (1-) of its 
score and redistribute evenly  
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PageRank 

•Construct the N-by-N matrix A as follows 
• Aij = Mij + (1-)/N 

•Verify that A is a stochastic matrix 

•The page rank vector r is the principal 
eigenvector of this matrix 
• satisfying r = Ar 

•Equivalently, r is the stationary 
distribution of the random walk with 
teleports 
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Dead ends 

•Pages with no outlinks are “dead ends” for 
the random surfer 

• Nowhere to go on next step 
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Microsoft becomes a dead end 

Yahoo 

M’soft Amazon 

y 

a    = 

m 

1/3 

1/3 

1/3 

1/3 

0.2 

0.2 

0 

0 

0 

. . . 

     1/2 1/2   0 

     1/2   0    0 

      0   1/2   0 

   1/3 1/3 1/3 

   1/3 1/3 1/3 

   1/3 1/3 1/3 

y   7/15  7/15   1/15 

a   7/15  1/15   1/15 

m  1/15  7/15   1/15 

0.8 + 0.2 

Non- 
stochastic! 
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Dealing with dead-ends 

•Teleport 
• Follow random teleport links with probability 
1.0 from dead-ends 

• Adjust matrix accordingly 

•Prune and propagate 
• Preprocess the graph to eliminate dead-ends  

• Might require multiple passes 

• Compute page rank on reduced graph 

• Approximate values for deadends by 
propagating values from reduced graph 
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Computing PageRank 

• Key step is matrix-vector multiplication 
• rnew = Arold 

• Easy if we have enough main memory to 
hold A, rold, rnew 

• Say N = 1 billion pages 
• We need 4 bytes for each entry (say) 

• 2 billion entries for vectors, approx 8GB 

• Matrix A has N2 entries 

• 1018 is a large number! 
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Rearranging the equation 

r = Ar, where 

Aij = Mij + (1-)/N 

ri = 1≤j≤N Aij rj 

ri = 1≤j≤N [Mij + (1-)/N] rj 

    =  1≤j≤N Mij rj + (1-)/N 1≤j≤N rj  

   =  1≤j≤N Mij rj + (1-)/N, since |r| = 1 

r = Mr + [(1-)/N]N 
where [x]N is an N-vector with all entries x 
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Sparse matrix formulation 

• We can rearrange the page rank equation: 
• r = Mr + [(1-)/N]N 

• [(1-)/N]N is an N-vector with all entries (1-)/N 

• M is a sparse matrix! 
• 10 links per node, approx 10N entries 

• So in each iteration, we need to: 
• Compute rnew = Mrold 

• Add a constant value (1-)/N to each entry in rnew 
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Sparse matrix encoding 

•Encode sparse matrix using only nonzero 
entries 

• Space proportional roughly to number of links 

• say 10N, or 4*10*1 billion = 40GB 

• still won’t fit in memory, but will fit on disk 

0 3 1, 5, 7 

1 5 17, 64, 113, 117, 245 

2 2 13, 23 

source 
node 

degree destination nodes 

72 



Basic Algorithm  

• Assume we have enough RAM to fit rnew, plus some 
working memory 

• Store rold and matrix M on disk 

 

Basic Algorithm: 

• Initialize: rold = [1/N]N 

• Iterate: 
• Update: Perform a sequential scan of M and rold to update rnew 

• Write out rnew to disk as rold for next iteration 

• Every few iterations, compute |rnew-rold| and stop if it is below 
threshold 

• Need to read in both vectors into memory 
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Personalized PageRank 

•Query-dependent Ranking 

• For a query webpage q, which webpages are 

most important to q? 

• The relative important webpages to different 

queries would be different 
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Calculation of P-PageRank 
• Recall PageRank calculation: 

• r = Mr + [(1-)/N]N or 

• r = Mr + (1-) 𝑟0, where 𝑟0 =

1/𝑁
1/𝑁

…
1/𝑁

 

 
• For P-PageRank 

• Replace 𝑟0 with 𝑟0 =

0
0
…
1
…
0
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qth webpage  



Mining Graph/Network Data: Part I 

•Graph / Network Data 

 

•Graph Pattern Mining 

 

•Ranking on Graph / Network 

 

•Summary 
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Summary 

• Graph / Network Data 
• Adjacency matrix 

• Graph Pattern Mining 
• Frequent subgraph mining 

• gSpan 

• Graph search 

• gindex 

• Ranking on Graph / Network 
• PageRank 

• Personalized PageRank 
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