CS6220: DATA MINING TECHNIQUES

Mining Graph/Network Data: Part |

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

November 12, 2013

mailto:sun22@illinois.edu

Announcement

- Homework 4 will be out tonight
* Due on 12/2

* Next class will be canceled

- I will sull put the last set of shdes online, you can learn 1t
by yourselt

« [will be 1n office next Tuesday afternoon (2-5pm), as
the Wednesday oftice hour 1s in holiday

» Course project
- Everyone 1s required to attend both sessions (12/3 and

12/10)

* Presentation will be increased to 15 mins / group, as we
now have two sessions

* More details will be announced 1n Piazza

New course next semester

-Spring 2014, CS 7280 Special Topics in Data
Mining (Mining Information/Social Networks)

- Paper reading and presentation (20%)
 Homework (209%)

* Research project (50%)

- Participation (10%)

http://www.ccs.neu.edu/home/yzsun/classes/2014Spring_CS7280/index.html
http://www.ccs.neu.edu/home/yzsun/classes/2014Spring_CS7280/index.html
http://www.ccs.neu.edu/home/yzsun/classes/2014Spring_CS7280/index.html

Tentative Syllabus

1
2.
3.
4
D.

Basics of Information/Social Networks
Ranking for infonet

Clustering / community detection

Matrix factorization

Classification / label propagation / node or

link prohiling

0.
7.
3.
9.

OO[\DP—‘O

Probabilistic models for infonets
Similarity search

Diffusion / Influence maximization
Recommendation

Link / relationship prediction
Trustworthy analysis

Large graph computation

Network evolution

Mining Graph/Network Data: Part |

-Graph / Network Data 4@
-Graph Pattern Mining

-Ranking on Graph / Network

*Summary

Graph, Graph

, Everywhere

Internet

from H. Jeong et al Nature 411, 41 (2001)

Yeast protein interaction network

B Levidow s
1100 BLEINON g €

DOy L i W
 Conganni i D Donnell

KW o
M Kawato & Lapede
JHa R Kronmal

) P Sab
R THARTHAR, > DYVG

)
wivanter LB RIBIEWaY Y Weiss 7
=

M Gl 150Ut

K Chang /~
i / //
’*’ 8 Russell
by

Klde

Pt ™

P Chosee ¥ Tavior BIEE

’
JFarfes - N Kapadia

G Linden
/ I aronel

1

J Kiinen EKe P Sallis

F E Nikunen

[t £ Ooren N
0/ feinonen)R es

H Mannila
G Steckm;

JBoul iy Bouauet y w muni

PR eyt 'k user D Psalils

% V2 R Manduchi
EUIS!E i Bemaran
EE Tartagni

it K Laakso ola
D Eppstein

D Dobkin =B Hart F Yao "/ G Miller ¥ Glancarlo

o rar 7 M Dickersan
L aucer oo !

B,

L Guinas Ekuo

Co-author network

Why Graph Mining?

- Graphs are ubiquitous
« Chemical compounds (Cheminformatics)
- Protein structures, biological pathways/networks (Biomformactics)
« Program control flow, trathc flow, and workflow analysis

« XML databases, Web, and social network analysis

- Graph is a general model

« Trees, lattices, sequences, and items are degenerated graphs
- Diversity of graphs

« Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted,

with angles & geometry (topological vs. 2-1)/3-D)

- Complexity of algorithms: many problems are of high complexity

Representation of a Graph

G =<V,E >
-V ={uq, ..., uy}: node set
«E €V XV:edge set
- Adjacency matrix
« A = {aij}, ,j=1,..,n
caq;; =1,if <u,uf >€EE
ca; =0,if <uju >¢E
- Undirected graph vs. Directed graph
- A=ATvs. A # AT
« Weighted graph

* Use Winstead of A, where w;; represents the weight of edge
< ui,uj >

Mining Graph/Network Data: Part |

-Graph / Network Data
-Graph Pattern Mining 4@

-Ranking on Graph / Network

*Summary

Graph Pattern Mining

*Mining Frequent Subgraph Patterns

-Graph Search

10

Mining Frequent Subgraph Patterns

- Frequent subgraphs

* A (sub)graph 1s frequent 1 its support (occurrence
frequency) 1 a given dataset 1s no less than a

munimum support threshold
- Applications of graph pattern mining

- Mining biochemical structures
 Program control flow analysis
* Mining XML structures or Web communities

- Building blocks for graph classification, clustering,

compression, comparison, and correlation analysis

11

Labeled Graph and Subgraph

- Labeled graph

- A label function maps each vertex or edge to a label

* E.g., a molecule is a labeled graph O\\S/OH
\

- Subgraph \©/ Y
- A graph g1s a subgraph of another graph ¢’1f there
exists a subgraph 1somorphism from gto g’

- There exists a subgraph g, € g', such that g is graph
isomorphism to g,, i.e., there is a bijective mapping
between nodes in g and g, such that for every edge in g,
the mapped node pair is also an edge in g

* For labeled graph, we also required the labels after the
mapping are the same

Support of a Subgraph

-Given a graph database
D = {Gll cer) GTL}
-The support of a graph g, support(g), is:

"The number of graphs in the database that g 1s
a subgraph

- Frequent graph

* A graph whose support 1s equal or larger than
min_sup

13

Example: Frequent Subgraphs

GRAPH DATASET

\\ /OH

41 TYV

(A) (B)

FREQUENT PATTERNS
(MIN SUPPORT IS 2)

O @) <;/<

14

EXAMPLE (1)

GRAPH DATASET

FREQUENT PATTERNS
(MIN SUPPORT IS 2)

1: makepat
2: esc

3: addstr
4: getccl
5: dodash
6:in_set 2
7: stclose

15

How to Mine Frequent Subgraph
Pattern?

» Two steps

- Step 1: Generate frequent substructure

candidates

 Step 2: Calculate the support of these candidates
using subgraph 1somorphism test (NP!)

- Two types of approaches

- Apriori-based approach
- Pattern-growth approach

16

Frequent Subgraph Mining Approaches

- Apriori-based approach
* AGM/AcGM: Inokuchi, et al. (PKDD’00)
« FSG: Kuramochi and Karypis ICDM’01)

« PATH": Vanetik and Gudes ICDM’02, ICDM’04)
« FFSM: Huan, et al. ICDM’03)

- Pattern growth approach

« Moka, Borgelt and Berthold ICDM’02)
« gSpan: Yan and Han ICDM’02)
 Gaston: Nyssen and Kok (KDD’04)

17

Apriori-Based Approach

(k+1)-edge

Apriori Approach Framework

Algorithm: AprioriGraph. Apriori-based frequent substructure mining.
Input:

D, a graph data set;

rmin_sup, the minimum support threshold.
Output:

Sk, the frequent substructure set.

Method:
81 + frequent single-elements in the data set;
Call AprioriGraph(D, min_sup, 51);

procedure AprioriGraph(D, min_sup, S;)

for each frequent g; = S; do
for each frequent g; € 5 do

for each size (k + 1) graph g formed by the merge of g; and g; do

(1)
(2)
(3)
(4)
(5) if g is frequent in D and g Z S;4 then
(6) insert g into Sg 13

(7) ifsp, | = < then

(8) AprioriGraph(D, min_sup, S;1);

(9)

return;

Apriori-Based, Breadth-First Search

= Methodology: breadth-search, joining two graphs

= AGM (Inokuchi, et al. PKDD'00)
= generates new graphs with one more node

= FSG (Kuramochi and Karypis ICDM’'01)
= generates new graphs with one more edge

ﬁ@@%

20

Pattern Growth Method

(k+2)-edge

(k+1)-edge 8 o

/ ©) O .
k-edge/@ duplicate

graph
\@ o —

21

Pattern Growth Approach Framework

Algorithm: PatternGrowthGraph. Simplistic pattern growth-based frequent substructure
mining,

Input:

g, a frequent graph;

D, a graph data set;

min_sup, minimum support threshold.
Output:

The frequent graph set, S.
Method:

S — &;

Call PatternGrowthGraph(g, D, min_sup, §);

procedure PatternGrowthGraph(g, D, min_sup, S)

(1) if g £ 5 then return;

(2) else insert g into S;

(3) scan D once, find all the edges e such that g can be extended to g o, e;
(4) for each frequent g o, e do Need to avoid duplicate graphs!
(5) PatternGrowthGraph(g o, e, D, min_sup, S);

(6) return;

GSPAN (Yan and Han ICDM’'02)

Right-Most Extension

v

o e

O
O
O O

Theorem: Completeness

o
(
O

-

.

The Enumeration of Graphs

using Right-most Extension is

COMPLETE

~

/

23

DFS Code

- Flatten a graph into a sequence using

depth first search

e0: (0,1)
el: (1,2)
e2: (2,0)
e3: (2,3)
e4: (3,1)
e5: (2,4)

24

*DFS Lexicographic Order

- Let Z be the set of DFS codes of all graphs. Two DFS codes a

and b have the relation a<=b (DFS Lexicographic Order in Z) if
and only if one of the following conditions is true. Let

a = (xy, Xy, .-, X,,) @and
b = (y()r y]_l cee) yn)/

(i) if there exists t, 0<=t <= min(m,n), x, =y, for all
K, s.t. k<t, and x, <,

(i) x=y, forall k, s.t. 0<=k<=m and m <=n.

25

*DFS Code Extension

Let a be the minimum DFS code of a graph G and b be a non-
minimum DFS code of G. For any DFS code d generated from
b by one right-most extension,

() dis nota minimum DFS code,

(i) min_dfs(d) cannot be extended from b, and

(i) min_dfs(d) is either less than a or can be
extended from a.

4)
THEOREM [RIGHT-EXTENSION]
The DFS code of a graph extended from a

kNon-minimum DFS code is NOT MINIMUMJ

26

Graph Pattern Explosion Problem

- If a graph is frequent, all of its subgraphs are frequent
— the Apriori property

- An n-edge frequent graph may have 2" subgraphs

- Among 422 chemical compounds which are confirmed
to be active in an AIDS antiviral screen dataset, there

are 1,000,000 frequent graph patterns if the minimum
support is 5%

« To mine closed graph pattern directly
» *CLOSEGRAPH (Yan & Han, KDD’03)

27

Graph Pattern Mining

*Mining Frequent Subgraph Patterns

*Graph Search

28

Graph Search

-Querying graph databases:

- Given a graph database and a query graph, find all the
eraphs contaimning this query graph

-~ N
\ /_\¥ o -
| Q‘\(O\(\j‘ N \i/fqygvﬂy
N N \gﬁ o
~_— Q//© o

guery graph graph database

29

Scalability Issue

-Sequential scan
* Disk I/Os
» Subgraph 1somorphism testing
*An indexing mechanism is needed
- DaylLight: Daylight.com (commercial)
» GraphGrep: Dennis Shasha, et al. PODS'02
» Grace: Srinath Srimivasa, et al. ICDE/03

30

Indexing Strategy

Query graph (Q) Graph (G)

W ./I\ 7
Substructure

Remarks

f
If graph G contains query

graph Q, G should contain
any substructure of Q

N

~

y

= Index substructures of a query graph to
prune graphs that do not contain these

substructures

Indexing Framework

(Step 1. Index Construction |

= Enumerate structures in the graph database,
build an inverted index between structures

N and graphs)

/Step 2. Query Processing \
= Enumerate structures in the query graph

= Calculate the candidate graphs containing
these structures

= Prune the false positive answers by

\ performing subgraph isomorphism test /

32

Cost Analysis

QUERY RESPONSE TIME

T. +‘Cq‘ ><(TiO +T.

Index somorphim_testing)

fetch index number of candidates

REMARK: make |C,| as small as possible

33

Path-based Approach

GRAPH DATABASE

(@) (b) ()
PATHS

O-length: C, O, N, S

1-length: C-C, C-O, C-N, C-S, N-N, S-O
2-length: C-C-C, C-O-C, C-N-C, ...
3-length: ...

Built an inverted index between paths and graphs

34

Path-based Approach (cont.)

QUERY GRAPH

()

N N

~_—

0-edge: S-={a, b, c}, Sy={a, b, c}
1-edge: S-.={a, b, ¢}, Sc\={a, b, ¢}
2-edge: S n.c ={a, b}, ...

f
Intersect these sets, we obtain the candidate

answers - graph (a) and graph (b) - which may
contain this query graph.
N

~

)

35

Problems: Path-based Approach

GRAPH DATABASE

(a) (b) (c)
QUERY GRAPH

Only graph (c) contains this query
graph. However, if we only index
paths: C, C-C, C-C-C, C-C-C-C, we
cannot prune graph (a) and (b).

G\G B C/G
G/ \G

36

gindex: Indexing Graphs by Data Mining

-Our methodology on graph index:

* Identily [requent structures m the database, the
frequent structures are subgraphs that appear quite

often 1n the graph database

* Prune redundant frequent structures to maintain a

small set of discriminative structures

» Create an mverted mdex between discrimimmative

frequent structures and graphs n the database

37

IDEAS: Indexing with Two Constraints

discriminative (~103)

frequent (~105)

structure (>109)

38

Why Discriminative Subgraphs?

Sample database

m o) i L v
e O @f/O
() (b)

\

- All graphs contain structures: C, C-C, C-C-C

- Why bother indexing these redundant
frequent structures?

« Only index structures that provide more information than
existing structures

39

Discriminative Structures

- Pinpoint the most useful frequent structures

- Given a set of structures f,, f,,... f and a new structure
X, we measure the extra indexing power provided by x,

P(x\ f,f,... fn), f cx

When P is small enough, X is a discriminative structure
and should be included in the index

- Index discriminative frequent structures only

- Reduce the index size by an order of magnitude

40

Why Frequent Structures?

-We cannot index (or even search) all of
substructures

- Large structures will likely be indexed well
by their substructures

-Size-increasing support threshold

t minimum

support threshold

_

size

support

41

Experimental Setting

- The AIDS antiviral screen compound dataset from
NCI/NIH, containing 43,905 chemical compounds

- Query graphs are randomly extracted from the
dataset

- GraphGrep: maximum length (edges) of paths is
set at 10

- glndex: maximum size (edges) of structures is set
at 10

42

Experiments: Index Size

OF FEATURES

1.4E+05
—— Path

1.2E+05 1| -m- Frequent Structure o
—e— Discriminative Frequent Structure

1.0E+05 -

8.0E+04 -

6.0E+04 -

4.0E+04 - n

2.0E+04 -

0.0E+00 : . ¢ * *
1k 2k 4k 8k 16k

DATABASE SIZE

43

Experiments: Answer Set Size

(Lﬁ 140
— 120

OF CANDIDA
N B O ® O
© O O O O

o

—— GraphGrep
~m— glndex
—-o— Actual Match

N\

4 8 12 16
QUERY SIZE

20 24

44

Experiments: Incremental Maintenance

80
70 /
60 v

N =

o .

o o

20 ’/

2K 4K 6k 8k 10k

=—&— From scratch =—#—Incremental

Freguent structures are stable to database updating
Index can be built based on a small portion of a graph
database, but be used for the whole database

Mining Graph/Network Data: Part |

-Graph / Network Data

-Graph Pattern Mining
-Ranking on Graph / Network 4

*Summary

46

Ranking on Graph / Network

-PageRank

- Personalized PageRank

47

The History of PageRank

- PageRank was developed by Larry Page (hence the name
Page-Rank) and Sergey Brin.

- It is first as part of a research project about a new kind of
search engine. That project started in 1995 and led to a
functional prototype in 1998.

- Shortly after, Page and Brin founded Google.

Ranking web pages

-Web pages are not equally “important”

« WWw.cnn.com vs. a personal webpage

*Inlinks as votes

"The more mlinks, the more important

- Are all inlinks equal?

 Recursive question!

49

http://www.cnn.com/

Simple recursive formulation

Each link’s vote is proportional to the
Importance of its source page

- If page P with importance x has n outlinks,

each
- Page

ink gets x/n votes

P’s own importance is the sum of the

votes on its inlinks

50

Matrix formulation

- Matrix M has one row and one column for each web
page
- Suppose page j has n outlinks
- Ifj ->1, then M;=1/n
» Else M;=0
‘Misa
e Columns sum to 1
- Suppose r is a vector with one entry per web page
* 1; 15 the importance score of page 1

« Call it the
- r| =1

51

Eigenvector formulation

-The flow equations can be written

-So the rank vector is an eigenvector of the
stochastic web matrix

- In fact, 1ts first or principal eigenvector, with
corresponding eigenvalue 1

52

Example

y =yl2+a/2
a=y/l2+m
m=a/2

QD

y a m

1/21/2 0
1/2 0 1
012 0

1/21/2 0
1/2 0 1
m 01/2 0

S

D <

53

Power Iteration method

-Simple iterative scheme (aka)

-Suppose there are N web pages

. lterate: rktl = Mrrk

-Stop when |rk+1- rk

- Initialize: r° = [1/N,....,1/N]"

1 <€

X[= Zigen| x| 15 €

he 1.1 norm

 Can use any other vector norm e.g., Fuchidean

54

Power Iteration Example

y a m
y 1/21/2 0
a (1/72 0 1
m|O01/2 0O
y 1/3 1/3 5/12 3/8 2/5
a = 1/3 1/2 1/3 11/24 ... 2/5
m

1/3 16 1/4 1/6 1/5

Random Walk Interpretation

*lmagine a
- At any time t, surfer 1s on some page P

- At time t+1, the surfer tollows an outlink from
P uniformly at random

- Ends up on some page Q linked from P
* Process repeats indefinitely

-Let p(t) be a vector whose ith component

is the probability that the surfer is at page
| at time t

» p(t) 1s a probability distribution on pages

56

The stationary distribution

Where is the surfer at time t+17?
* Follows a link uniformly at random
-p(t+1) = Mp(t)

-Suppose the random walk reaches a state
such that p(t+1) = Mp(t) = p(t)

* Then p(t) 1s called a for
the random walk

»Our rank vector r satisfies r = Mr

* So 1t 18 a stationary distribution for the random
surfer

57

Existence and Uniqueness

A central result from the theory of random walks (aka Markov
processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and
eventually will be reached no matter what

the initial probability distribution at time t
= 0.

58

Spider traps

A group of pages is a if there
are no links from within the group to
outside the group

- Random surfer gets trapped

-Spider traps violate the conditions needed
for the random walk theorem

59

Microsoft becomes a spider trap

y a m
y 1/21/2 0
a 1/2 0 0
m|01l/2 1
1/3 1/3 1/4 5/24 0
= 1/3 1/6 1/6 1/8 0

1/3 12 7112 2/3 1

Random teleports

- The Google solution for spider traps

- At each time step, the random surfer has
two options:

- With probability 3, follow a link at random

- With probability 1-3, jump to some page
uniformly at random

- Common values for 3 are in the range 0.8 to

0.9

- Surfer will teleport out of spider trap
within a few time steps

61

Random teleports (B = 0.8)

y

1/2
1/2

y

1/2
0.8*[1/2 | +0.2*

y

1/3
1/3
1/3

1/2 0

1/21/2 0

0 1/2 1

1/3 1/3 1/3

0 +0.2 11/31/3 1/3

1/3 1/3 1/3

SR

7115 7/15 1/15
7/15 1/15 1/15
1/15 7/15 13/15

62

Random teleports (B = 0.8)

y
a =
m

[0.333]
0.333

0.8

@

[0.333]
0.200

0.333

0.467

1/21/2 0
1/2 0 O
0 1/2 1

[0.280
0.200

ISP

+ 0.2

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

7115 7/15 1/15
7115 1/15 1/15
1/15 7/15 13/15

[0.259]
0.179

[7/33 |
5/33

0.520

0.563

21/33

63

Matrix formulation

-Suppose there are N pages
- Consider a page J, with set of outlinks O(j)
*We have M, = 1/]O() | when j->1 and M, = 0

otherwise
"The random teleport 1s equivalent to
» adding a from j to every other page
with probability (1-B)/N
* reducing the probability of following each outlink
from 1/]0(j)| to B/|O(j)|

* Equivalent: tax each page a fraction (1-f3) of its
score and redistribute evenly

64

PageRank

- Construct the N-by-N matrix A as follows
- A;; = PM; + (1-)/N

-Verify that A is a stochastic matrix

*The r is the principal
eigenvector of this matrix
e satislying r = Ar

- Equivalently, r is the stationary
distribution of the random walk with
teleports

65

Dead ends

- Pages with no outlinks are “
the random surfer

- Nowhere to go on next step

" for

66

Microsoft becomes a dead end

0.8

y 1/3 1/3
a = 1/3 0.2
m 1/3 0.2

»
|

1/21/2 0
1/2 0 O
0 1/2 0

+ 0.2

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

ISP

7115 7/15 1/15
7115 1/15 1/15
m|1/15 7/15 1/15

o O O

|

Dealing with dead-ends

- Teleport

- Follow random teleport links with probability
1.0 from dead-ends

- Adjust matrix accordingly

*Prune and propagate
* Preprocess the graph to eliminate dead-ends
- Might require multiple passes
- Compute page rank on reduced graph

- Approximate values for deadends by
propagating values from reduced graph

68

Computing PageRank

- Key step is matrix-vector multiplication
o PHEW — Ar()ld
- Easy if we have enough main memory to
hold A, rold, pnew
-Say N =1 billion pages
- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB

» Matrix A has N2 entries
- 10*8is a large number!

69

Rearranging

the equation

r = Ar, where
A; = BM; + (1-B)/N
I = ZlSjSN Al

= 2agjen [BMy;+ (1-B)/N]

B 2o Myir+ (1-

B 2igen My 1+ (1-

r=pBMr + [(1-B)/N]y

where [x] is an N-vector with all entries x

B)/N 2y qjen 1,

3)/N, since |r| =1

Sparse matrix formulation

- We can rearrange the page rank equation:
+ 1= BMr + [(1)/Nly
« [(1-B)/Nly 1s an N-vector with all entries (1-)/N
- M is a sparse matrix!
10 links per node, approx 10N entries

- So in each iteration, we need to:
- Compute "V = Mreld

« Add a constant value (1-B)/N to each entry in r¢v

71

Sparse matrix encoding

-Encode sparse matrix using only nonzero
entries

* Space proportional roughly to number of links
*say 10N, or 410" 1 billion = 40GB

- sull won’t fit iIn memory, but will fit on disk

0 3 1,5,7
1 5 17, 64, 113, 117, 245
2 2 13, 23

72

Basic Algorithm

- Assume we have enough RAM to fit r"®¥, plus some
working memory
Store r°4 and matrix M on disk

Basic Algorithm:
- Initialize: rol9 = [1/N],
* |terate:

Update: Perform a sequential scan of M and r°' to update rev
Write out "¢V to disk as r°!d for next iteration
Every few iterations, compute |[r"¥-rod| and stop if it is below

threshold
* Need to read in both vectors into memory

73

Personalized PageRank

-Query-dependent Ranking

- For a query webpage q, which webpages are
most important to q?

* The relative important webpages to different
queries would be different

74

Calculation of P-PageRank

- Recall PageRank calculation:

1t = BMr + [(I-B)/N]y or

1/N

* 1= BMr + (1-B3) 19, where 1y = /N
1/N

- For P-PageRank

0
o)
1 gth webpage

\;/

 Replace g with 1y =

Mining Graph/Network Data: Part |

-Graph / Network Data

-Graph Pattern Mining

-Ranking on Graph / Network

-Summary 4@

76

Summary

- Graph / Network Data

- Adjacency matrix

- Graph Pattern Mining
* Frequent subgraph mining
* gSpan
 Graph search
* gindex

- Ranking on Graph / Network

- PageRank
- Personalized PageRank

77

