CS6220: DATA MINING TECHNIQUES

Mining Graph/Network Data: Part I

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

November 12, 2013

Announcement

- Homework 4 will be out tonight
 - Due on 12/2

Next class will be canceled

- I will still put the last set of slides online, you can learn it by yourself
- I will be in office next Tuesday afternoon (2-5pm), as the Wednesday office hour is in holiday

Course project

- Everyone is required to attend both sessions (12/3 and 12/10)
- Presentation will be increased to 15 mins / group, as we now have two sessions
- More details will be announced in Piazza

New course next semester

- Spring 2014, <u>CS 7280 Special Topics in Data</u> <u>Mining (Mining Information/Social Networks)</u>
 - Paper reading and presentation (20%)
 - Homework (20%)
 - Research project (50%)
 - Participation (10%)

Tentative Syllabus

- 1. Basics of Information/Social Networks
 - 2. Ranking for infonet
 - 3. Clustering / community detection
 - 4. Matrix factorization
 - 5. Classification / label propagation / node or link profiling
 - 6. Probabilistic models for infonets
 - 7. Similarity search
 - 8. Diffusion / Influence maximization
 - 9. Recommendation
 - 10. Link / relationship prediction
 - 11. Trustworthy analysis
 - 12. Large graph computation
 - 13. Network evolution

Mining Graph/Network Data: Part I

• Graph / Network Data 🛛 🦊

Graph Pattern Mining

Ranking on Graph / Network

Summary

Graph, Graph, Everywhere

Aspirin

Internet

Yeast protein interaction network

Why Graph Mining?

- Graphs are ubiquitous
 - Chemical compounds (Cheminformatics)
 - Protein structures, biological pathways/networks (Bioinformactics)
 - Program control flow, traffic flow, and workflow analysis
 - XML databases, Web, and social network analysis
- Graph is a general model
 - Trees, lattices, sequences, and items are degenerated graphs
- Diversity of graphs
 - Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted, with angles & geometry (topological vs. 2-D/3-D)
- Complexity of algorithms: many problems are of high complexity

Representation of a Graph

- $G = \langle V, E \rangle$
 - $V = \{u_1, ..., u_n\}$: node set
 - $E \subseteq V \times V$: edge set
- Adjacency matrix
 - $A = \{a_{ij}\}, i, j = 1, ..., n$
 - $a_{ij} = 1, if < u_i, u_j > \in E$
 - $a_{ij} = 0$, if $\langle u_i, u_j \rangle \notin E$
 - Undirected graph vs. Directed graph
 - $A = A^{\mathrm{T}} vs. A \neq A^{\mathrm{T}}$
 - Weighted graph
 - Use W instead of A, where w_{ij} represents the weight of edge $< u_i, u_j >$

Mining Graph/Network Data: Part I

Graph / Network Data

• Graph Pattern Mining 🦊

Ranking on Graph / Network

Summary

Graph Pattern Mining

Mining Frequent Subgraph Patterns

Graph Search

Mining Frequent Subgraph Patterns

- Frequent subgraphs
 - A (sub)graph is *frequent* if its *support* (occurrence frequency) in a given dataset is no less than a *minimum support* threshold
- Applications of graph pattern mining
 - Mining biochemical structures
 - Program control flow analysis
 - Mining XML structures or Web communities
 - Building blocks for graph classification, clustering, compression, comparison, and correlation analysis

Labeled Graph and Subgraph

- Labeled graph
 - A label function maps each vertex or edge to a label
 - E.g., a molecule is a labeled graph
- Subgraph
 - A graph g is a subgraph of another graph g' if there exists a subgraph isomorphism from g to g'
 - There exists a subgraph $g'_0 \subseteq g'$, such that g is graph isomorphism to g'_0 , i.e., there is a bijective mapping between nodes in g and g'_0 , such that for every edge in g, the mapped node pair is also an edge in g'_0
 - For labeled graph, we also required the labels after the mapping are the same

OH.

Support of a Subgraph

- Given a graph database
 - $D = \{G_1, \dots, G_n\}$
- The support of a graph g, support(g), is:
 - The number of graphs in the database that g is a subgraph
- Frequent graph
 - A graph whose support is equal or larger than min_sup

Example: Frequent Subgraphs

GRAPH DATASET

FREQUENT PATTERNS (MIN SUPPORT IS 2)

EXAMPLE (II)

How to Mine Frequent Subgraph Pattern?

- Two steps
 - Step 1: Generate frequent substructure candidates
 - Step 2: Calculate the support of these candidates using subgraph isomorphism test (NP!)
- Two types of approaches
 - Apriori-based approach
 - Pattern-growth approach

Frequent Subgraph Mining Approaches

- Apriori-based approach
 - AGM/AcGM: Inokuchi, et al. (PKDD'00)
 - FSG: Kuramochi and Karypis (ICDM'01)
 - PATH[#]: Vanetik and Gudes (ICDM'02, ICDM'04)
 - FFSM: Huan, et al. (ICDM'03)
- Pattern growth approach
 - MoFa, Borgelt and Berthold (ICDM'02)
 - gSpan: Yan and Han (ICDM'02)
 - Gaston: Nijssen and Kok (KDD'04)

Apriori-Based Approach

Apriori Approach Framework

Algorithm: AprioriGraph. Apriori-based frequent substructure mining.

Input:

- D, a graph data set;
- *min_sup*, the minimum support threshold.

Output:

 \blacksquare *S_k*, the frequent substructure set.

Method:

 $S_1 \leftarrow$ frequent single-elements in the data set; Call AprioriGraph(D, min_sup, S_1);

procedure AprioriGraph (D, min_sup, S_k)

(1) $S_{k+1} \leftarrow \emptyset;$

- (2) for each frequent $g_i \in S_k$ do
- (3) for each frequent $g_j \in S_k$ do
- (4) for each size (k+1) graph g formed by the merge of g_i and g_j do
- (5) if g is frequent in D and $g \notin S_{k+1}$ then
- (6) insert g into S_{k+1} ;
- (7) if $s_{k+1} \neq \emptyset$ then
- (8) $AprioriGraph(D, min_sup, S_{k+1});$
- (9) return;

Apriori-Based, Breadth-First Search

Methodology: breadth-search, joining two graphs

- AGM (Inokuchi, et al. PKDD'00)
 - generates new graphs with one more node

- FSG (Kuramochi and Karypis ICDM'01)
 - generates new graphs with one more edge

Pattern Growth Method

Pattern Growth Approach Framework

Algorithm: PatternGrowthGraph. Simplistic pattern growth-based frequent substructure mining.

Input:

- g, a frequent graph;
- D, a graph data set;
- *min_sup*, minimum support threshold.

Output:

The frequent graph set, S.

Method:

 $S \leftarrow \varnothing$; Call PatternGrowthGraph(g, D, min_sup, S);

procedure PatternGrowthGraph(g, D, min_sup, S)

(1) if $g \in S$ then return;

- (2) else insert g into S;
- (3) scan *D* once, find all the edges *e* such that *g* can be extended to $g \diamond_x e$;
- (4) for each frequent $g \diamond_x e$ do

Need to avoid duplicate graphs!

(5) PatternGrowthGraph($g \diamond_x e, \overline{D}, \min_sup, S$);

(6) return;

GSPAN (Yan and Han ICDM'02)

Right-Most Extension

Theorem: Completeness

The Enumeration of Graphs using Right-most Extension is COMPLETE

DFS Code

 Flatten a graph into a sequence using depth first search

e5: (2,4)

*DFS Lexicographic Order

Let Z be the set of DFS codes of all graphs. Two DFS codes a and b have the relation a<=b (DFS Lexicographic Order in Z) if and only if one of the following conditions is true. Let

 $a = (x_0, x_1, ..., x_n)$ and

- $\mathbf{b} = (y_0, y_1, ..., y_n),$
- (i) if there exists t, $0 \le t \le \min(m,n)$, $x_k = y_k$ for all k, s.t. k<t, and $x_t < y_t$
- (ii) $x_k = y_k$ for all k, s.t. $0 \le k \le m$ and $m \le n$.

***DFS Code Extension**

- Let a be the minimum DFS code of a graph G and b be a nonminimum DFS code of G. For any DFS code d generated from b by one right-most extension,
 - (i) **d** is not a minimum DFS code,
 - (ii) min_dfs(d) cannot be extended from **b**, and
 - (iii) min_dfs(d) is either less than a or can be extended from a.

THEOREM [RIGHT-EXTENSION] The DFS code of a graph extended from a Non-minimum DFS code is NOT MINIMUM

Graph Pattern Explosion Problem

- If a graph is frequent, all of its subgraphs are frequent
 <u>the Apriori property</u>
- An **n**-edge frequent graph may have 2ⁿ subgraphs
- Among 422 chemical compounds which are confirmed to be active in an AIDS antiviral screen dataset, there are 1,000,000 frequent graph patterns if the minimum support is 5%
 - To mine closed graph pattern directly
 - *CLOSEGRAPH (Yan & Han, KDD'03)

Graph Pattern Mining

Mining Frequent Subgraph Patterns

• Graph Search

Graph Search

- Querying graph databases:
 - Given a graph database and a query graph, find all the graphs containing this query graph

Scalability Issue

- Sequential scan
 - Disk I/Os
 - Subgraph isomorphism testing
- An indexing mechanism is needed
 - DayLight: Daylight.com (commercial)
 - GraphGrep: Dennis Shasha, et al. PODS'02
 - Grace: Srinath Srinivasa, et al. ICDE'03

Indexing Strategy

Substructure

Remarks

 Index substructures of a query graph to prune graphs that do not contain these substructures

Indexing Framework

- Two steps in processing graph queries
 Step 1. Index Construction
 - Enumerate structures in the graph database, build an inverted index between structures and graphs

Step 2. Query Processing

- Enumerate structures in the query graph
- Calculate the candidate graphs containing these structures
- Prune the false positive answers by performing subgraph isomorphism test

Cost Analysis

QUERY RESPONSE TIME $T_{index} + C_q \times (T_{io} + T_{isomorphism_testing})$ fetch index number of candidates

REMARK: make $|C_q|$ as small as possible

Path-based Approach

GRAPH DATABASE

PATHS

0-length: C, O, N, S 1-length: C-C, C-O, C-N, C-S, N-N, S-O 2-length: C-C-C, C-O-C, C-N-C, ... 3-length: ...

Built an inverted index between paths and graphs

Path-based Approach (cont.)

QUERY GRAPH

0-edge: $S_C = \{a, b, c\}, S_N = \{a, b, c\}$ 1-edge: $S_{C-C} = \{a, b, c\}, S_{C-N} = \{a, b, c\}$ 2-edge: $S_{C-N-C} = \{a, b\}, ...$

Intersect these sets, we obtain the candidate answers - graph (a) and graph (b) - which may contain this query graph. **Problems: Path-based Approach**

GRAPH DATABASE

QUERY GRAPH

Only graph (c) contains this query graph. However, if we only index paths: C, C-C, C-C-C, C-C-C, we cannot prune graph (a) and (b).
gIndex: Indexing Graphs by Data Mining

- Our methodology on graph index:
 - Identify frequent structures in the database, the frequent structures are subgraphs that appear quite often in the graph database
 - Prune redundant frequent structures to maintain a small set of discriminative structures
 - Create an inverted index between discriminative frequent structures and graphs in the database

IDEAS: Indexing with Two Constraints

Why Discriminative Subgraphs?

Sample database

- All graphs contain structures: C, C-C, C-C-C
- Why bother indexing these redundant frequent structures?
 - Only index structures that provide more information than existing structures

Discriminative Structures

- Pinpoint the most useful frequent structures
 - Given a set of structures $f_1, f_2, \dots f_n$ and a new structure x, we measure the extra indexing power provided by x,

$$P(x|f_1, f_2, \dots, f_n), f_i \subset x.$$

When P is small enough, x is a discriminative structure and should be included in the index

- Index discriminative frequent structures only
 - Reduce the index size by an order of magnitude

Why Frequent Structures?

- We cannot index (or even search) all of substructures
- Large structures will likely be indexed well by their substructures
- Size-increasing support threshold

Experimental Setting

- The AIDS antiviral screen compound dataset from NCI/NIH, containing 43,905 chemical compounds
- Query graphs are randomly extracted from the dataset
- GraphGrep: maximum length (edges) of paths is set at 10
- gIndex: maximum size (edges) of structures is set at 10

Experiments: Index Size

Experiments: Answer Set Size

Experiments: Incremental Maintenance

Frequent structures are stable to database updating Index can be built based on a small portion of a graph database, but be used for the whole database

Mining Graph/Network Data: Part I

Graph / Network Data

Graph Pattern Mining

• Ranking on Graph / Network 🦊

Summary

Ranking on Graph / Network

PageRank

Personalized PageRank

The History of PageRank

- PageRank was developed by Larry Page (hence the name Page-Rank) and Sergey Brin.
- It is first as part of a research project about a new kind of search engine. That project started in 1995 and led to a functional prototype in 1998.
- Shortly after, Page and Brin founded Google.

Ranking web pages

- Web pages are not equally "important"
 - <u>www.cnn.com</u> vs. a personal webpage
- Inlinks as votes
 - The more inlinks, the more important
- Are all inlinks equal?
 - Recursive question!

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- If page P with importance x has n outlinks, each link gets x/n votes
- Page P's own importance is the sum of the votes on its inlinks

Matrix formulation

- Matrix M has one row and one column for each web page
- Suppose page j has n outlinks
 - If j -> i, then $M_{ij}=1/n$
 - Else M_{ij}=0
- M is a column stochastic matrix
 - Columns sum to 1
- Suppose r is a vector with one entry per web page
 - r_i is the importance score of page i
 - Call it the rank vector
 - |**r**| = 1

Eigenvector formulation

The flow equations can be written

r = Mr

- So the rank vector is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1

Example

m = a/2

$$\begin{array}{ccccccc} y & a & m \\ y & 1/2 & 1/2 & 0 \\ a & 1/2 & 0 & 1 \\ m & 0 & 1/2 & 0 \end{array}$$

r = Mr

Power Iteration method

- Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- Initialize: $\mathbf{r}^{0} = [1/N,...,1/N]^{T}$
- Iterate: $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
- Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \varepsilon$
 - $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean

Power Iteration Example

 r_0 \boldsymbol{r}_1 \boldsymbol{r}_2 **r**₃ ...

Random Walk Interpretation

- Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time t+1, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely
- Let p(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - **p**(t) is a probability distribution on pages

The stationary distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random
 - p(t+1) = Mp(t)
- Suppose the random walk reaches a state such that p(t+1) = Mp(t) = p(t)
 - Then **p**(t) is called a stationary distribution for the random walk
- Our rank vector r satisfies r = Mr
 - So it is a stationary distribution for the random surfer

Existence and Uniqueness

A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0.

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

Microsoft becomes a spider trap

Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1-β, jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta = 0.8$)

Random teleports ($\beta = 0.8$)

Matrix formulation

- Suppose there are N pages
 - Consider a page j, with set of outlinks O(j)
 - We have $M_{ij} = 1/|O(j)|$ when j->i and $M_{ij} = 0$ otherwise
 - The random teleport is equivalent to
 - adding a teleport link from j to every other page with probability $(1-\beta)/N$
 - reducing the probability of following each outlink from 1/|O(j)| to $\beta/|O(j)|$
 - Equivalent: tax each page a fraction (1- β) of its score and redistribute evenly

PageRank

- Construct the N-by-N matrix A as follows
 - $A_{ij} = \beta M_{ij} + (1-\beta)/N$
- Verify that A is a stochastic matrix
- The page rank vector r is the principal eigenvector of this matrix
 - satisfying **r** = **Ar**
- Equivalently, r is the stationary distribution of the random walk with teleports

Dead ends

- Pages with no outlinks are "dead ends" for the random surfer
 - Nowhere to go on next step

Microsoft becomes a dead end

Dealing with dead-ends

Teleport

- Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly
- Prune and propagate
 - Preprocess the graph to eliminate dead-ends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph

Computing PageRank

- Key step is matrix-vector multiplication
 - $\mathbf{r}^{\text{new}} = \mathbf{A}\mathbf{r}^{\text{old}}$
- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

Rearranging the equation

r = **Ar**, where $A_{ii} = \beta M_{ii} + (1 - \beta)/N$ $\mathbf{r}_{i} = \sum_{1 \le i \le N} \mathbf{A}_{ii} \mathbf{r}_{i}$ $r_{i} = \sum_{1 \le i \le N} [\beta M_{ii} + (1 - \beta)/N] r_{i}$ = $\beta \sum_{1 \le i \le N} M_{ii} r_i + (1-\beta)/N \sum_{1 \le i \le N} r_i$ = $\beta \sum_{1 \le i \le N} M_{ii} r_i + (1-\beta)/N$, since $|\mathbf{r}| = 1$ $\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_{N}$

where $[x]_N$ is an N-vector with all entries x

Sparse matrix formulation

- We can rearrange the page rank equation:
 - $\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_N$
 - $[(1-\beta)/N]_N$ is an N-vector with all entries $(1-\beta)/N$
- M is a sparse matrix!
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $\mathbf{r}^{\text{new}} = \beta \mathbf{M} \mathbf{r}^{\text{old}}$
 - Add a constant value $(1-\beta)/N$ to each entry in \mathbf{r}^{new}

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - say 10N, or 4*10*1 billion = 40GB
 - still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23
Basic Algorithm

- Assume we have enough RAM to fit r^{new}, plus some working memory
 - Store **r**^{old} and matrix **M** on disk

Basic Algorithm:

- Initialize: r^{old} = [1/N]_N
- Iterate:
 - Update: Perform a sequential scan of \mathbf{M} and \mathbf{r}^{old} to update \mathbf{r}^{new}
 - Write out \mathbf{r}^{new} to disk as \mathbf{r}^{old} for next iteration
 - Every few iterations, compute $|\mathbf{r}^{new}-\mathbf{r}^{old}|$ and stop if it is below threshold
 - Need to read in both vectors into memory

Personalized PageRank

- Query-dependent Ranking
 - For a query webpage q, which webpages are most important to q?
 - The relative important webpages to different queries would be different

Calculation of P-PageRank

- Recall PageRank calculation:
 - $r = \beta M r + [(1-\beta)/N]_{N}$ or

•
$$\mathbf{r} = \beta \mathbf{Mr} + (1-\beta) r_0$$
, where $r_0 = \begin{pmatrix} 1/N \\ 1/N \\ ... \\ 1/N \end{pmatrix}$

For P-PageRank

Mining Graph/Network Data: Part I

Graph / Network Data

Graph Pattern Mining

Ranking on Graph / Network

Summary

- Graph / Network Data
 - Adjacency matrix
- Graph Pattern Mining
 - Frequent subgraph mining
 - gSpan
 - Graph search
 - gindex
- Ranking on Graph / Network
 - PageRank
 - Personalized PageRank