CS6220: DATA MINING TECHNIQUES

Mining Graph/Network Data: Part II

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

November 26, 2013

Mining Graph/Network Data: Part II

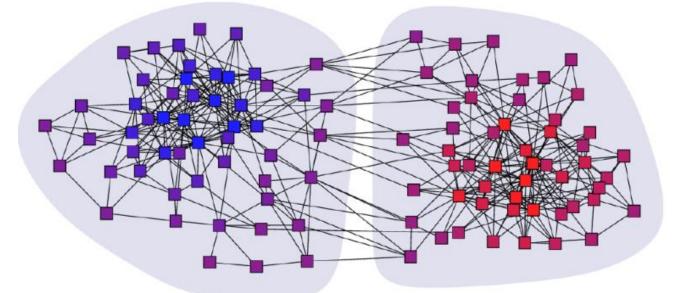
Graph/Network Clustering

Graph/Network Classification

Summary

Clustering Graphs and Network Data

- Applications
 - Bi-partite graphs, e.g., customers and products, authors and conferences
 - Web search engines, e.g., click through graphs and Web graphs
 - Social networks, friendship/coauthor graphs

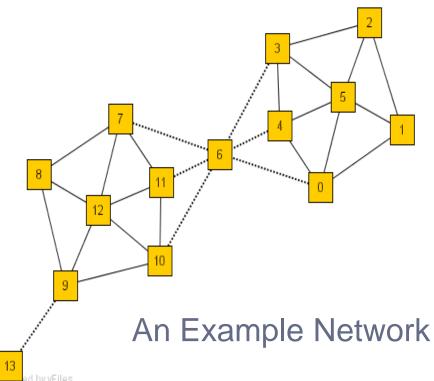


Clustering books about politics [Newman, 2006]

- Graph clustering methods
 - Density-based clustering: SCAN (Xu et al., KDD'2007)
 - Spectral clustering
 - Modularity-based approach
 - Probabilistic approach
 - Nonnegative matrix factorization

SCAN: Density-Based Clustering of Networks

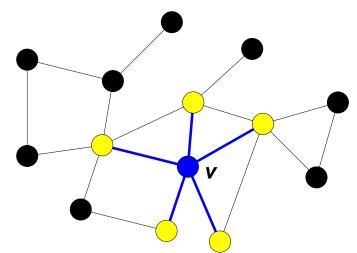
- How many clusters?
- What size should they be?
- What is the best partitioning?
- Should some points be segregated?



Application: Given simply information of who associates with whom, could one identify clusters of individuals with common interests or special relationships (families, cliques, terrorist cells)?

A Social Network Model

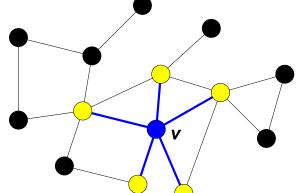
- Cliques, hubs and outliers
 - Individuals in a tight social group, or clique, know many of the same people, regardless of the size of the group
 - Individuals who are <u>hubs</u> know many people in different groups but belong to no single group. Politicians, for example bridge multiple groups
 - Individuals who are <u>outliers</u> reside at the margins of society. Hermits, for example, know few people and belong to no group
- The Neighborhood of a Vertex
 - Define Γ(v) as the immediate neighborhood of a vertex (i.e. the set of people that an individual knows)



Structure Similarity

The desired features tend to be captured by a measure we call Structural Similarity

$$\sigma(v,w) = \frac{|\Gamma(v) \cap \Gamma(w)|}{\sqrt{|\Gamma(v)||\Gamma(w)|}}$$



 Structural similarity is large for members of a clique and small for hubs and outliers

Structural Connectivity [1]

- \mathcal{E} -Neighborhood: $N_{\mathcal{E}}(v) = \{ w \in \Gamma(v) \mid \sigma(v, w) \ge \mathcal{E} \}$
- Core: $CORE_{\varepsilon,\mu}(v) \Leftrightarrow |N_{\varepsilon}(v)| \ge \mu$
- Direct structure reachable:

 $DirRECH_{\varepsilon,\mu}(v,w) \Leftrightarrow CORE_{\varepsilon,\mu}(v) \land w \in N_{\varepsilon}(v)$

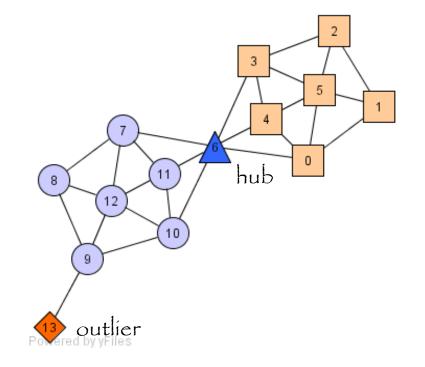
- Structure reachable: transitive closure of direct structure reachability
- Structure connected:

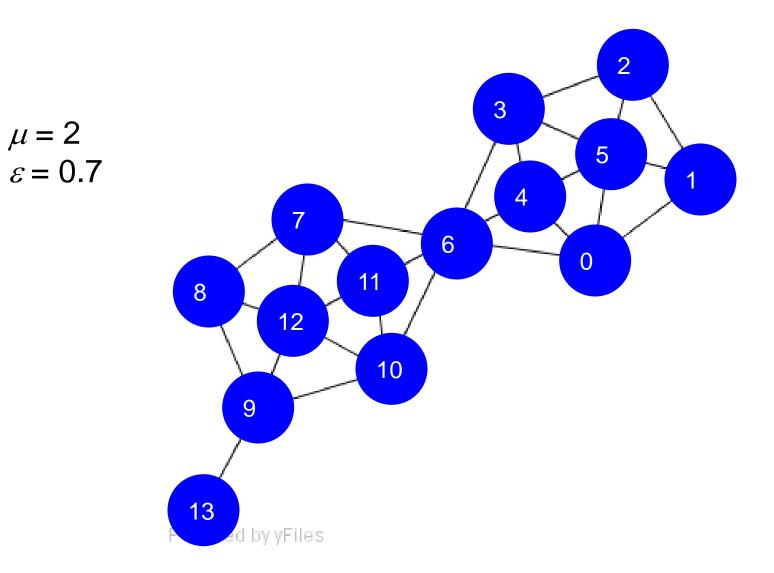
 $CONNECT_{\varepsilon,\mu}(v,w) \Leftrightarrow \exists u \in V : RECH_{\varepsilon,\mu}(u,v) \land RECH_{\varepsilon,\mu}(u,w)$

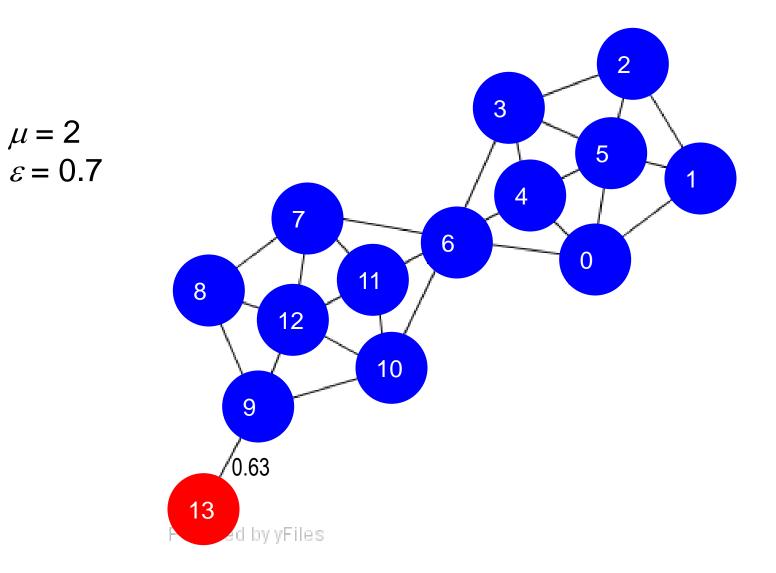
[1] M. Ester, H. P. Kriegel, J. Sander, & X. Xu (KDD'96) "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases

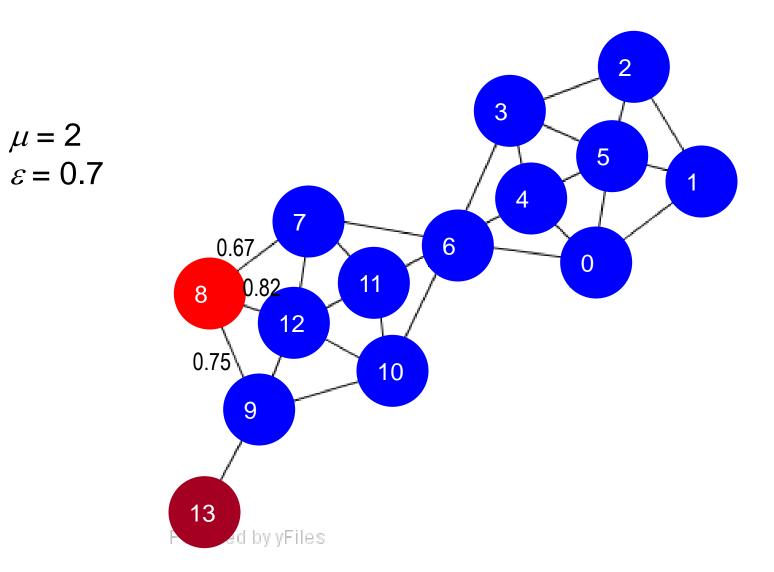
Structure-Connected Clusters

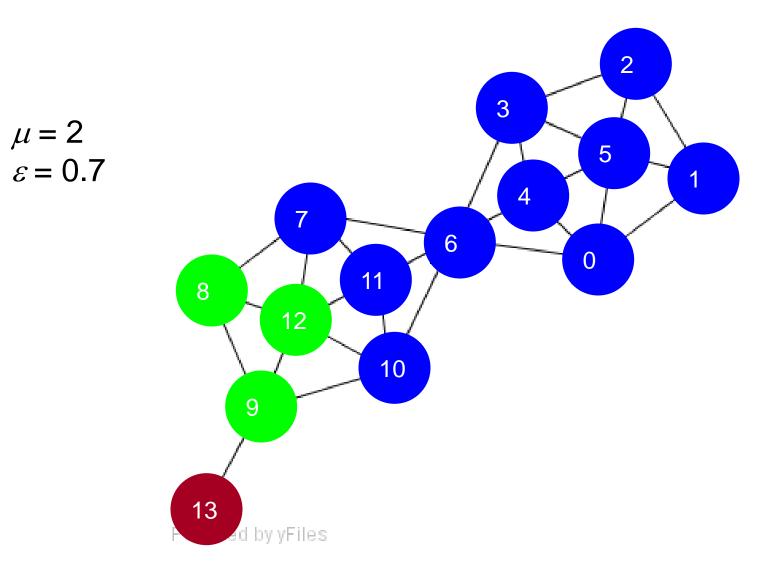
- Structure-connected cluster C
 - Connectivity: $\forall v, w \in C: CONNECT_{\varepsilon,\mu}(v, w)$
 - Maximality: $\forall v, w \in V : v \in C \land REACH_{\varepsilon, u}(v, w) \Longrightarrow w \in C$
- Hubs:
 - Not belong to any cluster
 - Bridge to many clusters
- Outliers:
 - Not belong to any cluster
 - Connect to less clusters

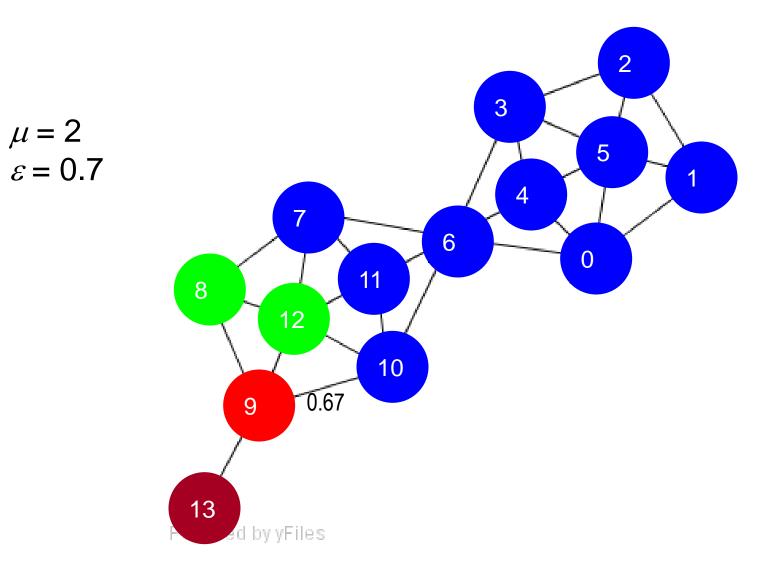


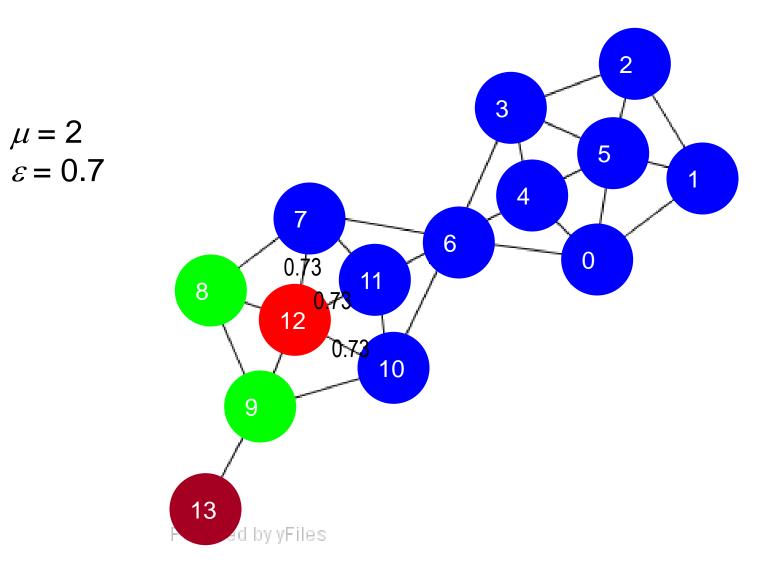


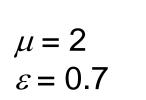


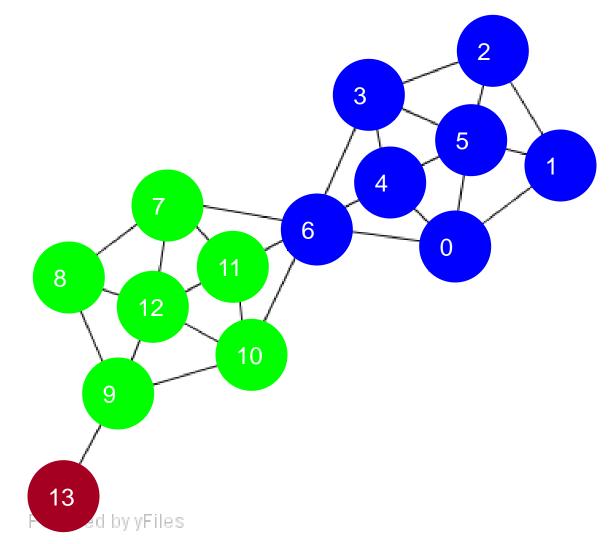


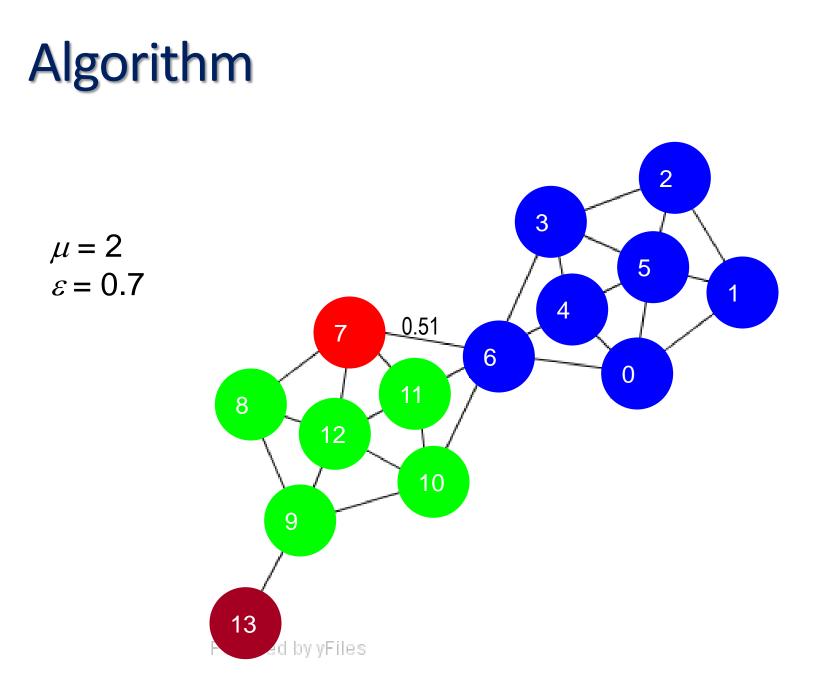


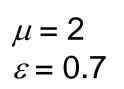


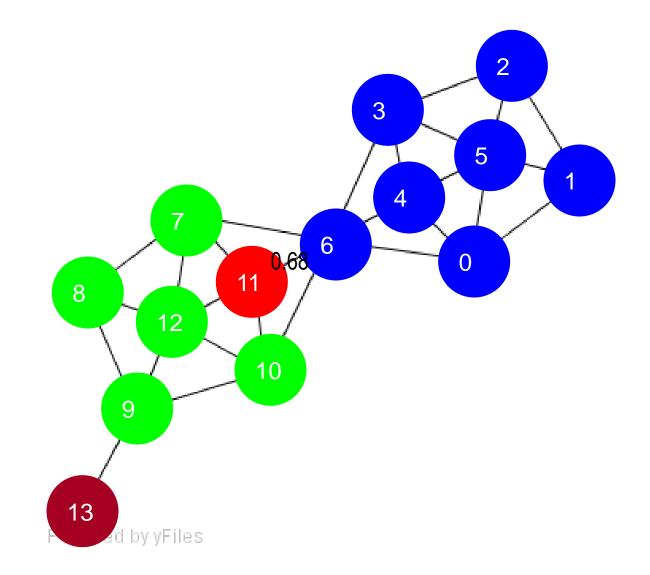


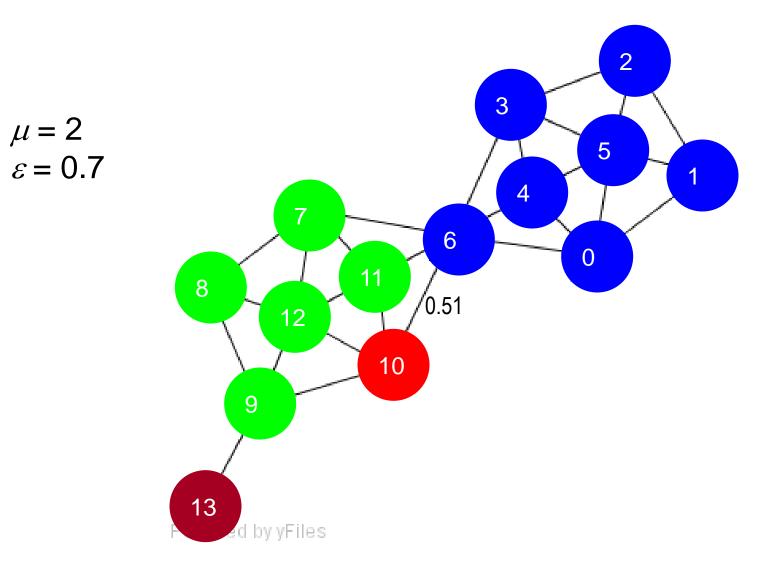


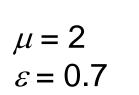


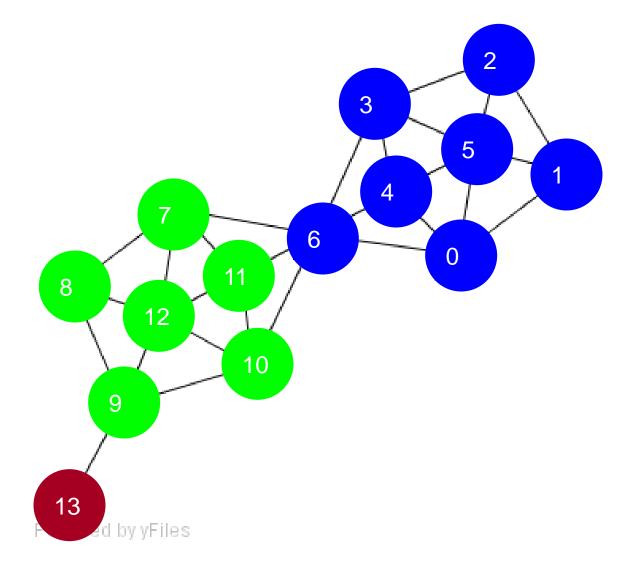


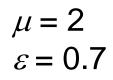


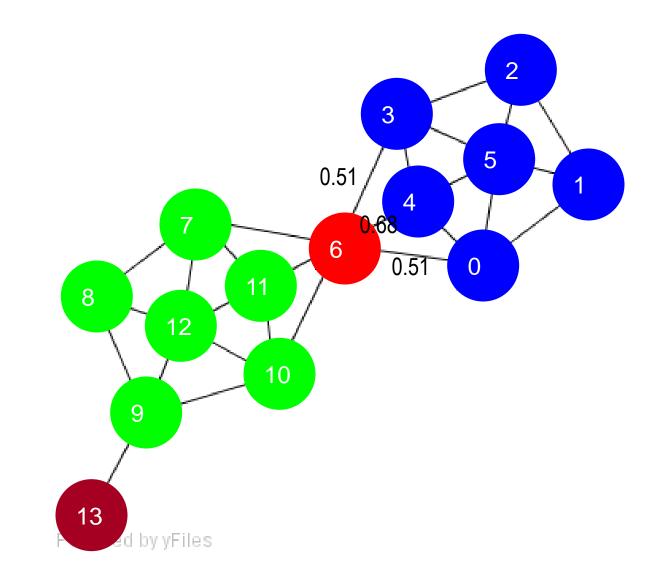


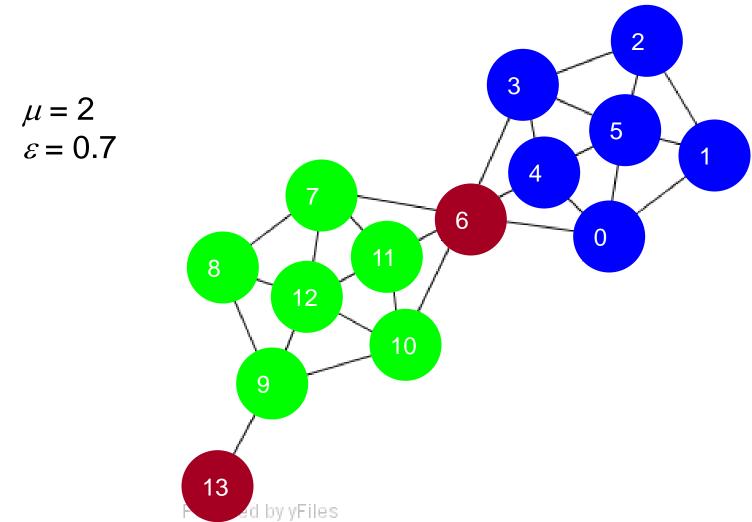






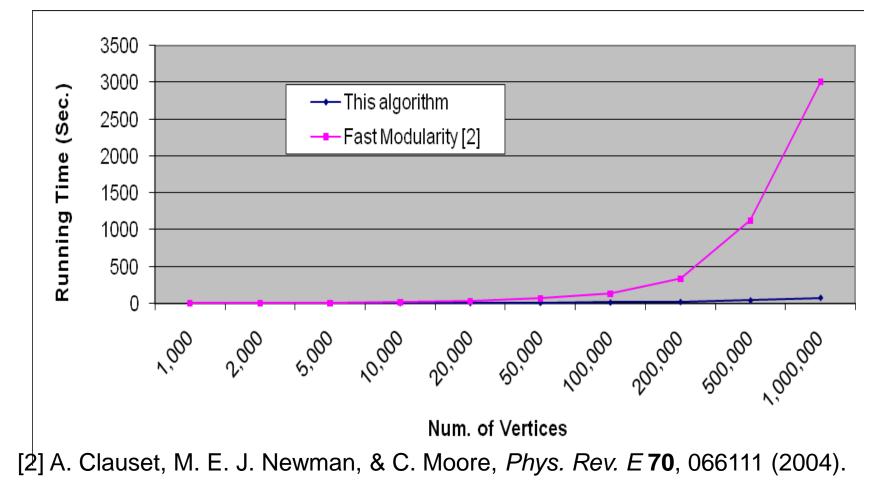






Running Time

- Running time = O(|E|)
- For sparse networks = O(|V|)



Spectral Clustering

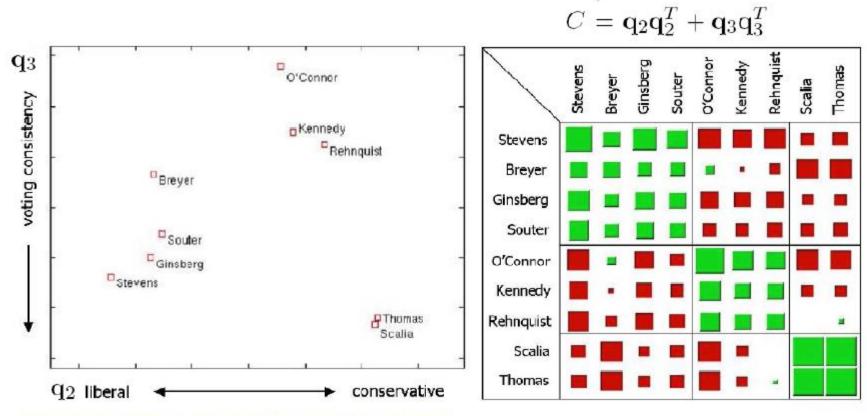
- Reference: ICDM'09 Tutorial by Chris Ding
 Example:
 - Clustering supreme court justices according to

Number of times (%) two Justices voted in agreement

	Ste	Bre	Gin	Sou	O'Co	Ken	Reh	Sca	Tho
Stevens	_	62	66	63	33	36	25	14	15
Breyer	62	_	72	71	55	47	43	25	24
Ginsberg	66	72	_	78	47	49	43	28	26
Souter	63	71	78	_	55	50	44	31	29
O'Connor	- 33	55	47	55		67	71	54	54
Kennedy	36	47	49	50	67	_	77	58	59
Rehnquist	25	43	43	44	71	77	_	66	68
Scalia	14	25	28	31	54	58	66		79
Thomas	15	24	26	29	54	59	68	79	_

Table 1: From the voting record of Justices 1995 Term – 2004 Term, the number of times two justices voted in agreement (in percentage). (Data source: from July 2, 2005 New York Times. Originally from Legal Affairs; Harvard Law Review)

Example: Continue



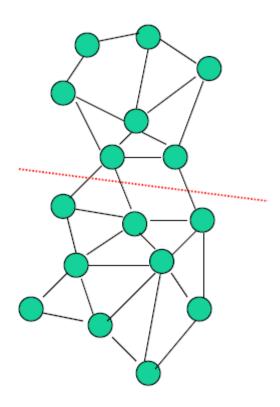
Three groups in the Supreme Court:

- Left leaning group, center-right group, right leaning group.

Spectral Graph Partition

Min-Cut

• Minimize the # of cut of edges



Objective Function

2-way Spectral Graph Partitioning

Partition membership indicator:
$$q_i = \begin{cases} 1 & \text{if } i \in A \\ -1 & \text{if } i \in B \end{cases}$$

$$J = CutSize = \frac{1}{4} \sum_{i,j} w_{ij} [q_i - q_j]^2$$
$$= \frac{1}{4} \sum_{i,j} w_{ij} [q_i^2 + q_j^2 - 2q_i q_j] = \frac{1}{2} \sum_{i,j} q_i [d_i \delta_{ij} - w_{ij}] q_j$$
$$= \frac{1}{2} q^T (D - W) q$$

Relax indicators q_i from discrete values to continuous values, the solution for min J(q) is given by the eigenvectors of

$$(D-W)q = \lambda q$$

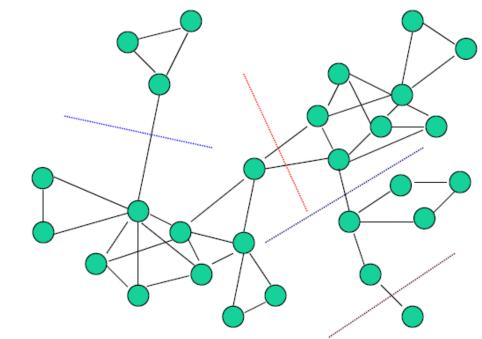
(Fiedler, 1973, 1975)

(Pothen, Simon, Liou, 1990)

Minimum Cut with Constraints

minimize cutsize without explicit size constraints

But where to cut ?



Need to balance sizes

New Objective Functions

Ratio Cut (Hangen & Kahng, 1992)
 s(A,B) = s(A,B)

$$J_{Rcut}(A,B) = \frac{s(A,B)}{|A|} + \frac{s(A,B)}{|B|}$$

• Normalized Cut (Shi & Malik, 2000)

$$d_A = \sum_{i \in A} d_i$$

 $s(A,B) = \sum \sum w_{ij}$

 $i \in A \ j \in B$

$$J_{Ncut}(A,B) = \frac{s(A,B)}{d_A} + \frac{s(A,B)}{d_B}$$
$$= \frac{s(A,B)}{s(A,A) + s(A,B)} + \frac{s(A,B)}{s(B,B) + s(A,B)}$$

• Min-Max-Cut (Ding et al, 2001)

$$J_{MMC}(A,B) = \frac{s(A,B)}{s(A,A)} + \frac{s(A,B)}{s(B,B)}$$

Other References

- A Tutorial on Spectral Clustering by U. Luxburg http://www.kyb.mpg.de/fileadmin/user_u
 - pload/files/publications/attachments/Lux
 - burg07 tutorial 4488%5B0%5D.pdf

Mining Graph/Network Data: Part II

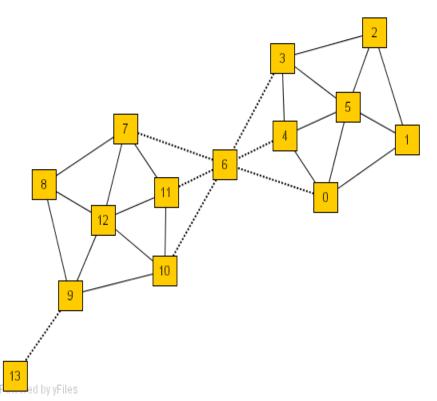
Graph/Network Clustering

Graph/Network Classification

Summary

Label Propagation in the Network

- Given a network, some nodes are given labels, can we classify the unlabeled nodes by using link information?
 - E.g., Node 12 belongs to Class 1 and Node 5 Belongs to Class 2



Reference

- Learning from Labeled and Unlabeled
 Data with Label Propagation
 - By Xiaojin Zhu and Zoubin Ghahramani
 - http://www.cs.cmu.edu/~zhuxj/pub/CMU-CALD-02-107.pdf

Problem Formalization

Given n nodes

- l with labels $(Y_1, Y_2, \dots, Y_l \text{ are known})$
- u without labels $(Y_{l+1}, Y_{l+2}, \dots, Y_n$ are unknown)
- *Y* is the *n* × *C* label matrix
 - C is the number of labels (classes)
- The adjacency matrix is W
- The probabilistic transition matrix T

•
$$T_{ij} = P(j \rightarrow i) = \frac{w_{ij}}{\sum_k w_{kj}}$$

The Label Propagation Algorithm

- Step 1: Propagate $Y \leftarrow TY$
- Step 2: Row-normalize Y
 - The summation of the probability of each object belonging to each class is 1
- Step 3: Reset the labels for the labeled nodes. Repeat 1-3 until Y converges

Mining Graph/Network Data: Part II

Graph/Network Clustering

Graph/Network Classification

Summary

- Network Clustering
 - SCAN
 - Spectral clustering
- Network classification
 - Label propagation