
498 Chapter 8 Mining Stream, Time-Series, and Sequence Data

8.3 Mining Sequence Patterns in Transactional Databases

A sequence database consists of sequences of ordered elements or events, recorded with
or without a concrete notion of time. There are many applications involving sequence
data. Typical examples include customer shopping sequences, Web clickstreams, bio-
logical sequences, sequences of events in science and engineering, and in natural and
social developments. In this section, we study sequential pattern mining in transactional
databases. In particular, we start with the basic concepts of sequential pattern mining in
Section 8.3.1. Section 8.3.2 presents several scalable methods for such mining.
Constraint-based sequential pattern mining is described in Section 8.3.3. Periodicity
analysis for sequence data is discussed in Section 8.3.4. Specific methods for mining
sequence patterns in biological data are addressed in Section 8.4.

8.3.1 Sequential Pattern Mining: Concepts and Primitives

“What is sequential pattern mining?” Sequential pattern mining is the mining of fre-
quently occurring ordered events or subsequences as patterns. An example of a sequen-
tial pattern is “Customers who buy a Canon digital camera are likely to buy an HP color
printer within a month.” For retail data, sequential patterns are useful for shelf placement
and promotions. This industry, as well as telecommunications and other businesses, may
also use sequential patterns for targeted marketing, customer retention, and many other
tasks. Other areas in which sequential patterns can be applied include Web access pat-
tern analysis, weather prediction, production processes, and network intrusion detec-
tion. Notice that most studies of sequential pattern mining concentrate on categorical (or
symbolic) patterns, whereas numerical curve analysis usually belongs to the scope of trend
analysis and forecasting in statistical time-series analysis, as discussed in Section 8.2.

The sequential pattern mining problem was first introduced by Agrawal and Srikant
in 1995 [AS95] based on their study of customer purchase sequences, as follows: “Given a
set of sequences, where each sequence consists of a list of events (or elements) and each event
consists of a set of items, and given a user-specified minimum support threshold of min sup,
sequential pattern mining finds all frequent subsequences, that is, the subsequences whose
occurrence frequency in the set of sequences is no less than min sup.”

Let’s establish some vocabulary for our discussion of sequential pattern mining. Let
I = {I1, I2, . . . , Ip} be the set of all items. An itemset is a nonempty set of items.
A sequence is an ordered list of events. A sequence s is denoted 〈e1e2e3 · · ·el〉, where
event e1 occurs before e2, which occurs before e3, and so on. Event e j is also called an
element of s. In the case of customer purchase data, an event refers to a shopping trip in
which a customer bought items at a certain store. The event is thus an itemset, that is,
an unordered list of items that the customer purchased during the trip. The itemset (or
event) is denoted (x1x2 · · ·xq), where xk is an item. For brevity, the brackets are omitted
if an element has only one item, that is, element (x) is written as x. Suppose that a cus-
tomer made several shopping trips to the store. These ordered events form a sequence
for the customer. That is, the customer first bought the items in s1, then later bought

8.3 Mining Sequence Patterns in Transactional Databases 499

the items in s2, and so on. An item can occur at most once in an event of a sequence,
but can occur multiple times in different events of a sequence. The number of instances
of items in a sequence is called the length of the sequence. A sequence with length l is
called an l-sequence. A sequence α = 〈a1a2 · · ·an〉 is called a subsequence of another
sequence β = 〈b1b2 · · ·bm〉, and β is a supersequence of α, denoted as α v β, if there
exist integers 1≤ j1 < j2 < · · ·< jn ≤ m such that a1 ⊆ b j1 , a2 ⊆ b j2 , . . . , an ⊆ b jn . For
example, if α = 〈(ab), d〉 and β = 〈(abc), (de)〉, where a, b, c, d, and e are items, then α
is a subsequence of β and β is a supersequence of α.

A sequence database, S, is a set of tuples, 〈SID, s〉, where SID is a sequence ID and
s is a sequence. For our example, S contains sequences for all customers of the store.
A tuple 〈SID, s〉 is said to contain a sequence α, if α is a subsequence of s. The support
of a sequence α in a sequence database S is the number of tuples in the database con-
taining α, that is, supportS(α) = | {〈SID, s〉|(〈SID, s〉 ∈ S)∧(αv s)} |. It can be denoted
as support(α) if the sequence database is clear from the context. Given a positive inte-
ger min sup as the minimum support threshold, a sequence α is frequent in sequence
database S if supportS(α)≥min sup. That is, for sequence α to be frequent, it must occur
at least min sup times in S. A frequent sequence is called a sequential pattern. A sequen-
tial pattern with length l is called an l-pattern. The following example illustrates these
concepts.

Example 8.7 Sequential patterns. Consider the sequence database, S, given in Table 8.1, which will
be used in examples throughout this section. Let min sup = 2. The set of items in the
database is {a, b, c, d, e, f , g}. The database contains four sequences.

Let’s look at sequence 1, which is 〈a(abc)(ac)d(cf)〉. It has five events, namely (a),
(abc), (ac), (d), and (cf), which occur in the order listed. Items a and c each appear
more than once in different events of the sequence. There are nine instances of items in
sequence 1; therefore, it has a length of nine and is called a 9-sequence. Item a occurs three
times in sequence 1 and so contributes three to the length of the sequence. However,
the entire sequence contributes only one to the support of 〈a〉. Sequence 〈a(bc)df 〉 is
a subsequence of sequence 1 since the events of the former are each subsets of events
in sequence 1, and the order of events is preserved. Consider subsequence s = 〈(ab)c〉.
Looking at the sequence database, S, we see that sequences 1 and 3 are the only ones that
contain the subsequence s. The support of s is thus 2, which satisfies minimum support.

Table 8.1 A sequence database

Sequence ID Sequence

1 〈a(abc)(ac)d(c f)〉
2 〈(ad)c(bc)(ae)〉
3 〈(e f)(ab)(d f)cb〉
4 〈eg(a f)cbc〉

500 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Therefore, s is frequent, and so we call it a sequential pattern. It is a 3-pattern since it is a
sequential pattern of length three.

This model of sequential pattern mining is an abstraction of customer-shopping
sequence analysis. Scalable methods for sequential pattern mining on such data are
described in Section 8.3.2, which follows. Many other sequential pattern mining appli-
cations may not be covered by this model. For example, when analyzing Web clickstream
sequences, gaps between clicks become important if one wants to predict what the next
click might be. In DNA sequence analysis, approximate patterns become useful since
DNA sequences may contain (symbol) insertions, deletions, and mutations. Such diverse
requirements can be viewed as constraint relaxation or enforcement. In Section 8.3.3, we
discuss how to extend the basic sequential mining model to constrained sequential pat-
tern mining in order to handle these cases.

8.3.2 Scalable Methods for Mining Sequential Patterns

Sequential pattern mining is computationally challenging because such mining may gen-
erate and/or test a combinatorially explosive number of intermediate subsequences.

“How can we develop efficient and scalable methods for sequential pattern mining?”
Recent developments have made progress in two directions: (1) efficient methods for
mining the full set of sequential patterns, and (2) efficient methods for mining only
the set of closed sequential patterns, where a sequential pattern s is closed if there exists
no sequential pattern s′ where s′ is a proper supersequence of s, and s′ has the same
(frequency) support as s.6 Because all of the subsequences of a frequent sequence are
also frequent, mining the set of closed sequential patterns may avoid the generation of
unnecessary subsequences and thus lead to more compact results as well as more effi-
cient methods than mining the full set. We will first examine methods for mining the
full set and then study how they can be extended for mining the closed set. In addition,
we discuss modifications for mining multilevel, multidimensional sequential patterns
(i.e., with multiple levels of granularity).

The major approaches for mining the full set of sequential patterns are similar to
those introduced for frequent itemset mining in Chapter 5. Here, we discuss three such
approaches for sequential pattern mining, represented by the algorithms GSP, SPADE,
and PrefixSpan, respectively. GSP adopts a candidate generate-and-test approach using
horizonal data format (where the data are represented as 〈sequence ID : sequence of
itemsets〉, as usual, where each itemset is an event). SPADE adopts a candidate generate-
and-test approach using vertical data format (where the data are represented as 〈itemset :
(sequence ID, event ID)〉). The vertical data format can be obtained by transforming
from a horizontally formatted sequence database in just one scan. PrefixSpan is a pat-
tern growth method, which does not require candidate generation.

6Closed frequent itemsets were introduced in Chapter 5. Here, the definition is applied to sequential
patterns.

8.3 Mining Sequence Patterns in Transactional Databases 501

All three approaches either directly or indirectly explore the Apriori property, stated
as follows: every nonempty subsequence of a sequential pattern is a sequential pattern.
(Recall that for a pattern to be called sequential, it must be frequent. That is, it must sat-
isfy minimum support.) The Apriori property is antimonotonic (or downward-closed)
in that, if a sequence cannot pass a test (e.g., regarding minimum support), all of its
supersequences will also fail the test. Use of this property to prune the search space can
help make the discovery of sequential patterns more efficient.

GSP: A Sequential Pattern Mining Algorithm
Based on Candidate Generate-and-Test
GSP (Generalized Sequential Patterns) is a sequential pattern mining method that
was developed by Srikant and Agrawal in 1996. It is an extension of their seminal
algorithm for frequent itemset mining, known as Apriori (Section 5.2). GSP uses the
downward-closure property of sequential patterns and adopts a multiple-pass, candi-
date generate-and-test approach. The algorithm is outlined as follows. In the first scan
of the database, it finds all of the frequent items, that is, those with minimum sup-
port. Each such item yields a 1-event frequent sequence consisting of that item. Each
subsequent pass starts with a seed set of sequential patterns—the set of sequential
patterns found in the previous pass. This seed set is used to generate new potentially
frequent patterns, called candidate sequences. Each candidate sequence contains one
more item than the seed sequential pattern from which it was generated (where each
event in the pattern may contain one or multiple items). Recall that the number of
instances of items in a sequence is the length of the sequence. So, all of the candidate
sequences in a given pass will have the same length. We refer to a sequence with
length k as a k-sequence. Let Ck denote the set of candidate k-sequences. A pass
over the database finds the support for each candidate k-sequence. The candidates
in Ck with at least min sup form Lk, the set of all frequent k-sequences. This set then
becomes the seed set for the next pass, k+1. The algorithm terminates when no new
sequential pattern is found in a pass, or no candidate sequence can be generated.

The method is illustrated in the following example.

Example 8.8 GSP: Candidate generate-and-test (using horizontal data format). Suppose we are given
the same sequence database, S, of Table 8.1 from Example 8.7, with min sup = 2. Note
that the data are represented in horizontal data format. In the first scan (k = 1), GSP
collects the support for each item. The set of candidate 1-sequences is thus (shown
here in the form of “sequence:support”): 〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 3, 〈d〉 : 3, 〈e〉 : 3,
〈 f 〉 : 3, 〈g〉 : 1.

The sequence 〈g〉 has a support of only 1 and is the only sequence that does not satisfy
minimum support. By filtering it out, we obtain the first seed set, L1 = {〈a〉, 〈b〉, 〈c〉, 〈d〉,
〈e〉, 〈 f 〉}. Each member in the set represents a 1-event sequential pattern. Each subsequent
pass starts with the seed set found in the previous pass and uses it to generate new candidate
sequences, which are potentially frequent.

502 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Using L1 as the seed set, this set of six length-1 sequential patterns generates a set of
6× 6 + 6 × 5

2 = 51 candidate sequences of length 2, C2 = {〈aa〉, 〈ab〉, . . . , 〈a f 〉, 〈ba〉,
〈bb〉, . . . , 〈 f f 〉, 〈(ab)〉, 〈(ac)〉, . . . , 〈(e f)〉}.

In general, the set of candidates is generated by a self-join of the sequential patterns
found in the previous pass (see Section 5.2.1 for details). GSP applies the Apriori property
to prune the set of candidates as follows. In the k-th pass, a sequence is a candidate only
if each of its length-(k−1) subsequences is a sequential pattern found at the (k−1)-th
pass. A new scan of the database collects the support for each candidate sequence and
finds a new set of sequential patterns, Lk. This set becomes the seed for the next pass. The
algorithm terminates when no sequential pattern is found in a pass or when no candidate
sequence is generated. Clearly, the number of scans is at least the maximum length of
sequential patterns. GSP needs one more scan if the sequential patterns obtained in the
last scan still generate new candidates (none of which are found to be frequent).

Although GSP benefits from the Apriori pruning, it still generates a large number of
candidates. In this example, six length-1 sequential patterns generate 51 length-2 candi-
dates; 22 length-2 sequential patterns generate 64 length-3 candidates; and so on. Some
candidates generated by GSP may not appear in the database at all. In this example, 13
out of 64 length-3 candidates do not appear in the database, resulting in wasted time.

The example shows that although an Apriori-like sequential pattern mining method,
such as GSP, reduces search space, it typically needs to scan the database multiple times.
It will likely generate a huge set of candidate sequences, especially when mining long
sequences. There is a need for more efficient mining methods.

SPADE: An Apriori-Based Vertical Data Format
Sequential Pattern Mining Algorithm
The Apriori-like sequential pattern mining approach (based on candidate generate-and-
test) can also be explored by mapping a sequence database into vertical data format. In
vertical data format, the database becomes a set of tuples of the form 〈itemset :
(sequence ID, event ID)〉. That is, for a given itemset, we record the sequence identifier
and corresponding event identifier for which the itemset occurs. The event identifier
serves as a timestamp within a sequence. The event ID of the ith itemset (or event) in
a sequence is i. Note than an itemset can occur in more than one sequence. The set of
(sequence ID, event ID) pairs for a given itemset forms the ID list of the itemset. The
mapping from horizontal to vertical format requires one scan of the database. A major
advantage of using this format is that we can determine the support of any k-sequence
by simply joining the ID lists of any two of its (k−1)-length subsequences. The length
of the resulting ID list (i.e., unique sequence ID values) is equal to the support of the
k-sequence, which tells us whether the sequence is frequent.

SPADE (Sequential PAttern Discovery using Equivalent classes) is an Apriori-based
sequential pattern mining algorithm that uses vertical data format. As with GSP, SPADE
requires one scan to find the frequent 1-sequences. To find candidate 2-sequences,
we join all pairs of single items if they are frequent (therein, it applies the Apriori

8.3 Mining Sequence Patterns in Transactional Databases 503

property), if they share the same sequence identifier, and if their event identifiers follow a
sequential ordering. That is, the first item in the pair must occur as an event before the
second item, where both occur in the same sequence. Similarly, we can grow the length
of itemsets from length 2 to length 3, and so on. The procedure stops when no frequent
sequences can be found or no such sequences can be formed by such joins. The following
example helps illustrate the process.

Example 8.9 SPADE: Candidate generate-and-test using vertical data format. Let min sup = 2. Our
running example sequence database, S, of Table 8.1 is in horizonal data format. SPADE
first scans S and transforms it into vertical format, as shown in Figure 8.6(a). Each item-
set (or event) is associated with its ID list, which is the set of SID (sequence ID) and EID
(event ID) pairs that contain the itemset. The ID list for individual items, a, b, and so
on, is shown in Figure 8.6(b). For example, the ID list for item b consists of the follow-
ing (SID, EID) pairs: {(1, 2), (2, 3), (3, 2), (3, 5), (4, 5)}, where the entry (1, 2) means
that b occurs in sequence 1, event 2, and so on. Items a and b are frequent. They can
be joined to form the length-2 sequence, 〈a, b〉. We find the support of this sequence
as follows. We join the ID lists of a and b by joining on the same sequence ID wher-
ever, according to the event IDs, a occurs before b. That is, the join must preserve the
temporal order of the events involved. The result of such a join for a and b is shown
in the ID list for ab of Figure 8.6(c). For example, the ID list for 2-sequence ab is a
set of triples, (SID, EID(a), EID(b)), namely {(1, 1, 2), (2, 1, 3), (3, 2, 5), (4, 3, 5)}. The
entry (2, 1, 3), for example, shows that both a and b occur in sequence 2, and that a
(event 1 of the sequence) occurs before b (event 3), as required. Furthermore, the fre-
quent 2-sequences can be joined (while considering the Apriori pruning heuristic that
the (k-1)-subsequences of a candidate k-sequence must be frequent) to form 3-sequences,
as in Figure 8.6(d), and so on. The process terminates when no frequent sequences can
be found or no candidate sequences can be formed. Additional details of the method can
be found in Zaki [Zak01].

The use of vertical data format, with the creation of ID lists, reduces scans of the
sequence database. The ID lists carry the information necessary to find the support of
candidates. As the length of a frequent sequence increases, the size of its ID list decreases,
resulting in very fast joins. However, the basic search methodology of SPADE and GSP
is breadth-first search (e.g., exploring 1-sequences, then 2-sequences, and so on) and
Apriori pruning. Despite the pruning, both algorithms have to generate large sets of
candidates in breadth-first manner in order to grow longer sequences. Thus, most of
the difficulties suffered in the GSP algorithm recur in SPADE as well.

PrefixSpan: Prefix-Projected Sequential Pattern Growth
Pattern growth is a method of frequent-pattern mining that does not require candi-
date generation. The technique originated in the FP-growth algorithm for transaction
databases, presented in Section 5.2.4. The general idea of this approach is as follows: it
finds the frequent single items, then compresses this information into a frequent-pattern

504 Chapter 8 Mining Stream, Time-Series, and Sequence Data

SID EID itemset

1 1 a

1 2 abc

1 3 ac

1 4 d

1 5 cf

2 1 ad

2 2 c

2 3 bc

2 4 ae

3 1 ef

3 2 ab

3 3 df

3 4 c

3 5 b

4 1 e

4 2 g

4 3 af

4 4 c

4 5 b

4 6 c

(a) vertical format database

a b · · ·
SID EID SID EID · · ·

1 1 1 2

1 2 2 3

1 3 3 2

2 1 3 5

2 4 4 5

3 2

4 3

(b) ID lists for some 1-sequences

ab ba · · ·
SID EID(a) EID(b) SID EID(b) EID(a) · · ·

1 1 2 1 2 3

2 1 3 2 3 4

3 2 5

4 3 5

(c) ID lists for some 2-sequences

aba · · ·
SID EID(a) EID(b) EID(a) · · ·

1 1 2 3

2 1 3 4

(d) ID lists for some 3-sequences

Figure 8.6 The SPADE mining process: (a) vertical format database; (b) to (d) show fragments of the
ID lists for 1-sequences, 2-sequences, and 3-sequences, respectively.

tree, or FP-tree. The FP-tree is used to generate a set of projected databases, each associ-
ated with one frequent item. Each of these databases is mined separately. The algorithm
builds prefix patterns, which it concatenates with suffix patterns to find frequent pat-
terns, avoiding candidate generation. Here, we look at PrefixSpan, which extends the
pattern-growth approach to instead mine sequential patterns.

Suppose that all the items within an event are listed alphabetically. For example,
instead of listing the items in an event as, say, (bac), we list them as (abc) without loss of
generality. Given a sequence α = 〈e1e2 · · ·en〉 (where each ei corresponds to a frequent
event in a sequence database, S), a sequence β = 〈e′1e′2 · · ·e′m〉 (m ≤ n) is called a prefix
of α if and only if (1) e′i = ei for (i≤ m−1); (2) e′m ⊆ em; and (3) all the frequent items
in (em− e′m) are alphabetically after those in e′m. Sequence γ = 〈e′′mem+1 · · ·en〉 is called

8.3 Mining Sequence Patterns in Transactional Databases 505

the suffix of α with respect to prefix β, denoted as γ = α/β, where e′′m = (em− e′m).7 We
also denote α = β · γ. Note if β is not a subsequence of α, the suffix of α with respect to
β is empty.

We illustrate these concepts with the following example.

Example 8.10 Prefix and suffix. Let sequences = 〈a(abc)(ac)d(c f)〉,whichcorresponds tosequence1of
our running example sequence database. 〈a〉, 〈aa〉, 〈a(ab)〉, and 〈a(abc)〉 are four prefixes
of s. 〈(abc)(ac)d(c f)〉 is the suffix of s with respect to the prefix 〈a〉; 〈(bc)(ac)d(c f)〉 is
its suffix with respect to the prefix 〈aa〉; and 〈(c)(ac)d(c f)〉 is its suffix with respect to
the prefix 〈a(ab)〉.

Based on the concepts of prefix and suffix, the problem of mining sequential patterns
can be decomposed into a set of subproblems as shown:

1. Let {〈x1〉, 〈x2〉, . . . , 〈xn〉} be the complete set of length-1 sequential patterns in a
sequence database, S. The complete set of sequential patterns in S can be partitioned
into n disjoint subsets. The ith subset (1≤ i≤ n) is the set of sequential patterns with
prefix 〈xi〉.

2. Let α be a length-l sequential pattern and {β1, β2, . . . , βm} be the set of all length-
(l +1) sequential patterns with prefix α. The complete set of sequential patterns with
prefix α, except for α itself, can be partitioned into m disjoint subsets. The jth subset
(1≤ j ≤ m) is the set of sequential patterns prefixed with β j.

Based on this observation, the problem can be partitioned recursively. That is, each
subset of sequential patterns can be further partitioned when necessary. This forms a
divide-and-conquer framework. To mine the subsets of sequential patterns, we construct
corresponding projected databases and mine each one recursively.

Let’s use our running example to examine how to use the prefix-based projection
approach for mining sequential patterns.

Example 8.11 PrefixSpan: A pattern-growth approach. Using the same sequence database, S, of Table 8.1
with min sup = 2, sequential patterns in S can be mined by a prefix-projection method
in the following steps.

1. Find length-1 sequential patterns. Scan S once to find all of the frequent items in
sequences. Each of these frequent items is a length-1 sequential pattern. They are
〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, and 〈 f 〉 : 3, where the notation “〈pattern〉 : count”
represents the pattern and its associated support count.

7If e′′m is not empty, the suffix is also denoted as 〈(items in e′′m)em+1 · · ·en〉.

506 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Table 8.2 Projected databases and sequential patterns

prefix projected database sequential patterns

〈a〉 〈(abc)(ac)d(c f)〉,
〈(d)c(bc)(ae)〉,
〈(b)(d f)eb〉, 〈(f)cbc〉

〈a〉, 〈aa〉, 〈ab〉, 〈a(bc)〉, 〈a(bc)a〉, 〈aba〉,
〈abc〉, 〈(ab)〉, 〈(ab)c〉, 〈(ab)d〉, 〈(ab) f 〉,
〈(ab)dc〉, 〈ac〉, 〈aca〉, 〈acb〉, 〈acc〉, 〈ad〉,
〈adc〉, 〈a f 〉

〈b〉 〈(c)(ac)d(c f)〉,
〈(c)(ae)〉, 〈(d f)cb〉,
〈c〉

〈b〉, 〈ba〉, 〈bc〉, 〈(bc)〉, 〈(bc)a〉, 〈bd〉, 〈bdc〉,
〈b f 〉

〈c〉 〈(ac)d(c f)〉,
〈(bc)(ae)〉, 〈b〉, 〈bc〉

〈c〉, 〈ca〉, 〈cb〉, 〈cc〉

〈d〉 〈(c f)〉, 〈c(bc)(ae)〉,
〈(f)cb〉

〈d〉, 〈db〉, 〈dc〉, 〈dcb〉

〈e〉 〈(f)(ab)(d f)cb〉,
〈(a f)cbc〉

〈e〉, 〈ea〉, 〈eab〉, 〈eac〉, 〈eacb〉, 〈eb〉, 〈ebc〉,
〈ec〉, 〈ecb〉, 〈e f 〉, 〈e f b〉, 〈e f c〉, 〈e f cb〉.

〈 f 〉 〈(ab)(d f)cb〉, 〈cbc〉 〈 f 〉, 〈 f b〉, 〈 f bc〉, 〈 f c〉, 〈 f cb〉

2. Partition the search space. The complete set of sequential patterns can be partitioned
into the following six subsets according to the six prefixes: (1) the ones with prefix
〈a〉, (2) the ones with prefix 〈b〉, . . . , and (6) the ones with prefix 〈 f 〉.

3. Find subsets of sequential patterns. The subsets of sequential patterns mentioned
in step 2 can be mined by constructing corresponding projected databases and
mining each recursively. The projected databases, as well as the sequential patterns
found in them, are listed in Table 8.2, while the mining process is explained as
follows:

(a) Find sequential patterns with prefix 〈a〉. Only the sequences containing 〈a〉 should
be collected. Moreover, in a sequence containing 〈a〉, only the subsequence prefixed
with the first occurrence of 〈a〉 should be considered. For example, in sequence
〈(e f)(ab)(d f)cb〉, only the subsequence 〈(b)(d f)cb〉 should be considered for
mining sequential patterns prefixed with 〈a〉. Notice that (b) means that the last
event in the prefix, which is a, together with b, form one event.
The sequences in S containing 〈a〉 are projected with respect to 〈a〉 to form the
〈a〉-projected database, which consists of four suffix sequences: 〈(abc)(ac)d(c f)〉,
〈(d)c(bc)(ae)〉, 〈(b)(d f)cb〉, and 〈(f)cbc〉.
By scanning the 〈a〉-projected database once, its locally frequent items are iden-
tified as a : 2, b : 4, b : 2, c : 4, d : 2, and f : 2. Thus all the length-2 sequential
patterns prefixed with 〈a〉 are found, and they are: 〈aa〉 : 2, 〈ab〉 : 4, 〈(ab)〉 : 2,
〈ac〉 : 4, 〈ad〉 : 2, and 〈a f 〉 : 2.

8.3 Mining Sequence Patterns in Transactional Databases 507

Recursively, all sequential patterns with prefix 〈a〉 can be partitioned into six
subsets: (1) those prefixed with 〈aa〉, (2) those with 〈ab〉, . . . , and finally, (6) those
with 〈af 〉. These subsets can be mined by constructing respective projected data-
bases and mining each recursively as follows:

i. The 〈aa〉-projected database consists of two nonempty (suffix) subsequences
prefixed with 〈aa〉: {〈(bc)(ac)d(c f)〉, {〈(e)〉}. Because there is no hope of
generating any frequent subsequence from this projected database, the pro-
cessing of the 〈aa〉-projected database terminates.

ii. The 〈ab〉-projected database consists of three suffix sequences: 〈(c)(ac)d
(cf)〉, 〈(c)a〉, and 〈c〉. Recursively mining the 〈ab〉-projected database
returns four sequential patterns: 〈(c)〉, 〈(c)a〉, 〈a〉, and 〈c〉 (i.e., 〈a(bc)〉,
〈a(bc)a〉, 〈aba〉, and 〈abc〉.) They form the complete set of sequential pat-
terns prefixed with 〈ab〉.

iii. The 〈(ab)〉-projected database contains only two sequences: 〈(c)(ac) d(c f)〉
and 〈(df)cb〉, which leads to the finding of the following sequential patterns
prefixed with 〈(ab)〉: 〈c〉, 〈d〉, 〈 f 〉, and 〈dc〉.

iv. The 〈ac〉-, 〈ad〉-, and 〈af 〉- projected databases can be constructed and recur-
sively mined in a similar manner. The sequential patterns found are shown in
Table 8.2.

(b) Find sequential patterns with prefix 〈b〉, 〈c〉, 〈d〉, 〈e〉, and 〈 f 〉, respectively. This
can be done by constructing the 〈b〉-, 〈c〉-, 〈d〉-, 〈e〉-, and 〈 f 〉-projected databases
and mining them respectively. The projected databases as well as the sequential
patterns found are also shown in Table 8.2.

4. The set of sequential patterns is the collection of patterns found in the above recursive
mining process.

The method described above generates no candidate sequences in the mining pro-
cess. However, it may generate many projected databases, one for each frequent prefix-
subsequence. Forming a large number of projected databases recursively may become the
major cost of the method, if such databases have to be generated physically. An impor-
tant optimization technique is pseudo-projection, which registers the index (or identi-
fier) of the corresponding sequence and the starting position of the projected suffix in
the sequence instead of performing physical projection. That is, a physical projection
of a sequence is replaced by registering a sequence identifier and the projected posi-
tion index point. Pseudo-projection reduces the cost of projection substantially when
such projection can be done in main memory. However, it may not be efficient if the
pseudo-projection is used for disk-based accessing because random access of disk space
is costly. The suggested approach is that if the original sequence database or the projected
databases are too big to fit in memory, the physical projection should be applied; how-
ever, the execution should be swapped to pseudo-projection once the projected databases
can fit in memory. This methodology is adopted in the PrefixSpan implementation.

508 Chapter 8 Mining Stream, Time-Series, and Sequence Data

a

c

c a

c
c

b e

b
bb

e

(a) backward subpattern (b) backward superpattern

Figure 8.7 A backward subpattern and a backward superpattern.

A performance comparison of GSP, SPADE, and PrefixSpan shows that PrefixSpan has
the best overall performance. SPADE, although weaker than PrefixSpan in most cases,
outperforms GSP. Generating huge candidate sets may consume a tremendous amount
of memory, thereby causing candidate generate-and-test algorithms to become very slow.
The comparison also found that when there is a large number of frequent subsequences,
all three algorithms run slowly. This problem can be partially solved by closed sequential
pattern mining.

Mining Closed Sequential Patterns
Because mining the complete set of frequent subsequences can generate a huge number
of sequential patterns, an interesting alternative is to mine frequent closed subsequences
only, that is, those containing no supersequence with the same support. Mining closed
sequential patterns can produce a significantly less number of sequences than the full set
of sequential patterns. Note that the full set of frequent subsequences, together with their
supports, can easily be derived from the closed subsequences. Thus, closed subsequences
have the same expressive power as the corresponding full set of subsequences. Because
of their compactness, they may also be quicker to find.

CloSpan is an efficient closed sequential pattern mining method. The method is based
on a property of sequence databases, called equivalence of projected databases, stated as
follows: Two projected sequence databases, S|α = S|β,8 αv β (i.e.,α is a subsequence of β),
are equivalent if and only if the total number of items in S|α is equal to the total number of
items in S|β.

Based on this property, CloSpan can prune the nonclosed sequences from further
consideration during the mining process. That is, whenever we find two prefix-based
projected databases that are exactly the same, we can stop growing one of them. This
can be used to prune backward subpatterns and backward superpatterns as indicated in
Figure 8.7.

8In S|α, a sequence database S is projected with respect to sequence (e.g., prefix) α. The notation S|β can
be similarly defined.

8.3 Mining Sequence Patterns in Transactional Databases 509

After such pruning and mining, a postprocessing step is still required in order to delete
nonclosed sequential patterns that may exist in the derived set. A later algorithm called
BIDE (which performs a bidirectional search) can further optimize this process to avoid
such additional checking.

Empirical results show that CloSpan often derives a much smaller set of sequential
patterns in a shorter time than PrefixSpan, which mines the complete set of sequential
patterns.

Mining Multidimensional, Multilevel Sequential Patterns
Sequence identifiers (representing individual customers, for example) and sequence
items (such as products bought) are often associated with additional pieces of infor-
mation. Sequential pattern mining should take advantage of such additional informa-
tion to discover interesting patterns in multidimensional, multilevel information space.
Take customer shopping transactions, for instance. In a sequence database for such data,
the additional information associated with sequence IDs could include customer age,
address, group, and profession. Information associated with items could include item
category, brand, model type, model number, place manufactured, and manufacture date.
Mining multidimensional, multilevel sequential patterns is the discovery of interesting
patterns in such a broad dimensional space, at different levels of detail.

Example 8.12 Multidimensional, multilevel sequential patterns. The discovery that “Retired customers
who purchase a digital camera are likely to purchase a color printer within a month” and
that “Young adults who purchase a laptop are likely to buy a flash drive within two weeks”
are examples of multidimensional, multilevel sequential patterns. By grouping customers
into “retired customers” and “young adults” according to the values in the age dimension,
and by generalizing items to, say, “digital camera” rather than a specific model, the pat-
terns mined here are associated with additional dimensions and are at a higher level of
granularity.

“Can a typical sequential pattern algorithm such as PrefixSpan be extended to efficiently
mine multidimensional, multilevel sequential patterns?” One suggested modification is to
associate the multidimensional, multilevel information with the sequence ID and
item ID, respectively, which the mining method can take into consideration when find-
ing frequent subsequences. For example, (Chicago, middle aged, business) can be asso-
ciated with sequence ID 1002 (for a given customer), whereas (Digital camera, Canon,
Supershot, SD400, Japan, 2005) can be associated with item ID 543005 in the sequence.
A sequential pattern mining algorithm will use such information in the mining process
to find sequential patterns associated with multidimensional, multilevel information.

8.3.3 Constraint-Based Mining of Sequential Patterns

As shown in our study of frequent-pattern mining in Chapter 5, mining that is performed
without user- or expert-specified constraints may generate numerous patterns that are

510 Chapter 8 Mining Stream, Time-Series, and Sequence Data

of no interest. Such unfocused mining can reduce both the efficiency and usability of
frequent-pattern mining. Thus, we promote constraint-based mining, which incorpo-
rates user-specified constraints to reduce the search space and derive only patterns that
are of interest to the user.

Constraints can be expressed in many forms. They may specify desired relation-
ships between attributes, attribute values, or aggregates within the resulting patterns
mined. Regular expressions can also be used as constraints in the form of “pattern
templates,” which specify the desired form of the patterns to be mined. The gen-
eral concepts introduced for constraint-based frequent pattern mining in Section 5.5.1
apply to constraint-based sequential pattern mining as well. The key idea to note is that
these kinds of constraints can be used during the mining process to confine the search
space, thereby improving (1) the efficiency of the mining and (2) the interestingness
of the resulting patterns found. This idea is also referred to as “pushing the constraints
deep into the mining process.”

We now examine some typical examples of constraints for sequential pattern mining.
First, constraints can be related to the duration, T , of a sequence. The duration may
be the maximal or minimal length of the sequence in the database, or a user-specified
duration related to time, such as the year 2005. Sequential pattern mining can then be
confined to the data within the specified duration, T .

Constraints relating to the maximal or minimal length (duration) can be treated as
antimonotonic or monotonic constraints, respectively. For example, the constraint T ≤ 10
is antimonotonic since, if a sequence does not satisfy this constraint, then neither will
any of its supersequences (which are, obviously, longer). The constraint T > 10 is mono-
tonic. This means that if a sequence satisfies the constraint, then all of its supersequences
will also satisfy the constraint. We have already seen several examples in this chapter
of how antimonotonic constraints (such as those involving minimum support) can be
pushed deep into the mining process to prune the search space. Monotonic constraints
can be used in a way similar to its frequent-pattern counterpart as well.

Constraints related to a specific duration, such as a particular year, are considered
succinct constraints. A constraint is succinct if we can enumerate all and only those
sequences that are guaranteed to satisfy the constraint, even before support counting
begins. Suppose, here, T = 2005. By selecting the data for which year = 2005, we can
enumerate all of the sequences guaranteed to satisfy the constraint before mining begins.
In other words, we don’t need to generate and test. Thus, such constraints contribute
toward efficiency in that they avoid the substantial overhead of the generate-and-test
paradigm.

Durations may also be defined as being related to sets of partitioned sequences, such
as every year, or every month after stock dips, or every two weeks before and after an
earthquake. In such cases, periodic patterns (Section 8.3.4) can be discovered.

Second, the constraint may be related to an event folding window, w. A set of events
occurring within a specified period can be viewed as occurring together. If w is set to be as
long as the duration, T , it finds time-insensitive frequent patterns—these are essentially
frequent patterns, such as “In 1999, customers who bought a PC bought a digital camera
as well” (i.e., without bothering about which items were bought first). If w is set to 0

8.3 Mining Sequence Patterns in Transactional Databases 511

(i.e., no event sequence folding), sequential patterns are found where each event occurs
at a distinct time instant, such as “A customer who bought a PC and then a digital camera
is likely to buy an SD memory chip in a month.” If w is set to be something in between
(e.g., for transactions occurring within the same month or within a sliding window of
24 hours), then these transactions are considered as occurring within the same period,
and such sequences are “folded” in the analysis.

Third, a desired (time) gap between events in the discovered patterns may be speci-
fied as a constraint. Possible cases are: (1) gap = 0 (no gap is allowed), which is to find
strictly consecutive sequential patterns like ai−1aiai+1. For example, if the event fold-
ing window is set to a week, this will find frequent patterns occurring in consecutive
weeks; (2) min gap ≤ gap ≤ max gap, which is to find patterns that are separated by at
least min gap but at most max gap, such as “If a person rents movie A, it is likely she will
rent movie B within 30 days” implies gap ≤ 30 (days); and (3) gap = c 6= 0, which is to
find patterns with an exact gap, c. It is straightforward to push gap constraints into the
sequential pattern mining process. With minor modifications to the mining process, it
can handle constraints with approximate gaps as well.

Finally, a user can specify constraints on the kinds of sequential patterns by provid-
ing “pattern templates” in the form of serial episodes and parallel episodes using regular
expressions. A serial episode is a set of events that occurs in a total order, whereas a paral-
lel episode is a set of events whose occurrence ordering is trivial. Consider the following
example.

Example 8.13 Specifying serial episodes and parallel episodes with regular expressions. Let the nota-
tion (E , t) represent event type E at time t. Consider the data (A, 1), (C, 2), and (B, 5) with
an event folding window width of w = 2, where the serial episode A→ B and the parallel
episode A & C both occur in the data. The user can specify constraints in the form of a
regular expression, such as (A|B)C ∗ (D|E), which indicates that the user would like to
find patterns where event A and B first occur (but they are parallel in that their relative
ordering is unimportant), followed by one or a set of events C, followed by the events D
and E (where D can occur either before or after E). Other events can occur in between
those specified in the regular expression.

A regular expression constraint may be neither antimonotonic nor monotonic. In
such cases, we cannot use it to prune the search space in the same ways as described above.
However, by modifying the PrefixSpan-based pattern-growth approach, such constraints
can be handled elegantly. Let’s examine one such example.

Example 8.14 Constraint-based sequential pattern mining with a regular expression constraint. Sup-
pose that our task is to mine sequential patterns, again using the sequence database, S,
of Table 8.1. This time, however, we are particularly interested in patterns that match the
regular expression constraint, C = 〈a?{bb|(bc)d|dd}〉, with minimum support.

Such a regular expression constraint is neither antimonotonic, nor monotonic, nor
succinct. Therefore, it cannot be pushed deep into the mining process. Nonetheless, this
constraint can easily be integrated with the pattern-growth mining process as follows.

512 Chapter 8 Mining Stream, Time-Series, and Sequence Data

First, only the 〈a〉-projected database, S|〈a〉, needs to be mined, since the regular

expression constraint C starts with a. Retain only the sequences in S|〈a〉 that contain

items within the set {b, c, d}. Second, the remaining mining can proceed from the suf-
fix. This is essentially the SuffixSpan algorithm, which is symmetric to PrefixSpan in that
it grows suffixes from the end of the sequence forward. The growth should match the
suffix as the constraint, 〈{bb|(bc)d|dd}〉. For the projected databases that match these
suffixes, we can grow sequential patterns either in prefix- or suffix-expansion manner to
find all of the remaining sequential patterns.

Thus, we have seen several ways in which constraints can be used to improve the
efficiency and usability of sequential pattern mining.

8.3.4 Periodicity Analysis for Time-Related Sequence Data

“What is periodicity analysis?” Periodicity analysis is the mining of periodic patterns, that
is, the search for recurring patterns in time-related sequence data. Periodicity analysis can
be applied to many important areas. For example, seasons, tides, planet trajectories, daily
power consumptions, daily traffic patterns, and weekly TV programs all present certain
periodic patterns. Periodicity analysis is often performed over time-series data, which
consists of sequences of values or events typically measured at equal time intervals (e.g.,
hourly, daily, weekly). It can also be applied to other time-related sequence data where
the value or event may occur at a nonequal time interval or at any time (e.g., on-line
transactions). Moreover, the items to be analyzed can be numerical data, such as daily
temperature or power consumption fluctuations, or categorical data (events), such as
purchasing a product or watching a game.

The problem of mining periodic patterns can be viewed from different perspectives.
Based on the coverage of the pattern, we can categorize periodic patterns into full versus
partial periodic patterns:

A full periodic pattern is a pattern where every point in time contributes (precisely
or approximately) to the cyclic behavior of a time-related sequence. For example, all
of the days in the year approximately contribute to the season cycle of the year.

A partial periodic pattern specifies the periodic behavior of a time-related sequence
at some but not all of the points in time. For example, Sandy reads the New York
Times from 7:00 to 7:30 every weekday morning, but her activities at other times do
not have much regularity. Partial periodicity is a looser form of periodicity than full
periodicity and occurs more commonly in the real world.

Based on the precision of the periodicity, a pattern can be either synchronous or asyn-
chronous, where the former requires that an event occur at a relatively fixed offset in
each “stable” period, such as 3 p.m. every day, whereas the latter allows that the event
fluctuates in a somewhat loosely defined period. A pattern can also be either precise or
approximate, depending on the data value or the offset within a period. For example, if

8.4 Mining Sequence Patterns in Biological Data 513

Sandy reads the newspaper at 7:00 on some days, but at 7:10 or 7:15 on others, this is an
approximate periodic pattern.

Techniques for full periodicity analysis for numerical values have been studied in
signal analysis and statistics. Methods like FFT (Fast Fourier Transformation) are com-
monly used to transform data from the time domain to the frequency domain in order
to facilitate such analysis.

Mining partial, categorical, and asynchronous periodic patterns poses more challeng-
ing problems in regards to the development of efficient data mining solutions. This is
because most statistical methods or those relying on time-to-frequency domain trans-
formations are either inapplicable or expensive at handling such problems.

Take mining partial periodicity as an example. Because partial periodicity mixes peri-
odic events and nonperiodic events together in the same period, a time-to-frequency
transformation method, such as FFT, becomes ineffective because it treats the time series
as an inseparable flow of values. Certain periodicity detection methods can uncover
some partial periodic patterns, but only if the period, length, and timing of the segment
(subsequence of interest) in the partial patterns have certain behaviors and are explicitly
specified. For the newspaper reading example, we need to explicitly specify details such
as “Find the regular activities of Sandy during the half-hour after 7:00 for a period of
24 hours.” A naïve adaptation of such methods to the partial periodic pattern mining
problem would be prohibitively expensive, requiring their application to a huge number
of possible combinations of the three parameters of period, length, and timing.

Most of the studies on mining partial periodic patterns apply the Apriori property
heuristic and adopt some variations of Apriori-like mining methods. Constraints can
also be pushed deep into the mining process. Studies have also been performed on the
efficient mining of partially periodic event patterns or asynchronous periodic patterns
with unknown or with approximate periods.

Mining partial periodicity may lead to the discovery of cyclic or periodic association
rules, which are rules that associate a set of events that occur periodically. An exam-
ple of a periodic association rule is “Based on day-to-day transactions, if afternoon tea is
well received between 3:00 to 5:00 p.m., dinner will sell well between 7:00 to 9:00 p.m. on
weekends.”

Due to the diversity of applications of time-related sequence data, further develop-
ment of efficient algorithms for mining various kinds of periodic patterns in sequence
databases is desired.

8.4 Mining Sequence Patterns in Biological Data

Bioinformatics is a promising young field that applies computer technology in molecu-
lar biology and develops algorithms and methods to manage and analyze biological data.
Because DNA and protein sequences are essential biological data and exist in huge vol-
umes as well, it is important to develop effective methods to compare and align biological
sequences and discover biosequence patterns.

514 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Before we get into further details, let’s look at the type of data being analyzed. DNA and
proteins sequences are long linear chains of chemical components. In the case of DNA,
these components or “building blocks” are four nucleotides (also called bases), namely
adenine (A), cytosine (C), guanine (G), and thymine (T). In the case of proteins, the com-
ponents are 20 amino acids, denoted by 20 different letters of the alphabet. A gene is a
sequence of typically hundreds of individual nucleotides arranged in a particular order.
A genome is the complete set of genes of an organism. When proteins are needed, the cor-
responding genes are transcribed into RNA. RNA is a chain of nucleotides. DNA directs
the synthesis of a variety of RNA molecules, each with a unique role in cellular function.

“Why is it useful to compare and align biosequences?” The alignment is based on the fact
that all living organisms are related by evolution. This implies that the nucleotide (DNA,
RNA) and proteins sequences of the species that are closer to each other in evolution
should exhibit more similarities. An alignment is the process of lining up sequences to
achieve a maximal level of identity, which also expresses the degree of similarity between
sequences. Two sequences are homologous if they share a common ancestor. The degree
of similarity obtained by sequence alignment can be useful in determining the possibility
of homology between two sequences. Such an alignment also helps determine the relative
positions of multiple species in an evolution tree, which is called a phylogenetic tree.

In Section 8.4.1, we first study methods for pairwise alignment (i.e., the alignment
of two biological sequences). This is followed by methods for multiple sequence align-
ment. Section 8.4.2 introduces the popularly used Hidden Markov Model (HMM) for
biological sequence analysis.

8.4.1 Alignment of Biological Sequences

The problem of alignment of biological sequences can be described as follows: Given
two or more input biological sequences, identify similar sequences with long conserved sub-
sequences. If the number of sequences to be aligned is exactly two, it is called pairwise
sequence alignment; otherwise, it is multiple sequence alignment. The sequences to be
compared and aligned can be either nucleotides (DNA/RNA) or amino acids (proteins).
For nucleotides, two symbols align if they are identical. However, for amino acids, two
symbols align if they are identical, or if one can be derived from the other by substitutions
that are likely to occur in nature. There are two kinds of alignments: local alignments ver-
sus global alignments. The former means that only portions of the sequences are aligned,
whereas the latter requires alignment over the entire length of the sequences.

For either nucleotides or amino acids, insertions, deletions, and substitutions occur
in nature with different probabilities. Substitution matrices are used to represent the
probabilities of substitutions of nucleotides or amino acids and probabilities of inser-
tions and deletions. Usually, we use the gap character, “−”, to indicate positions where
it is preferable not to align two symbols. To evaluate the quality of alignments, a scor-
ing mechanism is typically defined, which usually counts identical or similar symbols as
positive scores and gaps as negative ones. The algebraic sum of the scores is taken as the
alignment measure. The goal of alignment is to achieve the maximal score among all the

8.4 Mining Sequence Patterns in Biological Data 515

possible alignments. However, it is very expensive (more exactly, an NP-hard problem)
to find optimal alignment. Therefore, various heuristic methods have been developed to
find suboptimal alignments.

Pairwise Alignment

Example 8.15 Pairwise alignment. Suppose we have two amino acid sequences as follows, and the sub-
stitution matrix of amino acids for pairwise alignment is shown in Table 8.3.

Suppose the penalty for initiating a gap (called the gap penalty) is −8 and that for
extending a gap (i.e., gap extension penalty) is also−8. We can then compare two poten-
tial sequence alignment candidates, as shown in Figure 8.8 (a) and (b) by calculating
their total alignment scores.

The total score of the alignment for Figure 8.8(a) is (−2) + (−8) + (5) + (−8) +
(−8) + (15) + (−8) + (10) + (6) + (−8) + (6) = 0, whereas that for Figure 8.8(b) is

Table 8.3 The substitution matrix of amino acids.

HEAGAWGHEE

PAWHEAE

A E G H W

A 5 −1 0 −2 −3

E −1 6 −3 0 −3

H −2 0 −2 10 −3

P −1 −1 −2 −2 −4

W −3 −3 −3 −3 15

H E A G A W G H E − E

| | | | |
P − A − − W − H E A E

(a)

H E A G A W G H E − E

| | | | |
− − P − A W − H E A E

(b)

Figure 8.8 Scoring two potential pairwise alignments, (a) and (b), of amino acids.

516 Chapter 8 Mining Stream, Time-Series, and Sequence Data

(−8) + (−8) + (−1) + (−8) + (5) + (15) + (−8) + (10) + (6) + (−8) + (6) = 1. Thus
the alignment of Figure 8.8(b) is slightly better than that in Figure 8.8(a).

Biologists have developed 20 × 20 triangular matrices that provide the weights for
comparing identical and different amino acids as well as the penalties that should be
attributed to gaps. Two frequently used matrices are PAM (Percent Accepted Mutation)
and BLOSUM (BlOcks SUbstitution Matrix). These substitution matrices represent the
weights obtained by comparing the amino acid substitutions that have occurred through
evolution.

For global pairwise sequence alignment, two influential algorithms have been pro-
posed: the Needleman-Wunsch Algorithm and the Smith-Waterman Algorithm. The for-
mer uses weights for the outmost edges that encourage the best overall global alignment,
whereas the latter favors the contiguity of segments being aligned. Both build up “opti-
mal” alignment from “optimal” alignments of subsequences. Both use the methodology
of dynamic programming. Since these algorithms use recursion to fill in an intermediate
results table, it takes O(mn) space and O(n2) time to execute them. Such computational
complexity could be feasible for moderate-sized sequences but is not feasible for align-
ing large sequences, especially for entire genomes, where a genome is the complete set
of genes of an organism. Another approach called dot matrix plot uses Boolean matri-
ces to represent possible alignments that can be detected visually. The method is simple
and facilitates easy visual inspection. However, it still takes O(n2) in time and space to
construct and inspect such matrices.

To reduce the computational complexity, heuristic alignment algorithms have been
proposed. Heuristic algorithms speed up the alignment process at the price of possibly
missing the best scoring alignment. There are two influential heuristic alignment pro-
grams: (1) BLAST (Basic Local Alignment Search Tool), and (2) FASTA (Fast Alignment
Tool). Both find high-scoring local alignments between a query sequence and a target
database. Their basic idea is to first locate high-scoring short stretches and then extend
them to achieve suboptimal alignments. Because the BLAST algorithm has been very
popular in biology and bioinformatics research, we examine it in greater detail here.

The BLAST Local Alignment Algorithm
The BLAST algorithm was first developed by Altschul, Gish, Miller, et al. around 1990
at the National Center for Biotechnology Information (NCBI). The software, its tutori-
als, and a wealth of other information can be accessed at www.ncbi.nlm.nih.gov/BLAST/.
BLAST finds regions of local similarity between biosequences. The program compares
nucleotide or protein sequences to sequence databases and calculates the statistical signif-
icance of matches. BLAST can be used to infer functional and evolutionary relationships
between sequences as well as to help identify members of gene families.

The NCBI website contains many common BLAST databases. According to their con-
tent, they are grouped into nucleotide and protein databases. NCBI also provides spe-
cialized BLAST databases such as the vector screening database, a variety of genome
databases for different organisms, and trace databases.

8.4 Mining Sequence Patterns in Biological Data 517

BLAST applies a heuristic method to find the highest local alignments between a
query sequence and a database. BLAST improves the overall speed of search by breaking
the sequences to be compared into sequences of fragments (referred to as words) and
initially seeking matches between these words. In BLAST, the words are considered as
k-tuples. For DNA nucleotides, a word typically consists of 11 bases (nucleotides),
whereas for proteins, a word typically consists of 3 amino acids. BLAST first creates a hash
table of neighborhood (i.e., closely matching) words, while the threshold for “closeness”
is set based on statistics. It starts from exact matches to neighborhood words. Because
good alignments should contain many close matches, we can use statistics to determine
which matches are significant. By hashing, we can find matches in O(n) (linear) time. By
extending matches in both directions, the method finds high-quality alignments consist-
ing of many high-scoring and maximum segment pairs.

There are many versions and extensions of the BLAST algorithms. For example,
MEGABLAST, Discontiguous MEGABLAST, and BLASTN all can be used to identify a
nucleotide sequence. MEGABLAST is specifically designed to efficiently find long align-
ments between very similar sequences, and thus is the best tool to use to find the identical
match to a query sequence. Discontiguous MEGABLAST is better at finding nucleotide
sequencesthataresimilar,butnotidentical(i.e.,gappedalignments), toanucleotidequery.
One of the important parameters governing the sensitivity of BLAST searches is the length
of the initial words, or word size. The word size is adjustable in BLASTN and can be reduced
from the default value to a minimum of 7 to increase search sensitivity. Thus BLASTN
is better than MEGABLAST at finding alignments to related nucleotide sequences from
other organisms. For protein searches, BLASTP, PSI-BLAST, and PHI-BLAST are popular.
Standard protein-protein BLAST (BLASTP) is used for both identifying a query amino
acid sequence and for finding similar sequences in protein databases. Position-Specific
Iterated (PSI)-BLAST is designed for more sensitive protein-protein similarity searches.
It is useful for finding very distantly related proteins. Pattern-Hit Initiated (PHI)-BLAST
can do a restricted protein pattern search. It is designed to search for proteins that contain
a pattern specified by the user and are similar to the query sequence in the vicinity of the
pattern. This dual requirement is intended to reduce the number of database hits that
contain the pattern, but are likely to have no true homology to the query.

Multiple Sequence Alignment Methods
Multiple sequence alignment is usually performed on a set of sequences of amino acids
that are believed to have similar structures. The goal is to find common patterns that are
conserved among all the sequences being considered.

The alignment of multiple sequences has many applications. First, such an alignment
may assist in the identification of highly conserved residues (amino acids), which are
likely to be essential sites for structure and function. This will guide or help pairwise
alignment as well. Second, it will help build gene or protein families using conserved
regions, forming a basis for phylogenetic analysis (i.e., the inference of evolutionary rela-
tionships between genes). Third, conserved regions can be used to develop primers for
amplifying DNA sequences and probes for DNA microarray analysis.

518 Chapter 8 Mining Stream, Time-Series, and Sequence Data

From the computational point of view, it is more challenging to align multiple
sequences than to perform pairwise alignment of two sequences. This is because mul-
tisequence alignment can be considered as a multidimensional alignment problem, and
there are many more possibilities for approximate alignments of subsequences in multi-
ple dimensions.

There are two major approaches for approximate multiple sequence alignment. The
first method reduces a multiple alignment to a series of pairwise alignments and then
combines the result. The popular Feng-Doolittle alignment method belongs to this
approach. Feng-Doolittle alignment first computes all of the possible pairwise align-
ments by dynamic programming and converts or normalizes alignment scores to dis-
tances. It then constructs a “guide tree” by clustering and performs progressive alignment
based on the guide tree in a bottom-up manner. Following this approach, a multiple
alignment tool, Clustal W, and its variants have been developed as software packages for
multiple sequence alignments. The software handles a variety of input/output formats
and provides displays for visual inspection.

The second multiple sequence alignment method uses hidden Markov models
(HMMs). Due to the extensive use and popularity of hidden Markov models, we devote
an entire section to this approach. It is introduced in Section 8.4.2, which follows.

From the above discussion, we can see that several interesting methods have been
developed for multiple sequence alignment. Due to its computational complexity, the
development of effective and scalable methods for multiple sequence alignment remains
an active research topic in biological data mining.

8.4.2 Hidden Markov Model for Biological Sequence Analysis

Given a biological sequence, such as a DNA sequence or an amino acid (protein),
biologists would like to analyze what that sequence represents. For example, is a given
DNA sequence a gene or not? Or, to which family of proteins does a particular amino
acid sequence belong? In general, given sequences of symbols from some alphabet, we
would like to represent the structure or statistical regularities of classes of sequences. In
this section, we discuss Markov chains and hidden Markov models—probabilistic mod-
els that are well suited for this type of task. Other areas of research, such as speech and
pattern recognition, are faced with similar sequence analysis tasks.

ToillustrateourdiscussionofMarkovchainsandhiddenMarkovmodels,weuseaclassic
problem in biological sequence analysis—that of finding CpG islands in a DNA sequence.
Here, the alphabet consists of four nucleotides, namely, A (adenine), C (cytosine), G (gua-
nine),andT(thymine).CpGdenotesapair(orsubsequence)ofnucleotides,whereGappears
immediately after C along a DNA strand. The C in a CpG pair is often modified by a process
knownasmethylation(wheretheCisreplacedbymethyl-C,whichtendstomutatetoT).As
aresult,CpGpairsoccurinfrequentlyinthehumangenome.However,methylationisoften
suppressed around promotors or “start” regions of many genes. These areas contain a rela-
tivelyhighconcentrationofCpGpairs, collectivelyreferredtoalongachromosomeas CpG
islands, which typically vary in length from a few hundred to a few thousand nucleotides
long. CpG islands are very useful in genome mapping projects.

8.4 Mining Sequence Patterns in Biological Data 519

Two important questions that biologists have when studying DNA sequences are
(1) given a short sequence, is it from a CpG island or not? and (2) given a long sequence,
can we find all of the CpG islands within it? We start our exploration of these questions
by introducing Markov chains.

Markov Chain
A Markov chain is a model that generates sequences in which the probability of a sym-
bol depends only on the previous symbol. Figure 8.9 is an example Markov chain model.
A Markov chain model is defined by (a) a set of states, Q, which emit symbols and (b) a
set of transitions between states. States are represented by circles and transitions are rep-
resented by arrows. Each transition has an associated transition probability, ai j, which
represents the conditional probability of going to state j in the next step, given that the
current state is i. The sum of all transition probabilities from a given state must equal 1,
that is, ∑ j∈Q ai j = 1 for all j ∈ Q. If an arc is not shown, it is assumed to have a 0 prob-
ability. The transition probabilities can also be written as a transition matrix, A = {ai j}.

Example 8.16 Markov chain. The Markov chain in Figure 8.9 is a probabilistic model for CpG islands.
The states are A, C, G, and T. For readability, only some of the transition probabilities
are shown. For example, the transition probability from state G to state T is 0.14, that is,
P(xi = T|xi−1 = G) = 0.14. Here, the emitted symbols are understood. For example, the
symbol C is emitted when transitioning from state C. In speech recognition, the symbols
emitted could represent spoken words or phrases.

Given some sequence x of length L, how probable is x given the model? If x is a DNA
sequence, we could use our Markov chain model to determine how probable it is that x
is from a CpG island. To do so, we look at the probability of x as a path, x1x2 . . .xL, in
the chain. This is the probability of starting in the first state, x1, and making successive
transitions to x2, x3, and so on, to xL. In a Markov chain model, the probability of xL

A G

TC

0.14

0.44
0.36

Figure 8.9 A Markov chain model.

520 Chapter 8 Mining Stream, Time-Series, and Sequence Data

depends on the value of only the previous one state, xL−1, not on the entire previous
sequence.9 This characteristic is known as the Markov property, which can be written as

P(x) = P(xL|xL−1)P(xL−1|xL−2) · · ·P(x2|x1)P(x1)
(8.7)

= P(x1)
L

∏
i=2

P(xi|xi−1).

That is, the Markov chain can only “remember” the previous one state of its history.
Beyond that, it is “memoryless.”

In Equation (8.7), we need to specify P(x1), the probability of the starting state. For
simplicity, we would like to model this as a transition too. This can be done by adding
a begin state, denoted 0, so that the starting state becomes x0 = 0. Similarly, we can add
an end state, also denoted as 0. Note that P(xi|xi−1) is the transition probability, axi−1xi .
Therefore, Equation (8.7) can be rewritten as

P(x) =
L

∏
i=1

axi−1xi , (8.8)

which computes the probability that sequence x belongs to the given Markov chain model,
that is, P(x|model). Note that the begin and end states are silent in that they do not emit
symbols in the path through the chain.

We can use the Markov chain model for classification. Suppose that we want to distin-
guish CpG islands from other “non-CpG” sequence regions. Given training sequences
from CpG islands (labeled “+”) and from non-CpG islands (labeled “−”), we can con-
struct two Markov chain models—the first, denoted “+”, to represent CpG islands, and
the second, denoted “−”, to represent non-CpG islands. Given a sequence, x, we use the
respective models to compute P(x|+), the probability that x is from a CpG island, and
P(x|−), the probability that it is from a non-CpG island. The log-odds ratio can then be
used to classify x based on these two probabilities.

“But first, how can we estimate the transition probabilities for each model?” Before we
can compute the probability of x being from either of the two models, we need to estimate
the transition probabilities for the models. Given the CpG (+) training sequences, we can
estimate the transition probabilities for the CpG island model as

a+
i j =

c+
i j

∑k c+
ik

, (8.9)

where c+
i j is the number of times that nucleotide j follows nucleotide i in the given

sequences labeled “+”. For the non-CpG model, we use the non-CpG island sequences
(labeled “−”) in a similar way to estimate a−i j .

9This is known as a first-order Markov chain model, since xL depends only on the previous state, xL−1.
In general, for the k-th-order Markov chain model, the probability of xL depends on the values of only
the previous k states.

8.4 Mining Sequence Patterns in Biological Data 521

To determine whether x is from a CpG island or not, we compare the models using
the logs-odds ratio, defined as

log
P(x|+)
P(x|−)

=
L

∑
i=1

log
a+

xi−1xi

a−xi−1xi

. (8.10)

If this ratio is greater than 0, then we say that x is from a CpG island.

Example 8.17 Classification using a Markov chain. Our model for CpG islands and our model for
non-CpG islands both have the same structure, as shown in our example Markov chain
of Figure 8.9. Let CpG+ be the transition matrix for the CpG island model. Similarly,
CpG− is the transition matrix for the non-CpG island model. These are (adapted from
Durbin, Eddy, Krogh, and Mitchison [DEKM98]):

CpG+ =

















A C G T

A 0.20 0.26 0.44 0.10

C 0.16 0.36 0.28 0.20

G 0.15 0.35 0.36 0.14

T 0.09 0.37 0.36 0.18

















(8.11)

CpG− =

















A C G T

A 0.27 0.19 0.31 0.23

C 0.33 0.31 0.08 0.28

G 0.26 0.24 0.31 0.19

T 0.19 0.25 0.28 0.28

















(8.12)

Notice that the transition probability a+
CG = 0.28 is higher than a−CG = 0.08. Suppose we

are given the sequence x = CGCG. The log-odds ratio of x is

log
0.28
0.08

+ log
0.35
0.24

+ log
0.28
0.08

= 1.25> 0.

Thus, we say that x is from a CpG island.

In summary, we can use a Markov chain model to determine if a DNA sequence, x, is
from a CpG island. This was the first of our two important questions mentioned at the
beginning of this section. To answer the second question, that of finding all of the CpG
islands in a given sequence, we move on to hidden Markov models.

Hidden Markov Model
Given a long DNA sequence, how can we find all CpG islands within it? We could try
the Markov chain method above, using a sliding window. For each window, we could

522 Chapter 8 Mining Stream, Time-Series, and Sequence Data

compute the log-odds ratio. CpG islands within intersecting windows could be merged
to determine CpG islands within the long sequence. This approach has some difficulties:
It is not clear what window size to use, and CpG islands tend to vary in length.

What if, instead, we merge the two Markov chains from above (for CpG islands and
non-CpG islands, respectively) and add transition probabilities between the two chains?
The result is a hidden Markov model, as shown in Figure 8.10. The states are renamed
by adding “+” and “−” labels to distinguish them. For readability, only the transitions
between “+” and “−” states are shown, in addition to those for the begin and end states.
Let π = π1π2 . . .πL be a path of states that generates a sequence of symbols, x = x1x2 . . .xL.
In a Markov chain, the path through the chain for x is unique. With a hidden Markov
model, however, different paths can generate the same sequence. For example, the states
C+ and C− both emit the symbol C. Therefore, we say the model is “hidden” in that
we do not know for sure which states were visited in generating the sequence. The tran-
sition probabilities between the original two models can be determined using training
sequences containing transitions between CpG islands and non-CpG islands.

A Hidden Markov Model (HMM) is defined by

a set of states, Q

a set of transitions, where transition probability akl = P(πi = l|πi−1 = k) is the prob-
ability of transitioning from state k to state l for k, l ∈ Q

an emission probability, ek(b) = P(xi = b|πi = k), for each state, k, and each symbol,
b, where ek(b) is the probability of seeing symbol b in state k. The sum of all emission
probabilities at a given state must equal 1, that is, ∑b ek = 1 for each state, k.

Example 8.18 A hidden Markov model. The transition matrix for the hidden Markov model of
Figure 8.10 is larger than that of Example 8.16 for our earlier Markov chain example.

G+C+

G–
C–

T+A+

T–
A–

O O

Figure 8.10 A hidden Markov model.

8.4 Mining Sequence Patterns in Biological Data 523

It contains the states A+, C+, G+, T+, A−, C−, G−, T− (not shown). The transition
probabilities between the “+” states are as before. Similarly, the transition probabili-
ties between the “−” states are as before. The transition probabilities between “+” and
“−” states can be determined as mentioned above, using training sequences containing
known transitions from CpG islands to non-CpG islands, and vice versa. The emis-
sion probabilities are eA+(A) = 1, eA+(C) = 0, eA+(G) = 0, eA+(T) = 0, eA−(A) = 1,
eA−(C) = 0, eA−(G) = 0, eA−(T) = 0, and so on. Although here the probability of emit-
ting a symbol at a state is either 0 or 1, in general, emission probabilities need not be
zero-one.

Tasks using hidden Markov models include:

Evaluation: Given a sequence, x, determine the probability, P(x), of obtaining x in the
model.

Decoding: Given a sequence, determine the most probable path through the model
that produced the sequence.

Learning: Given a model and a set of training sequences, find the model parameters
(i.e., the transition and emission probabilities) that explain the training sequences
with relatively high probability. The goal is to find a model that generalizes well to
sequences we have not seen before.

Evaluation, decoding, and learning can be handled using the forward algorithm,
Viterbi algorithm, and Baum-Welch algorithm, respectively. These algorithms are dis-
cussed in the following sections.

Forward Algorithm
What is the probability, P(x), that sequence x was generated by a given hidden Markov
model (where, say, the model represents a sequence class)? This problem can be solved
using the forward algorithm.

Let x = x1x2 . . . xL be our sequence of symbols. A path is a sequence of states. Many
paths can generate x. Consider one such path, which we denote π = π1π2 . . .πL. If we
incorporate the begin and end states, denoted as 0, we can write π as π0 = 0, π1π2 . . .πL,
πL+1 = 0. The probability that the model generated sequence x using path π is

P(x, π) = a0π1 eπ1(x1) ·aπ1π2 eπ2(x2) · · · ·aπL−1πL eπL(xL) ·aπL0

(8.13)
= a0π1

L

∏
i=1

eπi(xi)aπiπi+1

where πL+1 = 0. We must, however, consider all of the paths that can generate x. There-
fore, the probability of x given the model is

P(x) = ∑
π

P(x, π). (8.14)

That is, we add the probabilities of all possible paths for x.

524 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Algorithm: Forward algorithm. Find the probability, P(x), that sequence x was generated by the given hidden
Markov model.

Input:

A hidden Markov model, defined by a set of states, Q, that emit symbols, and by transition and emission
probabilities;

x, a sequence of symbols.

Output: Probability, P(x).

Method:

(1) Initialization (i = 0): f0(0) = 1, fk(0) = 0 for k > 0
(2) Recursion (i = 1 . . .L): fl(i) = el(xi)∑k fk(i−1)akl

(3) Termination: P(x) = ∑k fk(L)ak0

Figure 8.11 Forward algorithm.

Unfortunately, the number of paths can be exponential with respect to the length,
L, of x, so brute force evaluation by enumerating all paths is impractical. The forward
algorithm exploits a dynamic programming technique to solve this problem. It defines
forward variables, fk(i), to be the probability of being in state k having observed the first
i symbols of sequence x. We want to compute fπL+1=0(L), the probability of being in the
end state having observed all of sequence x.

The forward algorithm is shown in Figure 8.11. It consists of three steps. In step 1,
the forward variables are initialized for all states. Because we have not viewed any part of
the sequence at this point, the probability of being in the start state is 1 (i.e., f0(0) = 1),
and the probability of being in any other state is 0. In step 2, the algorithm sums over all
the probabilities of all the paths leading from one state emission to another. It does this
recursively for each move from state to state. Step 3 gives the termination condition. The
whole sequence (of length L) has been viewed, and we enter the end state, 0. We end up
with the summed-over probability of generating the required sequence of symbols.

Viterbi Algorithm
Given a sequence, x, what is the most probable path in the model that generates x? This
problem of decoding can be solved using the Viterbi algorithm.

Many paths can generate x. We want to find the most probable one, π?, that is, the
path that maximizes the probability of having generated x. This is π? = argmaxπP(π|x).10

It so happens that this is equal to argmaxπP(x, π). (The proof is left as an exercise for the
reader.) We saw how to compute P(x, π) in Equation (8.13). For a sequence of length L,
there are |Q|L possible paths, where |Q| is the number of states in the model. It is

10In mathematics, argmax stands for the argument of the maximum. Here, this means that we want the
path, π, for which P(π|x) attains its maximum value.

8.4 Mining Sequence Patterns in Biological Data 525

infeasible to enumerate all of these possible paths! Once again, we resort to a dynamic
programming technique to solve the problem.

At each step along the way, the Viterbi algorithm tries to find the most probable
path leading from one symbol of the sequence to the next. We define vl(i) to be the
probability of the most probable path accounting for the first i symbols of x and
ending in state l. To find π?, we need to compute maxkvk(L), the probability of the
most probable path accounting for all of the sequence and ending in the end state.
The probability, vl(i), is

vl(i) = el(xi) ·maxk(vl(k)akl), (8.15)

which states that the most probable path that generates x1 . . .xi and ends in state l has to
emit xi in state xl (hence, the emission probability, el(xi)) and has to contain the most
probable path that generates x1 . . .xi−1 and ends in state k, followed by a transition from
state k to state l (hence, the transition probability, akl). Thus, we can compute vk(L) for
any state, k, recursively to obtain the probability of the most probable path.

The Viterbi algorithm is shown in Figure 8.12. Step 1 performs initialization. Every
path starts at the begin state (0) with probability 1. Thus, for i = 0, we have v0(0) = 1, and
the probability of starting at any other state is 0. Step 2 applies the recurrence formula for
i = 1 to L. At each iteration, we assume that we know the most likely path for x1 . . . xi−1
that ends in state k, for all k ∈Q. To find the most likely path to the i-th state from there,
we maximize vk(i−1)akl over all predecessors k ∈Q of l. To obtain vl(i), we multiply by
el(xi) since we have to emit xi from l. This gives us the first formula in step 2. The values
vk(i) are stored in a Q×L dynamic programming matrix. We keep pointers (ptr) in this
matrix so that we can obtain the path itself. The algorithm terminates in step 3, where
finally, we have maxkvk(L). We enter the end state of 0 (hence, the transition probability,
ak0) but do not emit a symbol. The Viterbi algorithm runs in O(|Q|2|L|) time. It is more
efficient than the forward algorithm because it investigates only the most probable path
and avoids summing over all possible paths.

Algorithm: Viterbi algorithm. Find the most probable path that emits the sequence of symbols, x.

Input:

A hidden Markov model, defined by a set of states, Q, that emit symbols, and by transition and emission
probabilities;

x, a sequence of symbols.

Output: The most probable path, π∗.

Method:

(1) Initialization (i = 0): v0(0) = 1, vk(0) = 0 for k > 0
(2) Recursion (i = 1 . . .L): vl(i) = el(xi)maxk(vk(i−1)akl)

ptri(l) = argmaxk(vk(i−1)akl)
(3) Termination: P(x,π∗) = maxk(vk(L)ak0)

π∗L = argmaxk(vk(L)ak0)

Figure 8.12 Viterbi (decoding) algorithm.

526 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Baum-Welch Algorithm
Given a training set of sequences, how can we determine the parameters of a hidden
Markov model that will best explain the sequences? In other words, we want to learn or
adjust the transition and emission probabilities of the model so that it can predict the
path of future sequences of symbols. If we know the state path for each training sequence,
learning the model parameters is simple. We can compute the percentage of times each
particular transition or emission is used in the set of training sequences to determine akl ,
the transition probabilities, and ek(b), the emission probabilities.

When the paths for the training sequences are unknown, there is no longer a direct
closed-form equation for the estimated parameter values. An iterative procedure must be
used, like the Baum-Welch algorithm. The Baum-Welch algorithm is a special case of the
EM algorithm (Section 7.8.1), which is a family of algorithms for learning probabilistic
models in problems that involve hidden states.

The Baum-Welch algorithm is shown in Figure 8.13. The problem of finding the
optimal transition and emission probabilities is intractable. Instead, the Baum-Welch
algorithm finds a locally optimal solution. In step 1, it initializes the probabilities to
an arbitrary estimate. It then continuously re-estimates the probabilities (step 2) until
convergence (i.e., when there is very little change in the probability values between iter-
ations). The re-estimation first calculates the expected transmission and emission prob-
abilities. The transition and emission probabilities are then updated to maximize the
likelihood of the expected values.

In summary, Markov chains and hidden Markov models are probabilistic models in
which the probability of a state depends only on that of the previous state. They are par-
ticularly useful for the analysis of biological sequence data, whose tasks include evalua-
tion, decoding, and learning. We have studied the forward, Viterbi, and Baum-Welch
algorithms. The algorithms require multiplying many probabilities, resulting in very

Algorithm: Baum-Welch algorithm. Find the model parameters (transition and emission probabilities) that
best explain the training set of sequences.

Input:

A training set of sequences.

Output:

Transition probabilities, akl ;

Emission probabilities, ek(b);

Method:

(1) initialize the transmission and emission probabilities;

(2) iterate until convergence

(2.1) calculate the expected number of times each transition or emission is used

(2.2) adjust the parameters to maximize the likelihood of these expected values

Figure 8.13 Baum-Welch (learning) algorithm.

8.5 Summary 527

small numbers that can cause underflow arithmetic errors. A way around this is to use
the logarithms of the probabilities.

8.5 Summary

Stream data flow in and out of a computer system continuously and with varying
update rates. They are temporally ordered, fast changing, massive (e.g., gigabytes to ter-
abytes in volume), and potentially infinite. Applications involving stream data include
telecommunications, financial markets, and satellite data processing.

Synopses provide summaries of stream data, which typically can be used to return
approximate answers to queries. Random sampling, sliding windows, histograms, mul-
tiresolution methods (e.g., for data reduction), sketches (which operate in a single
pass), and randomized algorithms are all forms of synopses.

The tilted time frame model allows data to be stored at multiple granularities of time.
The most recent time is registered at the finest granularity. The most distant time is
at the coarsest granularity.

A stream data cube can store compressed data by (1) using the tilted time frame model
on the time dimension, (2) storing data at only some critical layers, which reflect
the levels of data that are of most interest to the analyst, and (3) performing partial
materialization based on “popular paths” through the critical layers.

Traditional methods of frequent itemset mining, classification, and clustering tend to
scan the data multiple times, making them infeasible for stream data. Stream-based
versions of such mining instead try to find approximate answers within a user-specified
error bound. Examples include the Lossy Counting algorithm for frequent itemset
stream mining; the Hoeffding tree, VFDT, and CVFDT algorithms for stream data
classification; and the STREAM and CluStream algorithms for stream data clustering.

A time-series database consists of sequences of values or events changing with time,
typically measured at equal time intervals. Applications include stock market analysis,
economic and sales forecasting, cardiogram analysis, and the observation of weather
phenomena.

Trend analysis decomposes time-series data into the following: trend (long-term)
movements, cyclic movements, seasonal movements (which are systematic or calendar
related), and irregular movements (due to random or chance events).

Subsequence matching is a form of similarity search that finds subsequences that
are similar to a given query sequence. Such methods match subsequences that have
the same shape, while accounting for gaps (missing values) and differences in base-
line/offset and scale.

A sequence database consists of sequences of ordered elements or events, recorded
with or without a concrete notion of time. Examples of sequence data include cus-
tomer shopping sequences, Web clickstreams, and biological sequences.

528 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Sequential pattern mining is the mining of frequently occurring ordered events or
subsequences as patterns. Given a sequence database, any sequence that satisfies min-
imum support is frequent and is called a sequential pattern. An example of a sequen-
tial pattern is “Customers who buy a Canon digital camera are likely to buy an HP
color printer within a month.” Algorithms for sequential pattern mining include GSP,
SPADE, and PrefixSpan, as well as CloSpan (which mines closed sequential patterns).

Constraint-based mining of sequential patterns incorporates user-specified
constraints to reduce the search space and derive only patterns that are of interest
to the user. Constraints may relate to the duration of a sequence, to an event fold-
ing window (where events occurring within such a window of time can be viewed as
occurring together), and to gaps between events. Pattern templates may also be spec-
ified as a form of constraint using regular expressions.

Periodicity analysis is the mining of periodic patterns, that is, the search for recurring
patterns in time-related sequence databases. Full periodic and partial periodic patterns
can be mined, as well as periodic association rules.

Biological sequence analysis compares, aligns, indexes, and analyzes biological
sequences, which can be either sequences of nucleotides or of amino acids. Biose-
quenceanalysisplaysacrucial role inbioinformaticsandmodernbiology.Suchanalysis
can be partitioned into two essential tasks: pairwise sequence alignment and multi-
ple sequence alignment. The dynamic programming approach is commonly used for
sequence alignments. Among many available analysis packages, BLAST (Basic Local
Alignment Search Tool) is one of the most popular tools in biosequence analysis.

Markov chains and hidden Markov models are probabilistic models in which the
probability of a state depends only on that of the previous state. They are particu-
larly useful for the analysis of biological sequence data. Given a sequence of symbols,
x, the forward algorithm finds the probability of obtaining x in the model, whereas
the Viterbi algorithm finds the most probable path (corresponding to x) through the
model. The Baum-Welch algorithm learns or adjusts the model parameters (transition
and emission probabilities) so as to best explain a set of training sequences.

Exercises

8.1 A stream data cube should be relatively stable in size with respect to infinite data streams.
Moreover, it should be incrementally updateable with respect to infinite data streams.
Show that the stream cube proposed in Section 8.1.2 satisfies these two requirements.

8.2 In stream data analysis, we are often interested in only the nontrivial or exceptionally
large cube cells. These can be formulated as iceberg conditions. Thus, it may seem that
the iceberg cube [BR99] is a likely model for stream cube architecture. Unfortunately,
this is not the case because iceberg cubes cannot accommodate the incremental updates
required due to the constant arrival of new data. Explain why.

