CS6220: DATA MINING TECHNIQUES

Chapter 6: Mining Frequent Patterns,

Associations, and Correlations:

Basic Concepts and Methods
Instructor: Yizhou Sun

yzsun@ccs.neu.edu

February 4, 2013

Homework \#1

- Textbook
- P80, 2.3, 2.4
- P122, 3.8
- P274, 6.6, 6.14

Chapter 6: Mining Frequent Patterns, Association and Correlations

Basic Concepts

Frequent Itemset Mining Methods

Pattern Evaluation Methods

Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
- What products were often purchased together?- Beer and diapers?!
- What are the subsequent purchases after buying a PC?
- What kinds of DNA are sensitive to this new drug?
- Applications
- Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web \log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
- Association, correlation, and causality analysis
- Sequential, structural (e.g., sub-graph) patterns
- Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
- Classification: discriminative, frequent pattern analysis
- Cluster analysis: frequent pattern-based clustering
- Broad applications

Basic Concepts: Frequent Patterns

10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- itemset: A set of one or more items - k-itemset $X=\left\{x_{1}, \ldots, x_{k}\right\}$
- (absolute) support, or, support count of X : Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of
 transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X 's support is no less than a minsup threshold

Basic Concepts: Association Rules

10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Find all the rules $X \rightarrow Y$ with minimum support and confidence
- support, s, probability that a transaction contains $\mathrm{X} \cup \mathrm{Y}$
- confidence, c, conditional probability that a transaction
having X also contains Y
Let minsup $=50 \%$, minconf $=50 \%$
Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, \{Beer, Diaper\}:3
- Strong Association rules
- Beer \rightarrow Diaper (60\%, 100\%)
- Diaper \rightarrow Beer (60\%, 75\%)

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of sub-patterns, e.g., $\left\{a_{1}, \ldots, a_{100}\right\}$ contains $2^{100}-1=1.27 * 10^{30}$ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is frequent and there exists no superpattern Y Ј X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y כ X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
- Reducing the \# of patterns and rules

Closed Patterns and Max-Patterns

- Exercise. $\mathrm{DB}=\left\{<\mathrm{a}_{1}, \ldots, \mathrm{a}_{100}>,<\mathrm{a}_{1}, \ldots, \mathrm{a}_{50}>\right\}$
- Min_sup = 1 .
-What is the set of closed itemset?
- $\left\langle\mathrm{a}_{1}, \ldots, \mathrm{a}_{100}\right\rangle: 1$
- $\left\langle\mathrm{a}_{1}, \ldots, \mathrm{a}_{50}\right\rangle: 2$
-What is the set of max-pattern?
- $\left\langle\mathrm{a}_{1}, \ldots, \mathrm{a}_{100}>: 1\right.$
-What is the set of all patterns?
-!!

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
- The number of frequent itemsets to be generated is sensitive to the minsup threshold
- When minsup is low, there exist potentially an exponential number of frequent itemsets
- The worst case: \mathbf{M}^{N} where \mathbf{M} : \# distinct items, and N : max length of transactions
- The worst case complexity vs. the expected probability
- Ex. Suppose Walmart has 10^{4} kinds of products
- The chance to pick up one product 10^{-4}
- The chance to pick up a particular set of 10 products: ${ }^{\sim 10-40}$
- What is the chance this particular set of 10 products to be frequent 10^{3} times in 10^{9} transactions?

Chapter 6: Mining Frequent Patterns, Association and Correlations

Basic Concepts

Frequent Itemset Mining Methods

Pattern Evaluation Methods

Summary

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data

Format

- Generating Association Rules

The Apriori Property and Scalable Mining Methods

- The Apriori property of frequent patterns
- Any nonempty subsets of a frequent itemset must be frequent
- If \{beer, diaper, nuts\} is frequent, so is \{beer, diaper\}
- i.e., every transaction having \{beer, diaper, nuts\} also contains \{beer, diaper\}
- Scalable mining methods: Three major approaches
- Apriori (Agrawal \& Srikant@VLDB’94)
- Freq. pattern growth (FPgrowth-Han, Pei \& Yin @SIGMOD’00)
- Vertical data format approach (Eclat)

Apriori: A Candidate Generation \& Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal \& Srikant @VLDB’94, Mannila, et al. @ KDD' 94)
- Method:
- Initially, scan DB once to get frequent 1-itemset
- Generate length $(\mathrm{k}+1)$ candidate itemsets from length k frequent itemsets
- Test the candidates against DB
- Terminate when no frequent or candidate set can be generated

From Frequent k-1 Itemset To Frequent k-Itemset

C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k

- From L_{k-1} to C_{k} (Candidates Generation)
- The join step
- The prune step
- From C_{k} to L_{k}
- Test candidates by scanning database

The Apriori Algorithm—An Example

Database TDB $\mathrm{Sup}_{\text {min }}=2$

10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

C_{1}	$\{\mathrm{~A}\}$	2
	$\{\mathrm{~B}\}$	3
	$\{\mathrm{C}\}$	3
	$\{\mathrm{st}$	
scan	$\{\mathrm{D}\}$	1
	$\{\mathrm{E}\}$	3

L_{1}	Itemset	sup
	$\{\mathrm{A}\}$	2
	$\{\mathrm{~B}\}$	3
	$\{\mathrm{C}\}$	3
	$\{\mathrm{E}\}$	3

The Δ oriori A eqorith (pseudo-code)

C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=2 ; L_{k-1}!=\varnothing ; k++$) do begin
$C_{k}=$ candidates generated from $L_{k-1} ;$
for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t
$L_{k+1}=$ candidates in C_{k+1} with min_support end
return $\cup_{k} L_{k}$;

Candidates Generation

- How to generate candidates C_{k} ?
- Step 1: self-joining L_{k-1}
- Two length $\mathrm{k}-1$ itemsets l_{1} and l_{2} can join, only if the first k 2 items are the same, and the for the last term, $l_{1}[k-1]<$ $l_{2}[k-1]$ (why?)
- Step 2: pruning
- Why we need pruning for candidates?
- How?
- Again, use Apriori property
- A candidate itemset can be safely pruned, if it contains infrequent subset
- Example of Candidate-generation from L_{3} to C_{4}
- $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from $a b c$ and $a b d$
- acde from acd and ace
- Pruning:
- acde is removed because ade is not in L_{3}
- $C_{4}=\{a b c d\}$

The Apriori Algorithm—Example Review

Database TDB Sup $_{\text {min }}=2$

10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

C_{1}	$\{\mathrm{~A}\}$	2
	$\{\mathrm{~B}\}$	3
	$\{\mathrm{C}\}$	3
	$\{\mathrm{st}$	
	$\{\mathrm{D}\}$	1
	$\{\mathrm{E}\}$	3

L_{1}	Itemset	sup
	$\{\mathrm{A}\}$	2
	$\{\mathrm{~B}\}$	3
	$\{\mathrm{C}\}$	3
	$\{\mathrm{E}\}$	3

Questions

- How many scans on DB are needed for Apriori algorithm?
- When ($k=$?) does Apriori algorithm generate most candidate itemsets?
- Is support counting for candidates expensive?

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori \square
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data

Format

- Generating Association Rules

Further Improvement of the Apriori Method

- Major computational challenges
- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support counting for candidates
- Improving Apriori: general ideas
- Reduce passes of transaction database scans
- Shrink number of candidates
- Facilitate support counting of candidates

Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Scan 1: partition database and find local frequent patterns
- Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski and S. Navathe, VLDB'95

$\sup _{1}(\mathrm{i})<\sigma \mathrm{DB}_{1} \quad \sup _{2}(\mathrm{i})<\sigma \mathrm{BB}_{2}$

Hash-based Technique: Reduce the Number of Candidates

- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Candidates: a, b, c, d, e
- Hash entries
- \{ab, ad, ae $\}$
- \{bd, be, de\}
- ...

count	itemsets
35	$\{\mathrm{ab}, \mathrm{ad}, \mathrm{ae}\}$
88	$\{\mathrm{bd}, \mathrm{be}, \mathrm{de}\}$
\cdot	
\cdot	\cdot
\cdot	\cdot
102	$\{y z, \mathrm{qs}, \mathrm{wt}\}$

Hash Table

- Frequent 1-itemset: a, b, d, e
- ab is not a candidate 2 -itemset if the sum of count of $\{a b, a d, a e\}$ is below support threshold
- J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95

Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only borders of closure of frequent patterns are checked
- Example: check abcd instead of $a b, a c, \ldots$, etc.
- Scan database again to find missed frequent patterns
- H. Toivonen. Sampling large databases for association rules. In VLDB'96

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data

Format

- Generating Association Rules

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
- Breadth-first (i.e., level-wise) search
- Scan DB multiple times
- Candidate generation and test
- Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
- Depth-first search
- Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
- "abc" is a frequent pattern
- Get all transactions having "abc", i.e., project DB on abc: DB|abc
- " d " is a local frequent item in $\mathrm{DB} \mid \mathrm{abc} \rightarrow$ abcd is a frequent pattern

FP-Growth Algorithm Sketch

- Construct FP-tree (frequent pattern-tree)
- Compress the DB into a tree
- Recursively mine FP-tree by FP-Growth
- Construct conditional pattern base from FP-tree
- Construct conditional FP-tree from conditional pattern base
- Until the tree has a single path or empty

Construct FP-tree from a Transaction Database

TID	Items bought	(ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	min_support $=3$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	

1. Scan DB once, find frequent 1-itemset (single item pattern)
2. Sort frequent items in frequency descending order, f-list
3. Scan DB again, construct FP-tree

$$
\text { F-list }=\mathrm{f}-\mathrm{c}-\mathrm{a}-\mathrm{b}-\mathrm{m}-\mathrm{p}
$$

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
- F-list = f-c-a-b-m-p
- Patterns containing p
- Patterns having m but no p
- ...
- Patterns having c but no a nor b, m, p
- Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p 's conditional pattern base

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
- Accumulate the count for each item in the base
- Construct the FP-tree for the frequent items of the pattern base

m-conditional pattern base:
fca:2, fcab:1 All frequent patterns relate to m
\rightarrow m,
$f: 3 \rightarrow f m, c m, a m$, fcm, fam, cam,
c:3 fcam
$a: 3$
m-conditional FP-tree

Recursion: Mining Each Conditional FP-tree

Cond. pattern base of "cam": (f:3)

cam-conditional FP-tree

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
| $\}$. Reduction of the single prefix path into one node
$a_{1}: n_{1}$. Concatenation of the mining results of the two parts
$a_{2}: n_{2}$

Benefits of the FP-tree Structure

- Completeness
- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction
- Compactness
- Reduce irrelevant info-infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database (not count node-links and the count field)

The Frequent Pattern Growth Mining Method

- Idea: Frequent pattern growth
- Recursively grow frequent patterns by pattern and database partition
- Method
- For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
- Repeat the process on each newly created conditional FP-tree
- Until the resulting FP-tree is empty, or it contains only one path-single path will generate all the combinations of its subpaths, each of which is a frequent pattern

Scaling FP-growth by Database Projection

- What about if FP-tree cannot fit in memory?
- DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. partition projection techniques
- Parallel projection
- Project the DB in parallel for each frequent item
- Parallel projection is space costly
- All the partitions can be processed in parallel
- Partition projection
- Partition the DB based on the ordered frequent items
- Passing the unprocessed parts to the subsequent partitions

FP-Growth vs. Apriori: Scalability With the Support Threshold

Advantages of the Pattern Growth Approach

- Divide-and-conquer:
- Decompose both the mining task and DB according to the frequent patterns obtained so far
- Lead to focused search of smaller databases
- Other factors
- No candidate generation, no candidate test
- Compressed database: FP-tree structure
- No repeated scan of entire database
- Basic ops: counting local freq items and building sub FP-tree, no pattern search and matching
- A good open-source implementation and refinement of FPGrowth
- FPGrowth+ (Grahne and J. Zhu, FIMI'03)

Further Improvements of Mining Methods

- AFOPT (Liu, et al. @ KDD’03)
- A "push-right" method for mining condensed frequent pattern (CFP) tree
- Carpenter (Pan, et al. @ KDD’03)
- Mine data sets with small rows but numerous columns
- Construct a row-enumeration tree for efficient mining
- FPgrowth+ (Grahne and Zhu, FIMI’03)
- Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03

Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003

- TD-Close (Liu, et al, SDM’06)

Extension of Pattern Growth Mining Methodology

- Mining closed frequent itemsets and max-patterns
- CLOSET (DMKD’00), FPclose, and FPMax (Grahne \& Zhu, Fimi’03)
- Mining sequential patterns
- PrefixSpan (ICDE'01), CloSpan (SDM'03), BIDE (ICDE'04)
- Mining graph patterns
- gSpan (ICDM'02), CloseGraph (KDD’03)
- Constraint-based mining of frequent patterns
- Convertible constraints (ICDE'01), gPrune (PAKDD'03)
- Computing iceberg data cubes with complex measures
- H-tree, H-cubing, and Star-cubing (SIGMOD'01, VLDB'03)
- Pattern-growth-based Clustering
- MaPle (Pei, et al., ICDM’03)
- Pattern-Growth-Based Classification
- Mining frequent and discriminative patterns (Cheng, et al, ICDE'07)

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data

Format

- Generating Association Rules

ECLAT: Mining by Exploring Vertical Data Format

- Vertical format: $t(A B)=\left\{T_{11}, T_{25}, \ldots\right\}$
- tid-list: list of trans.-ids containing an itemset
- Deriving frequent patterns based on vertical intersections
- $\mathrm{t}(\mathrm{X})=\mathrm{t}(\mathrm{Y}): \mathrm{X}$ and Y always happen together
- $\mathrm{t}(\mathrm{X}) \subset \mathrm{t}(\mathrm{Y}):$ transaction having X always has Y
- Using diffset to accelerate mining
- Only keep track of differences of tids
- $\mathrm{t}(\mathrm{X})=\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right\}, \mathrm{t}(\mathrm{XY})=\left\{\mathrm{T}_{1}, \mathrm{~T}_{3}\right\}$
- $\operatorname{Diffset}(X Y, X)=\left\{T_{2}\right\}$
- Eclat (Zaki et al. @KDD’97)

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data

Format

- Generating Association Rules
\square

Generating Association Rules

- Strong association rules
- Satisfying minimum support and minimum confidence
- Recall: Confidence $(A \Rightarrow B)=P(B \mid A)=\frac{\operatorname{support}(A \cup B)}{\operatorname{support}(A)}$
- Steps of generating association rules from frequent pattern l :
- Step 1: generate all nonempty subsets of l
- Step 2: for every nonempty subset s, calculate the confidence for rule $s \Rightarrow(l-s)$

Example

- $X=\{I 1, I 2, I 5\}$
- Nonempty subsets of X are: $\{I 1, I 2\},\{I 1, I 5\},\{I 2, I 5\},\{I 1\},\{I 2\}$, and $\{I 5\}$
- Association rules are:
$\{I 1, I 2\} \Rightarrow I 5$,
$\{I 1, I 5\} \Rightarrow I 2$,
$\{I 2, I 5\} \Rightarrow I 1$,
$I 1 \Rightarrow\{I 2, I 5\}$,
$I 2 \Rightarrow\{I 1, I 5\}$,
$I 5 \Rightarrow\{I 1, I 2\}$,
confidence $=2 / 4=50 \%$
confidence $=2 / 2=100 \%$
confidence $=2 / 2=100 \%$
confidence $=2 / 6=33 \%$
confidence $=2 / 7=29 \%$
confidence $=2 / 2=100 \%$

Chapter 6: Mining Frequent Patterns, Association and Correlations

Basic Concepts

Frequent Itemset Mining Methods

Pattern Evaluation Methods

Summary

Misleading Strong Association Rules

- Not all strong association rules are interesting

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

play basketball \Rightarrow eat cereal[$40 \%, 66.7 \%$]

- Shall we target people who play basketball for cereal ads?
- Hint: What is the overall probability of people who eat cereal?
- 3750/5000 = 75\% > 66.7\%!
- Confidence measure of a rule could be misleading

Other Measures

- From association to correlation
- Lift
- χ^{2}
- All_confidence
- Max_confidence
- Kulczynski
- Cosine

Interestingness Measure: Correlations (Lift)

- play basketball \Rightarrow eat cereal $[40 \%, 66.7 \%]$ is misleading
- The overall \% of students eating cereal is $75 \%>66.7 \%$.
- play basketball \Rightarrow not eat cereal $[20 \%, 33.3 \%]$ is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$
\begin{gathered}
\text { lift }=\frac{P(A \cup B)}{P(A) P(B)} \\
\operatorname{lift}(B, C)=\frac{2000 / 5000}{3000 / 5000 * 3750 / 5000}=0.89 \\
\operatorname{lift}(B, \neg C)=\frac{1000 / 5000}{3000 / 5000 * 1250 / 5000}=1.33
\end{gathered}
$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

Correlation Analysis (Nominal Data)

- χ^{2} (chi-square) test

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}
$$

- Independency test between two attributes
- The larger the χ^{2} value, the more likely the variables are related
- The cells that contribute the most to the χ^{2} value are those whose actual count is very different from the expected count
- Correlation does not imply causality
- \# of hospitals and \# of car-theft in a city are correlated
- Both are causally linked to the third variable: population

Are lift and χ^{2} Good Measures of Correlation?

- Lift and χ^{2} are affected by null-transaction
- E.g., number of transactions that do not contain milk nor coffee
- All_confidence
- all_conf(A,B)=min\{P(A|B), $\mathrm{P}(\mathrm{B} \mid \mathrm{A})\}$
- Max_confidence
- $\max _c o n f(A, B)=\max \{\mathrm{P}(\mathrm{A} \mid \mathrm{B}), \mathrm{P}(\mathrm{B} \mid \mathrm{A})\}$
- Kulczynski
- $\operatorname{Kulc}(A, B)=\frac{1}{2}(P(A \mid B)+P(B \mid A))$
- Cosine
- $\operatorname{cosine}(A, B)=\sqrt{P(A \mid B) \times P(B \mid A)}$

Comparison of Interestingness Measures

- Null-(transaction) invariance is crucial for correlation analysis
- Lift and χ^{2} are not null-invariant
- 5 null-invariant measures

	Milk	No Milk	Sum (row)
Coffee	m, c	$\sim \mathrm{m}, \mathrm{c}$	c
No Coffee	$\mathrm{m}, \sim \mathrm{c}$	$\sim \mathrm{m}, \sim \mathrm{c}$	$\sim \mathrm{c}$
Sum(col.)	m	$\sim \mathrm{m}$	Σ

Measure	Definition	Range	Null-Invariant
$\chi^{2}(a, b)$	$\sum_{i, j=0,1} \frac{\left(e\left(a_{i}, b_{j}\right)-o\left(a_{i}, b_{j}\right)\right)^{2}}{e\left(a_{i}, b_{j}\right)}$	$[0, \infty]$	No
Lift (a, b)	$\frac{P(a b)}{P(a) P(b)}$	$[0, \infty]$	No
AllConf (a, b)	$\frac{\sup (a b)}{\max \{\sup (a), s u p(b)\}}$	$[0,1]$	Yes
Coherence (a, b)	$\frac{\sup (a b)}{\operatorname{sup(a)+\operatorname {sup}(b)-sup(ab)}}$	$[0,1]$	Yes
Cosine (a, b)	$\frac{\sup (a b)}{\sqrt{\sup (a) s u p(b)}}$	$[0,1]$	Yes
Kulc (a, b)	$\frac{\sup (a b)}{2}\left(\frac{1}{\sup (a)}+\frac{1}{\operatorname{sup(}(b)}\right)$	$[0,1]$	Yes
MaxConf (a, b)	$\max \left\{\frac{\operatorname{sup(ab)}}{\left.\operatorname{sup(a)}, \frac{\sup (a b)}{\sup (b)}\right\}}\right.$	$[0,1]$	Yes

Analysis of DBLP Coauthor Relationships

Recent DB conferences, removing balanced associations, low sup, etc.

ID	Author a	Author b	sup(ab)	$\sup (a)$	sup (b)	Coherence	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163 (2)	0.315 (7)	0.355 (9)
2	Michael Carey	Miron Livny	26	104	58	0.191 (1)	0.335 (4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152 (3)	0.331 (5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119 (7)	0.308 (10)	0.446 (7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123 (6)	0.351 (2)	0.562 (2)
6	Hector Garcia-Molin	Wilburt Labio	16	144	18	0.110 (9)	0.314 (8)	0.500 (4)
7	Divyakant Agrawal	Wang Hsiung	16	120	16	0.133 (5)	0.365 (1)	0.567 (1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148 (4)	0.351 (3)	0.477 (6)
9	Divyakant Agrawal	Oliver Po	12	120	12	0.100 (10)	0.316 (6)	0.550 (3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312 (9)	- 4855 (5)
Table 5. Experiment on DBLP data set. Advisor-advisee relation: Kulc: high, coherence: low, cosine: middle								

- Tianyi Wu, Yuguo Chen and Jiawei Han, "Association Mining in Large Databases: A Re-Examination of Its Measures", Proc. 2007 Int. Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD'07), Sept. 2007

Which Null-Invariant Measure Is Better?

- IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications

$$
I R(A, B)=\frac{|\sup (A)-\sup (B)|}{\sup (A)+\sup (B)-\sup (A \cup B)}
$$

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D_{4} through D_{6}
- D_{4} is balanced \& neutral
- D_{5} is imbalanced \& neutral
- D_{6} is very imbalanced \& neutral

Data	$m c$	$\bar{m} c$	$m \bar{c}$	$\overline{m c}$	all_conf.	max_conf.	Kulc.	cosine	IR
D_{1}	10,000	1,000	1,000	100,000	0.91	0.91	0.91	0.91	0.0
D_{2}	10,000	1,000	1,000	100	0.91	0.91	0.91	0.91	0.0
D_{3}	100	1,000	1,000	100,000	0.09	0.09	0.09	0.09	0.0
D_{4}	1,000	1,000	1,000	100,000	0.5	0.5	0.5	0.5	0.0
D_{5}	1,000	100	10,000	100,000	0.09	0.91	0.5	0.29	0.89
D_{6}	1,000	10	100,000	100,000	0.01	0.99	0.5	0.10	0.99

Chapter 6: Mining Frequent Patterns, Association and Correlations

Basic Concepts

Frequent Itemset Mining Methods

Pattern Evaluation Methods

Summary

Summary

- Basic concepts
- Frequent pattern, association rules, support-confident framework, closed and max-patterns
- Scalable frequent pattern mining methods
- Apriori
- FPgrowth
- Vertical format approach (ECLAT)
- Which patterns are interesting?
- Pattern evaluation methods

Ref: Basic Concepts of Frequent Pattern Mining

- (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93.
- (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98.
- (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT'99.
- (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95

Ref: Apriori and Its Improvements

- R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94.
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94.
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95.
- J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95.
- H. Toivonen. Sampling large databases for association rules. VLDB'96.
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97.
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98.

Ref: Depth-First, Projection-Based FP Mining

- R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. J. Parallel and Distributed Computing:02.
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD' 00.
- J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projection. KDD'02.
- J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without Minimum Support. ICDM'02.
- J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. KDD'03.
- G. Liu, H. Lu, W. Lou, J. X. Yu. On Computing, Storing and Querying Frequent Patterns. KDD'03.
- G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003

Ref: Vertical Format and Row Enumeration Methods

- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of association rules. DAMI:97.
- Zaki and Hsiao. CHARM: An Efficient Algorithm for Closed Itemset Mining, SDM'02.
- C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A Dual-Pruning Algorithm for Itemsets with Constraints. KDD’02.
- F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki , CARPENTER: Finding Closed Patterns in Long Biological Datasets. KDD'03.
- H. Liu, J. Han, D. Xin, and Z. Shao, Mining Interesting Patterns from Very High Dimensional Data: A Top-Down Row Enumeration Approach, SDM'06.

Ref: Mining Correlations and Interesting Rules

- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94.
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97.
C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures. VLDB'98.
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02.
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03.
- T. Wu, Y. Chen and J. Han, "Association Mining in Large Databases: A ReExamination of Its Measures", PKDD'07

Ref: Freq. Pattern Mining Applications

- Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen. Efficient Discovery of Functional and Approximate Dependencies Using Partitions. ICDE'98.
H. V. Jagadish, J. Madar, and R. Ng. Semantic Compression and Pattern Extraction with Fascicles. VLDB'99.
- T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining Database Structure; or How to Build a Data Quality Browser. SIGMOD'02.
K. Wang, S. Zhou, J. Han. Profit Mining: From Patterns to Actions. EDBT'02.

