CS6220: DATA MINING TECHNIQUES

Chapter 7: Advanced Pattern Mining

Instructor: Yizhou Sun

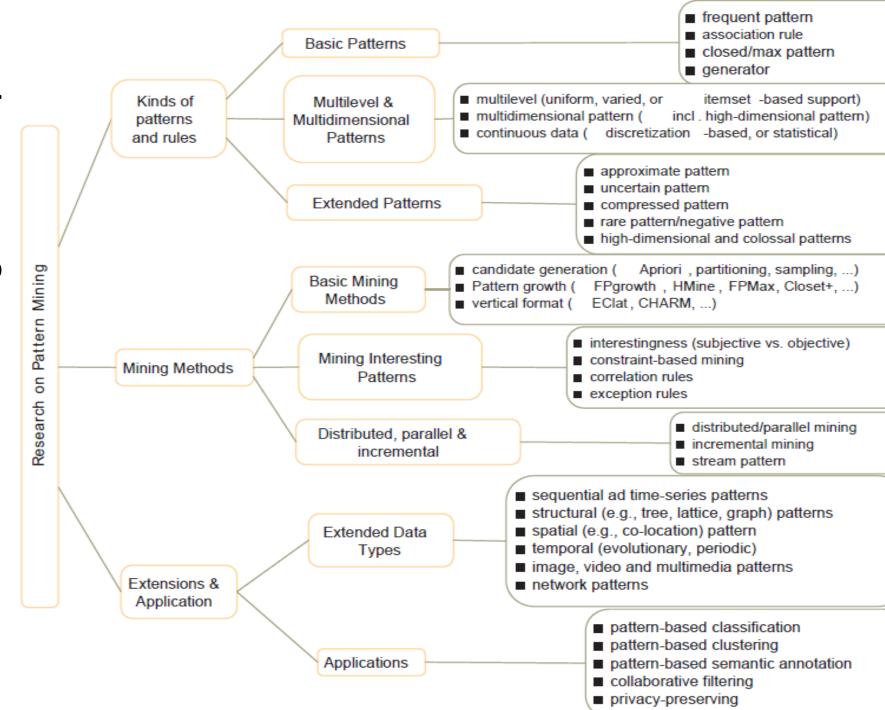
yzsun@ccs.neu.edu

January 28, 2013

Chapter 7: Advanced Pattern Mining

• Pattern Mining: A Road Map

- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining Colossal Patterns
- Mining Compressed or Approximate Patterns
- Summary



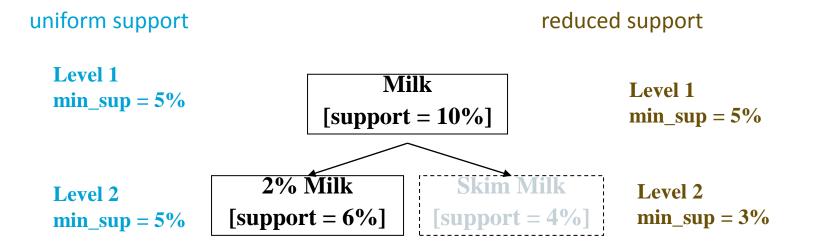
Chapter 7: Advanced Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space 🧡

- Mining Multi-Level Association
- Mining Multi-Dimensional Association
- Mining Quantitative Association Rules
- Mining Rare Patterns and Negative Patterns
- **Constraint-Based Frequent Pattern Mining**
- Mining Colossal Patterns
- Mining Compressed or Approximate Patterns
- Summary

Mining Multiple-Level Association Rules

- Items often form hierarchies
- Flexible support settings
 - Items at the lower level are expected to have lower support
- Exploration of *shared* multi-level mining (Agrawal & Srikant@VLB'95, Han & Fu@VLDB'95)



Multi-level Association: Flexible Support and Redundancy filtering

- Flexible min-support thresholds: Some items are more valuable but less frequent
 - Use non-uniform, group-based min-support
 - E.g., {diamond, watch, camera}: 0.05%; {bread, milk}: 5%; ...
- Redundancy Filtering: Some rules may be redundant due to "ancestor" relationships between items
 - milk \Rightarrow wheat bread [support = 8%, confidence = 70%]
 - 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%]

The first rule is an ancestor of the second rule

 A rule is *redundant* if its support is close to the "expected" value, based on the rule's ancestor

Mining Multi-Dimensional Association

Single-dimensional rules:

 $buys(X, "milk") \Rightarrow buys(X, "bread")$

- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - Inter-dimension assoc. rules (*no repeated predicates*) age(X,"19-25") ∧ occupation(X,"student") ⇒ buys(X, "coke")
 - hybrid-dimension assoc. rules (*repeated predicates*) age(X,"19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")
- Categorical Attributes: finite number of possible values, no ordering among values
- Quantitative Attributes: Numeric, implicit ordering among values

Mining Quantitative Associations

Techniques can be categorized by how numerical attributes, such as age or salary are treated

- Static discretization based on predefined concept hierarchies (data cube methods)
- Dynamic discretization based on data distribution (quantitative rules, e.g., Agrawal & Srikant@SIGMOD96)
- Clustering: Distance-based association (e.g., Yang & Miller@SIGMOD97)
 - One dimensional clustering then association
- 4. Statistical test:

Sex = female => Wage: mean=\$7/hr (overall mean = \$9)

Negative and Rare Patterns

- Rare patterns: Very low support but interesting
 - E.g., buying Rolex watches
 - Mining: Setting individual-based or special group-based support threshold for valuable items
- Negative patterns
 - Since it is unlikely that one buys Ford Expedition (an SUV car) and Toyota Prius (a hybrid car) together, Ford Expedition and Toyota Prius are likely negatively correlated patterns
- Negatively correlated patterns that are infrequent tend to be more interesting than those that are frequent

Defining Negative Correlated Patterns (I)

- support-based definition
 - If itemsets X and Y are both frequent but rarely occur together, i.e., sup(X U Y) < sup (X) * sup(Y)
 - Then X and Y are negatively correlated
- Problem: A sewing store sold 100 needle package A and 100 needle package B, only one transaction containing both A and B.
 - When there are in total 200 transactions, we have

 $s(A \cup B) = 0.005, s(A) * s(B) = 0.25, s(A \cup B) < s(A) * s(B)$

• When there are 10⁵ transactions, we have

s(A U B) = 1/10⁵, s(A) * s(B) = 1/10³ * 1/10³, s(A U B) > s(A) * s(B)

 Where is the problem? —Null transactions, i.e., the support-based definition is not null-invariant!

Defining Negative Correlated Patterns (II)

- Kulzynski measure-based definition
 - If itemsets X and Y are frequent, but (P(X|Y) + P(Y|X))/2 < ε, where ε is a negative pattern threshold, then X and Y are negatively correlated.
- Ex. For the same needle package problem, when no matter there are 200 or 10⁵ transactions, if ε = 0.02, we have
 (P(A|B) + P(B|A))/2 = (0.01 + 0.01)/2 < ε

Chapter 7: Advanced Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining

- Mining Colossal Patterns
- Mining Compressed or Approximate Patterns
- Summary

Constraint-based (Query-Directed) Mining

- Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - Optimization: explores such constraints for efficient mining constraintbased mining: constraint-pushing, similar to push selection first in DB query processing
 - Note: still find all the answers satisfying constraints, not finding some answers in "heuristic search"

Constraints in Data Mining

- Knowledge type constraint:
 - classification, association, etc.
- Data constraint using SQL-like queries
 - find product pairs sold together in stores in Chicago this year
- Dimension/level constraint
 - in relevance to region, price, brand, customer category
- Interestingness constraint
 - strong rules: min_support \geq 3%, min_confidence \geq 60%
- <u>Rule (or pattern) constraint</u>
 - small sales (price < \$10) triggers big sales (sum > \$200)

Meta-Rule Guided Mining

 Meta-rule can be in the rule form with partially instantiated predicates and constants

 $P_1(X, Y) \wedge P_2(X, W) => buys(X, "iPad")$

The resulting rule derived can be

age(X, "15-25") ^ profession(X, "student") => buys(X, "iPad")

In general, it can be in the form of

 $P_1 \wedge P_2 \wedge ... \wedge P_1 => Q_1 \wedge Q_2 \wedge ... \wedge Q_r$

Method to Find Rules Matching Metarules

- Find frequent (l+r) predicates (based on min-support threshold)
- Calculate the support for P₁ ^ P₂ ^ ... ^ P₁, to calculate the confidence
- Push constraints deeply when possible into the mining process (see the remaining discussions on constraintpush techniques)

Constraint-Based Frequent Pattern Mining

- Pattern space pruning constraints
 - Anti-monotonic: If constraint c is violated, its further mining can be terminated
 - Monotonic: If c is satisfied, no need to check c again
 - Succinct: c must be satisfied, so one can start with the data sets satisfying c
 - Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it if items in the transaction can be properly ordered
- Data space pruning constraint
 - Data succinct: Data space can be pruned at the initial pattern mining process
 - Data anti-monotonic: If a transaction t does not satisfy c, t can be pruned from its further mining

Pattern Space Pruning with Anti-Monotonicity Constraints

- A constraint C is *anti-monotone* if the super pattern satisfies C, all of its sub-patterns do so too
- In other words, anti-monotonicity: If an itemset S violates the constraint, so does any of its superset
- Ex. 1. $sum(S.price) \le v$ is anti-monotone
- Ex. 2. range(S.profit) ≤ 15 is anti-monotone
 - Itemset *ab* violates C
 - So does every superset of *ab*
- Ex. 3. $sum(S.Price) \ge v$ is not anti-monotone
- Ex. 4. *support count* is anti-monotone: core property used in Apriori

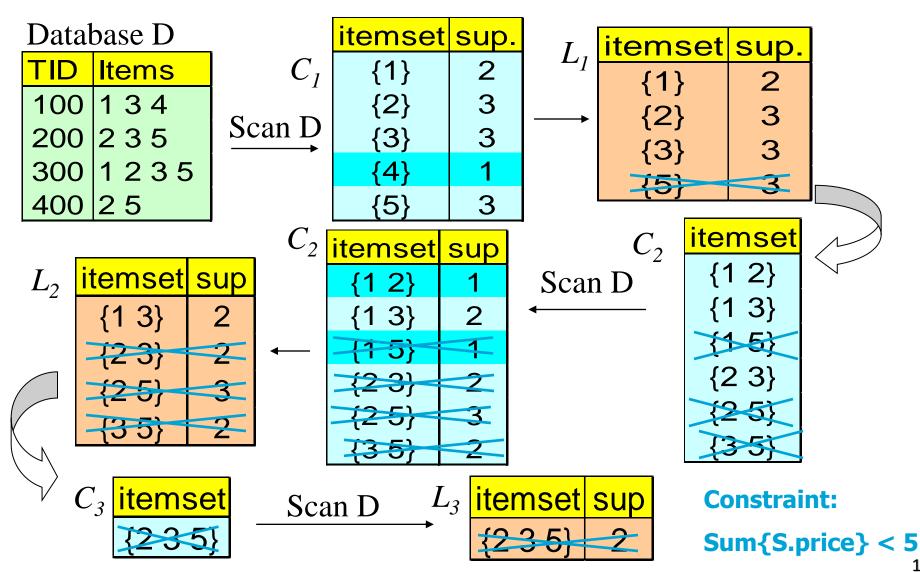
TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

18

Apriori + Constraint



Pattern Space Pruning with Monotonicity Constraints

- A constraint C is *monotone* if the pattern satisfies C, we do not need to check C in subsequent mining
- Alternatively, monotonicity: If an itemset S satisfies the constraint, so does any of its superset
- Ex. 1. $sum(S.Price) \ge v$ is monotone
- Ex. 2. $min(S.Price) \le v$ is monotone
- Ex. 3. C: range(S.profit) \geq 15
 - Itemset *ab* satisfies C
 - So does every superset of *ab*

TDB (min_sup=2)		
TID	Transaction	
10	a, b, c, d, f	
20	b, c, d, f, g, h	
30	a, c, d, e, f	
40	c, e, f, g	

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

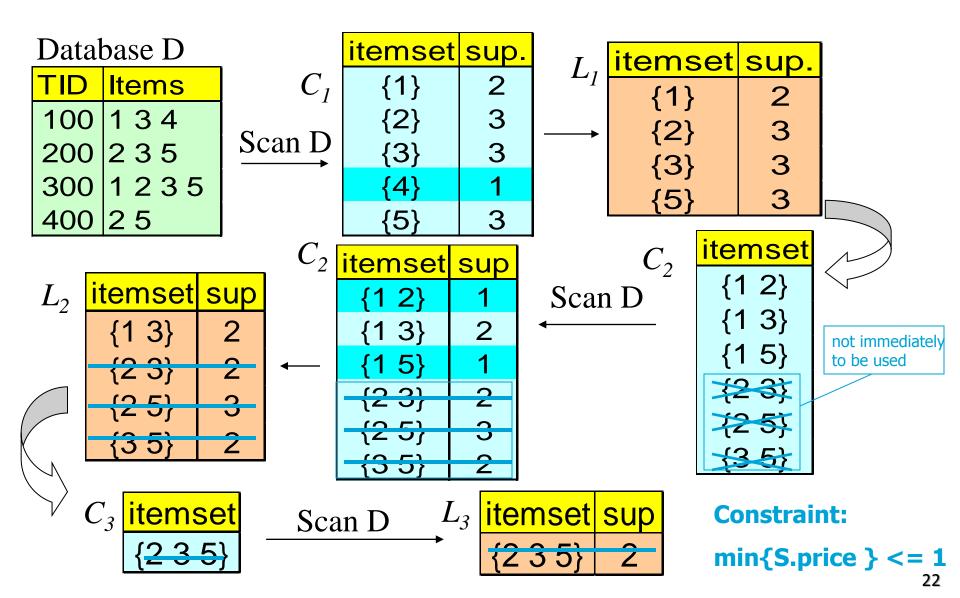
20

Pattern Space Pruning with Succinctness

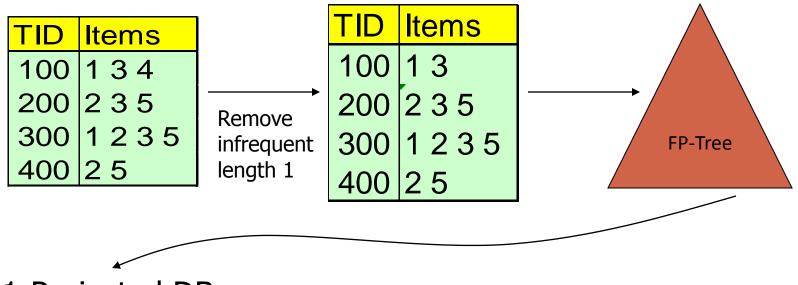
Succinctness:

- Given A₁, the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A₁
 - The set of items satisfying a succinctness constraint C can be derived
- Idea: Without looking at the transaction database, whether an itemset *S* satisfies constraint C can be determined based on the selection of items
- $min(S.Price) \le v$ is succinct
- $sum(S.Price) \ge v$ is not succinct
- Optimization: If C is succinct, C is pre-counting pushable

Constrained Apriori : Push a Succinct Constraint Deep



Constrained FP-Growth: Push a Succinct Constraint Deep



1-Projected DB

TIDItems1003 43002 3 5

No Need to project on 2, 3, or 5

Constraint:

min{S.price } <= 1

Convertible Constraints: Ordering Data in Transactions

- Convert tough constraints into antimonotone or monotone by properly ordering items
- Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset *afb* violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

 TDB (min_sup=2)

 TID
 Transaction

 10
 a, b, c, d, f

 20
 b, c, d, f, g, h

 30
 a, c, d, e, f

 40
 c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Strongly Convertible Constraints

- avg(X) ≥ 25 is convertible anti-monotone w.r.t. item value descending order R: <*a*, *f*, *g*, *d*, *b*, *h*, *c*, *e*>
 - If an itemset *af* violates a constraint C, so does every itemset with *af* as prefix, such as *afd*
- avg(X) ≥ 25 is convertible monotone w.r.t. item value ascending order R⁻¹: <*e*, *c*, *h*, *b*, *d*, *g*, *f*, *a*>
 - If an itemset *d* satisfies a constraint *C*, so does itemsets *df* and *dfa*, which having *d* as a prefix
- Thus, $avg(X) \ge 25$ is strongly convertible

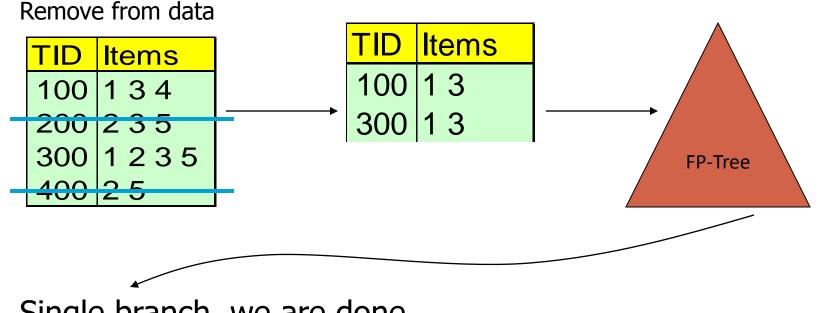
Item	Profit	
а	40	
b	0	
С	-20	
d	10	
е	-30	
f	30	
g	20	
h	-10	

Data Space Pruning with Data-Succinct

- Constrains are data-succinct if they can be used at the beginning of a pattern mining process to prune data
 - E.g., $x \in S$, digital camera must be contained in the pattern

Constrained FP-Growth: Push a Data Succinct

Constraint Deep



Single branch, we are done

Constraint:

min{S.price } <= 1

Data Space Pruning with Data Anti-monotonicity

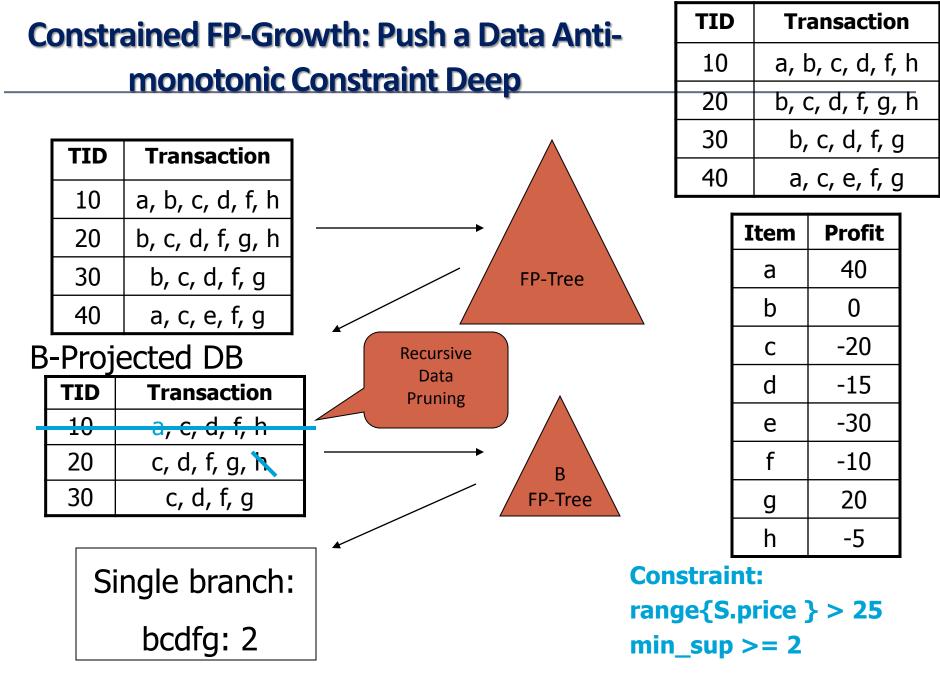
- A constraint c is *data anti-monotone* if for a pattern p cannot satisfy a transaction t under c, p's superset cannot satisfy t under c either
- The key for data anti-monotone is recursive data reduction
- Ex. 1. $sum(S.Price) \ge v$ is data anti-monotone
- Ex. 2. $min(S.Price) \le v$ is data anti-monotone
- Ex. 3. C: range(S.profit) ≥ 25 is data antimonotone
 - Itemset {b, c}'s projected DB:
 - T10': {d, f, h}, T20': {d, f, g, h}, T30': {d, f, g}
 - since C cannot satisfy T10', T10' can be pruned

TDB (min_sup=2)

TID	Transaction	
10	a, b, c, d, f, h	
20	b, c, d, f, g, h	
30	b, c, d, f, g	
40	c, e, f, g	

Item	Profit
а	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	-5

28



Constraint-Based Mining — A General Picture

Constraint	Anti-monotone	Monotone	Succinct
v ∈ S	no	yes	yes
S ⊇ V	no	yes	yes
S <u>⊂</u> V	yes	no	yes
min(S) ≤ v	no	yes	yes
min(S) ≥ v	yes	no	yes
max(S) ≤ v	yes	no	yes
max(S) ≥ v	no	yes	yes
count(S) ≤ v	yes	no	weakly
count(S) ≥ v	no	yes	weakly
sum(S) ≤ v (a ∈ S, a ≥ 0)	yes	no	no
sum(S) ≥ v (a ∈ S, a ≥ 0)	no	yes	no
range(S) ≤ v	yes	no	no
range(S) ≥ v	no	yes	no
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible	convertible	no
support(S) ≥ ξ	yes	no	no
support(S) ≤ ξ	no	yes	no

What Constraints Are Convertible?

Constraint	Convertible anti- monotone	Convertible monotone	Strongly convertible
$avg(S) \le , \ge v$	Yes	Yes	Yes
median(S) \leq , \geq v	Yes	Yes	Yes
$sum(S) \le v$ (items could be of any value, $v \ge 0$)	Yes	No	No
$sum(S) \le v$ (items could be of any value, $v \le 0$)	No	Yes	No
$sum(S) \ge v$ (items could be of any value, $v \ge 0$)	No	Yes	No
$sum(S) \ge v$ (items could be of any value, $v \le 0$)	Yes	No	No

- E.g., Sum(X) \geq -20, where x \in X can be any value?
 - Ascending order: <-10, -9, -8, -7, 8, 10>, not monotone, not antimonotone
 - Descending order: <10, 8, -7, -8, -9, -10>, not monotone, antimonotone

Chapter 7: Advanced Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- **Constraint-Based Frequent Pattern Mining**
- Mining Colossal Patterns

- Mining Compressed or Approximate Patterns
- Summary

Mining Colossal Frequent Patterns

- We have many algorithms, but can we mine large (i.e., colossal) patterns? — such as just size around 50 to 100? Unfortunately, not!
- Why not? the curse of "downward closure" of frequent patterns
 - The Apriori property
 - Any sub-pattern of a frequent pattern is frequent.
 - Example. If (a₁, a₂, ..., a₁₀₀) is frequent, then a₁, a₂, ..., a₁₀₀, (a₁, a₂), (a₁, a₃), ..., (a₁, a₁₀₀), (a₁, a₂, a₃), ... are all frequent! There are about 2¹⁰⁰ such frequent itemsets!
 - No matter using breadth-first search (e.g., Apriori) or depth-first search (FPgrowth), we have to examine so many patterns
- Thus the Apriori property leads to explosion!

Colossal Patterns: A Motivating Example

Let's make a set of 40 transactions

```
T1 = 1 2 3 4 ..... 39 40
T2 = 1 2 3 4 ..... 39 40
: ....
: . .
: . .
T40=1 2 3 4 ..... 39 40
```

Then delete the items on the diagonal

 $T_{1} = 2 \ 3 \ 4 \ \dots \ 39 \ 40$ $T_{2} = 1 \ 3 \ 4 \ \dots \ 39 \ 40$ $\vdots \qquad .$ $\vdots \qquad .$ $T_{1} = 2 \ 3 \ 4 \ \dots \ 39 \ 40$ $\vdots \qquad .$ $T_{2} = 1 \ 3 \ 4 \ \dots \ 39 \ 40$ $\vdots \qquad .$

Closed/maximal patterns may partially alleviate the problem but not really solve it: We often need to mine scattered large patterns!

Let the minimum support threshold $\sigma = 20$ There are $\begin{pmatrix} 40 \\ 20 \end{pmatrix}$ frequent patterns of size 20

Each is closed and maximal

patterns = $\binom{n}{n/2} \approx \sqrt{2/\pi} \frac{2^n}{\sqrt{n}}$

The size of the answer set is exponential to n

T40=1 2 3 4 39

Alas, A Show of Colossal Pattern Mining!

T ₁ = 2 3 4 39 40
T ₂ = 1 3 4 39 40
: .
: .
: .
: .
T ₄₀ =1 2 3 4 39
T ₄₁ = 41 42 43 79
T ₄₂ = 41 42 43 79
: .
: .
T ₆₀ = 41 42 43 79

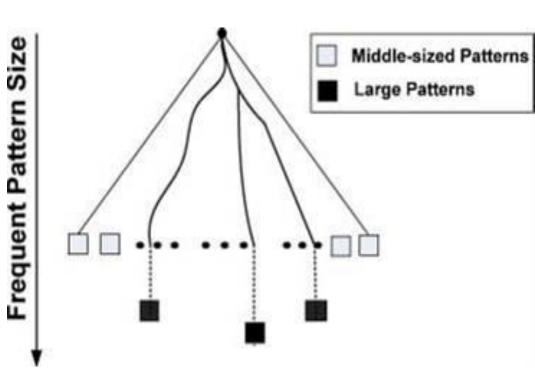
Let the min-support threshold $\sigma = 20$ Then there are $\begin{pmatrix} 40\\ 20 \end{pmatrix}$ closed/maximal frequent patterns of size 20 However, there is only one with size greater than 20, (*i.e.*, colossal): $\alpha = \{41, 42, ..., 79\}$ of size 39

The existing fastest mining algorithms (*e.g.,* FPClose, LCM) fail to complete running

Colossal Pattern Set: Small but Interesting

 It is often the case that only a small number of patterns are colossal, i.e., of large size

 Colossal patterns are usually attached with greater importance than those of small pattern sizes



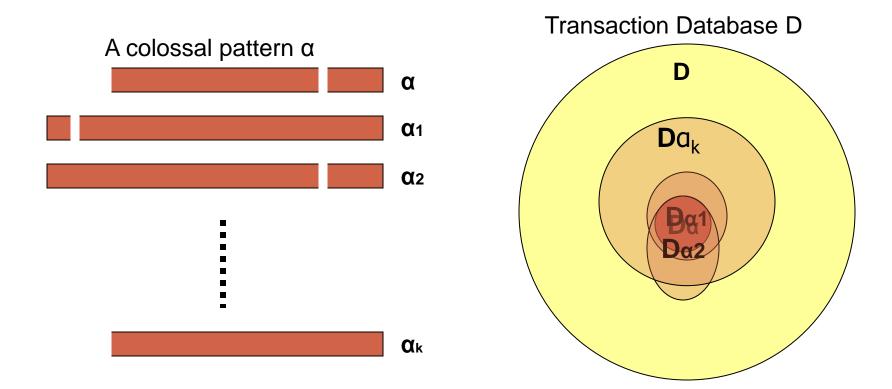
Mining Colossal Patterns: Motivation and Philosophy

- Motivation: Many real-world tasks need mining colossal patterns
 - Micro-array analysis in bioinformatics (when support is low)
 - Biological sequence patterns
 - Biological/sociological/information graph pattern mining
- No hope for completeness
 - If the mining of mid-sized patterns is explosive in size, there is no hope to find colossal patterns efficiently by insisting "complete set" mining philosophy
- Jumping out of the swamp of the mid-sized results
 - What we may develop is a philosophy that may jump out of the swamp of mid-sized results that are explosive in size and jump to reach colossal patterns
- Striving for mining almost complete colossal patterns
 - The key is to develop a mechanism that may quickly reach colossal patterns and discover most of them

Methodology of Pattern-Fusion Strategy

- Pattern-Fusion traverses the tree in a bounded-breadth way
 - Always pushes down a frontier of a bounded-size candidate pool
 - Only a fixed number of patterns in the current candidate pool will be used as the starting nodes to go down in the pattern tree thus avoids the exponential search space
- Pattern-Fusion identifies "shortcuts" whenever possible
 - Pattern growth is not performed by single-item addition but by leaps and bounded: agglomeration of multiple patterns in the pool
 - These shortcuts will direct the search down the tree much more rapidly towards the colossal patterns

Observation: Colossal Patterns and Core Patterns



Subpatterns α_1 to α_k cluster tightly around the colossal pattern α by sharing a similar support. We call such subpatterns *core patterns* of α

Robustness of Colossal Patterns

Core Patterns

Intuitively, for a frequent pattern α , a subpattern β is a τ -core pattern of α if β shares a similar support set with α , i.e.,

$$\frac{\mid D_{\alpha} \mid}{\mid D_{\beta} \mid} \geq \tau \qquad 0 < \tau \leq 1$$

where τ is called the core ratio

Robustness of Colossal Patterns

A colossal pattern is robust in the sense that it tends to have much more core patterns than small patterns

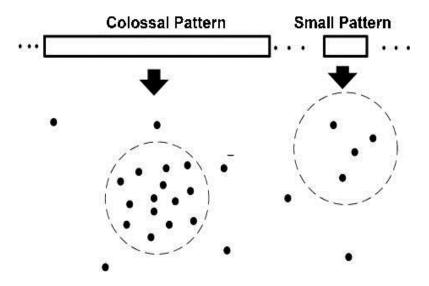
Example: Core Patterns

- A colossal pattern has far more core patterns than a small-sized pattern
- A colossal pattern has far more core descendants of a smaller size c
- A random draw from a complete set of pattern of size c would more likely to pick a core descendant of a colossal pattern
- A colossal pattern can be generated by merging a set of core patterns

Transaction (# of Ts)	Core Patterns ($\tau = 0.5$)
(abe) (100)	(abe), (ab), (be), (ae), (e)
(bcf) (100)	(bcf), (bc), (bf)
(acf) (100)	(acf), (ac), (af)
(abcef) (100)	(ab), (ac), (af), (ae), (bc), (bf), (be) (ce), (fe), (e), (abc), (abf), (abe), (ace), (acf), (afe), (bcf), (bce), (bfe), (cfe), (abcf), (abce), (bcfe), (acfe), (abfe), (abcef)

Colossal Patterns Correspond to Dense Balls

- Due to their robustness, colossal patterns correspond to dense balls
 - Ω(2^d) in population
- A random draw in the pattern space will hit somewhere in the ball with high probability

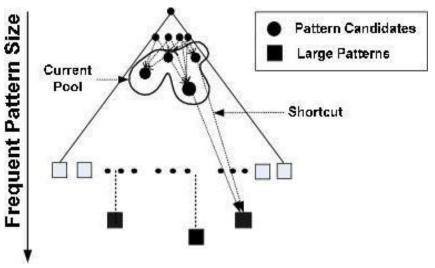


Pattern-Fusion: The Algorithm

- Initialization (Initial pool): Use an existing algorithm to mine all frequent patterns up to a small size, e.g., 3
- Iteration (Iterative Pattern Fusion):
 - At each iteration, k seed patterns are randomly picked from the current pattern pool
 - For each seed pattern thus picked, we find all the patterns within a bounding ball centered at the seed pattern
 - All these patterns found are fused together to generate a set of super-patterns. All the super-patterns thus generated form a new pool for the next iteration
- Termination: when the current pool contains no more than K patterns at the beginning of an iteration

Why Is Pattern-Fusion Efficient?

- A bounded-breadth pattern tree traversal
 - It avoids explosion in mining mid-sized ones
 - Randomness comes to help to stay on the right path
- Ability to identify "short-cuts" and take "leaps"
 - merge small patterns together in one step to generate new patterns of significant sizes
 - Efficiency



Pattern-Fusion Leads to Good Approximation

- Gearing toward colossal patterns
 - The larger the pattern, the greater the chance it will be generated
- Catching outliers
 - The more distinct the pattern, the greater the chance it will be generated

Chapter 7: Advanced Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining Colossal Patterns
- Mining Compressed or Approximate Patterns
- Summary

Mining Compressed Patterns: δ-clustering

- Why compressed patterns?
 - too many, but less meaningful
- Pattern distance measure

$$D(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

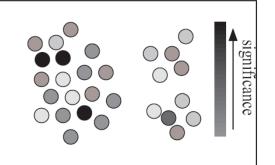
- δ-clustering: For each pattern P, find all patterns which can be expressed by P and their distance to P are within δ (δ-cover)
- All patterns in the cluster can be represented by P
- Xin et al., "Mining Compressed Frequent-Pattern Sets", VLDB'05

ID	Item-Sets	Support
P1	{38,16,18,12}	205227
P2	{38,16,18,12,17}	205211
P3	{39,38,16,18,12,17}	101758
P4	{39,16,18,12,17}	161563
Р5	{39,16,18,12}	161576

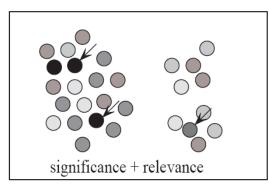
- Closed frequent pattern
 - Report P1, P2, P3, P4, P5
 - Emphasize too much on support
 - no compression
- Max-pattern, P3: info loss
- A desirable output: P2, P3, P4

Redundancy-Award Top-k Patterns

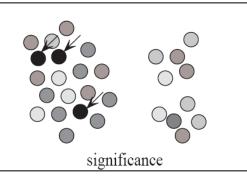
- Why redundancy-aware top-k patterns?
- Desired patterns: high significance & low redundancy
- Propose the MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'06



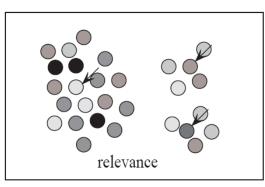
(a) a set of patterns



(b) redundancy-aware top-k



(c) traditional top-k



(d) summarization

Chapter 7: Advanced Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- **Constraint-Based Frequent Pattern Mining**
- Mining Colossal Patterns
- Mining Compressed or Approximate Patterns
- Summary 🦊

Summary

- Roadmap: Many aspects & extensions on pattern mining
- Mining patterns in multi-level, multi dimensional space,
 Mining rare and negative patterns
- Constraint-based pattern mining
- Specialized methods for mining colossal patterns
- Mining compressed or approximate patterns

Ref: Mining Multi-Level and Quantitative Rules

- R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95.
- J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95.
- R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. SIGMOD'96.
- T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. SIGMOD'96.
- K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing optimized rectilinear regions for association rules. KDD'97.
- R.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97.
- Y. Aumann and Y. Lindell. A Statistical Theory for Quantitative Association Rules KDD'99.

Ref: Mining Other Kinds of Rules

- R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. VLDB'96.
- B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97.
- A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large database of customer transactions. ICDE'98.
- D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query flocks: A generalization of association-rule mining. SIGMOD'98.
- F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast, quantifiable data mining. VLDB'98.
- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, "Mining Colossal Frequent Patterns by Core Pattern Fusion", ICDE'07.

Ref: Constraint-Based Pattern Mining

- R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97
- R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang. Exploratory mining and pruning optimizations of constrained association rules. SIGMOD'98
- G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. ICDE'00
- J. Pei, J. Han, and L. V. S. Lakshmanan. Mining Frequent Itemsets with Convertible Constraints. ICDE'01
- J. Pei, J. Han, and W. Wang, Mining Sequential Patterns with Constraints in Large Databases, CIKM'02
- F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAnte: Anticipated Data Reduction in Constrained Pattern Mining, PKDD'03
- F. Zhu, X. Yan, J. Han, and P. S. Yu, "gPrune: A Constraint Pushing Framework for Graph Pattern Mining", PAKDD'07

Ref: Mining Sequential and Structured Patterns

- R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. EDBT'96.
- H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. DAMI:97.
- M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning:01.
- J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. ICDE'01.
- M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. ICDM'01.
- X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large Datasets. SDM'03.
- X. Yan and J. Han. CloseGraph: Mining Closed Frequent Graph Patterns. KDD'03.

Ref: Mining Spatial, Multimedia, and Web Data

- K. Koperski and J. Han, Discovery of Spatial Association Rules in Geographic Information Databases, SSD'95.
- O. R. Zaiane, M. Xin, J. Han, Discovering Web Access Patterns and Trends by Applying OLAP and Data Mining Technology on Web Logs. ADL'98.
- O. R. Zaiane, J. Han, and H. Zhu, Mining Recurrent Items in Multimedia with Progressive Resolution Refinement. ICDE'00.
- D. Gunopulos and I. Tsoukatos. Efficient Mining of Spatiotemporal Patterns. SSTD'01.

Ref: Mining Frequent Patterns in Time-Series Data

- B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98.
- J. Han, G. Dong and Y. Yin, Efficient Mining of Partial Periodic Patterns in Time Series Database, ICDE'99.
- H. Lu, L. Feng, and J. Han. Beyond Intra-Transaction Association Analysis: Mining Multi-Dimensional Inter-Transaction Association Rules. TOIS:00.
- B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and A. Biliris. Online Data Mining for Co-Evolving Time Sequences. ICDE'00.
- W. Wang, J. Yang, R. Muntz. TAR: Temporal Association Rules on Evolving Numerical Attributes. ICDE'01.
- J. Yang, W. Wang, P. S. Yu. Mining Asynchronous Periodic Patterns in Time Series Data. TKDE'03.

Ref: FP for Classification and Clustering

- G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. KDD'99.
- B. Liu, W. Hsu, Y. Ma. Integrating Classification and Association Rule Mining. KDD'98.
- W. Li, J. Han, and J. Pei. CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules. ICDM'01.
- H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data sets. SIGMOD' 02.
- J. Yang and W. Wang. CLUSEQ: efficient and effective sequence clustering. ICDE'03.
- X. Yin and J. Han. CPAR: Classification based on Predictive Association Rules. SDM'03.
- H. Cheng, X. Yan, J. Han, and C.-W. Hsu, Discriminative Frequent Pattern Analysis for Effective Classification", ICDE'07.

Ref: Stream and Privacy-Preserving FP Mining

- A. Evfimievski, R. Srikant, R. Agrawal, J. Gehrke. Privacy Preserving Mining of Association Rules. KDD'02.
- J. Vaidya and C. Clifton. Privacy Preserving Association Rule Mining in Vertically Partitioned Data. KDD'02.
- G. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. VLDB'02.
- Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-Dimensional Regression Analysis of Time-Series Data Streams. VLDB'02.
- C. Giannella, J. Han, J. Pei, X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities, Next Generation Data Mining:03.
- A. Evfimievski, J. Gehrke, and R. Srikant. Limiting Privacy Breaches in Privacy Preserving Data Mining. PODS'03.

Ref: Other Freq. Pattern Mining Applications

- Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen. Efficient Discovery of Functional and Approximate Dependencies Using Partitions. ICDE'98.
- H. V. Jagadish, J. Madar, and R. Ng. Semantic Compression and Pattern Extraction with Fascicles. VLDB'99.
- T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining Database Structure; or How to Build a Data Quality Browser. SIGMOD'02.
- K. Wang, S. Zhou, J. Han. Profit Mining: From Patterns to Actions. EDBT'02.

Can Apriori Handle Convertible Constraints?

- A convertible, not monotone nor anti-monotone nor succinct constraint cannot be pushed deep into the an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made
 - Itemset df violates constraint C: avg(X) >= 25
 - Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned
- But it can be pushed into frequent-pattern growth framework!

Item	Value
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Pattern Space Pruning w. Convertible Constraints

- C: avg(X) >= 25, min_sup=2
- List items in every transaction in value descending order R: <a, f, g, d, b, h, c, e>
 - C is convertible anti-monotone w.r.t. R
- Scan TDB once
 - remove infrequent items
 - Item h is dropped
 - Itemsets a and f are good, ...
- Projection-based mining
 - Imposing an appropriate order on item projection
 - Many tough constraints can be converted into (anti)monotone

Item	Value
а	40
f	30
g	20
d	10
b	0
h	-10
С	-20
е	-30

TDB (min_sup=2)

TID	Transaction
10	a, f, d, b, c
20	f, g, d, b, c
30	a, f, d, c, e
40	f, g, h, c, e

Handling Multiple Constraints

- Different constraints may require different or even conflicting item-ordering
- If there exists an order R s.t. both C₁ and C₂ are convertible w.r.t. R, then there is no conflict between the two convertible constraints
- If there exists conflict on order of items
 - Try to satisfy one constraint first
 - Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database