
CS6220: DATA MINING TECHNIQUES

Instructor: Yizhou Sun
yzsun@ccs.neu.edu

February 11, 2013

Chapter 8&9: Classification: Part 2

mailto:sun22@illinois.edu

Announcement
• Homework 1

• Apriori algorithm: some length-l candidate can be pruned by checking
whether all its sub-patterns with length-(l-1) are in frequent

• FP-growth: Need to scan DB twice

• Proposal due tomorrow
• Report

• Sign up meeting time with me on Wednesday afternoon or Thursday
morning

• Homework 2 will be out tomorrow
• No class next week

• The make-up class is canceled

• With homework 2 due on next Friday

• Midterm exam (Feb. 25, the same location, same time as
classes, 6-8pm)
• You can take a A4 “cheating sheet”

• Covers to the content taught by today

2

Chapter 8&9. Classification: Part 2

• Neural Networks

• Support Vector Machine

• Summary

3

Artificial Neural Networks

• Consider humans:
• Neuron switching time ~.001 second

• Number of neurons ~1010

• Connections per neuron ~104−5

• Scene recognition time ~.1 second

• 100 inference steps doesn't seem like enough -> parallel
computation

• Artificial neural networks
• Many neuron-like threshold switching units

• Many weighted interconnections among units

• Highly parallel, distributed process

• Emphasis on tuning weights automatically

4

5

Single Unit: Perceptron

• An n-dimensional input vector x is mapped into variable y by means of the scalar
product and a nonlinear function mapping

f

weighted
sum

Input
vector x

output y

Activation
function

weight
vector w

w0

w1

wn

x0

x1

xn

)sign(y

ExampleFor
n

0i

ii xw

Bias: 𝜃

Perceptron Training Rule

• t: target value (true value)

• o: output value

• 𝜂: learning rate (small constant)

• Derived using Gradient Descent method by minimizing
the squared error:

6

7

A Multi-Layer Feed-Forward Neural Network

Output layer

Input layer

Hidden layer

Output vector

Input vector: X

wij

A two-layer network

8

How A Multi-Layer Neural Network Works

• The inputs to the network correspond to the attributes measured for each

training tuple

• Inputs are fed simultaneously into the units making up the input layer

• They are then weighted and fed simultaneously to a hidden layer

• The number of hidden layers is arbitrary, although usually only one

• The weighted outputs of the last hidden layer are input to units making up

the output layer, which emits the network's prediction

• The network is feed-forward: None of the weights cycles back to an input

unit or to an output unit of a previous layer

• From a math point of view, networks perform nonlinear regression: Given

enough hidden units and enough training samples, they can closely

approximate any function

9

Defining a Network Topology

• Decide the network topology: Specify # of units in the input layer,

of hidden layers (if > 1), # of units in each hidden layer, and # of

units in the output layer

• Normalize the input values for each attribute measured in the

training tuples to [0.0—1.0]

• One input unit per domain value, each initialized to 0

• Output, if for classification and more than two classes, one

output unit per class is used

• Once a network has been trained and its accuracy is

unacceptable, repeat the training process with a different

network topology or a different set of initial weights

10

Classification by Backpropagation

• Backpropagation: A neural network learning algorithm

• Started by psychologists and neurobiologists to develop and test

computational analogues of neurons

• During the learning phase, the network learns by adjusting the

weights so as to be able to predict the correct class label of the

input tuples

• Also referred to as connectionist learning due to the

connections between units

11

Backpropagation

• Iteratively process a set of training tuples & compare the

network's prediction with the actual known target value

• For each training tuple, the weights are modified to minimize the

mean squared error between the network's prediction and the

actual target value

• Modifications are made in the “backwards” direction: from the

output layer, through each hidden layer down to the first hidden

layer, hence “backpropagation”

Sigmoid Unit

• 𝜎 𝑥 =
1

1+𝑒−𝑥
 is a sigmoid function

• Property:

• Will be used in backpropagation

12

Backpropagation Steps
• Initialize weights to small random numbers, associated with

biases

• Repeat until terminating condition meets

• For each training example

• Propagate the inputs forward (by applying activation function)

• For a hidden or output layer unit 𝑗

• Calculate net input: 𝐼𝑗 = 𝑤𝑖𝑗𝑂𝑖𝑖 + 𝜃𝑗

• Calculate output of unit 𝑗: 𝑂𝑗 =
1

1+𝑒
−𝐼𝑗

• Backpropagate the error (by updating weights and biases)

• For unit 𝑗 in output layer: 𝐸𝑟𝑟𝑗 = 𝑂𝑗 1 − 𝑂𝑗 𝑇𝑗 − 𝑂𝑗

• For unit 𝑗 in a hidden layer: : 𝐸𝑟𝑟𝑗 = 𝑂𝑗 1 − 𝑂𝑗 𝐸𝑟𝑟𝑘𝑤𝑗𝑘𝑘

• Update weights: 𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂𝐸𝑟𝑟𝑗𝑂𝑖

• Terminating condition (when error is very small, etc.)

 13

Example

14

A multilayer feed-forward neural network

Initial Input, weight, and bias values

• Input forward:

• Error backpropagation and weight update:

15

16

Efficiency and Interpretability

• Efficiency of backpropagation: Each epoch (one iteration through the training

set) takes O(|D| * w), with |D| tuples and w weights, but # of epochs can be

exponential to n, the number of inputs, in worst case

• For easier comprehension: Rule extraction by network pruning

• Simplify the network structure by removing weighted links that have the least

effect on the trained network

• Then perform link, unit, or activation value clustering

• The set of input and activation values are studied to derive rules describing the

relationship between the input and hidden unit layers

• Sensitivity analysis: assess the impact that a given input variable has on a

network output. The knowledge gained from this analysis can be represented

in rules

• E.g., If x decreases 5% then y increases 8%

17

Neural Network as a Classifier
• Weakness

• Long training time

• Require a number of parameters typically best determined empirically,

e.g., the network topology or “structure.”

• Poor interpretability: Difficult to interpret the symbolic meaning

behind the learned weights and of “hidden units” in the network

• Strength

• High tolerance to noisy data

• Well-suited for continuous-valued inputs and outputs

• Successful on an array of real-world data, e.g., hand-written letters

• Algorithms are inherently parallel

• Techniques have recently been developed for the extraction of rules

from trained neural networks

Chapter 8&9. Classification: Part 2

• Neural Networks

• Support Vector Machine

• Summary

18

19

Classification: A Mathematical Mapping

• Classification: predicts categorical class labels

• E.g., Personal homepage classification
• xi = (x1, x2, x3, …), yi = +1 or –1

• x1 : # of word “homepage”

• x2 : # of word “welcome”

• Mathematically, x X = n, y Y = {+1, –1},

• We want to derive a function f: X Y x

x x

x

x x

x

x

x

x o o
o

o
o

o

o

o

o o

o
o

o

20

SVM—Support Vector Machines

• A relatively new classification method for both linear and

nonlinear data

• It uses a nonlinear mapping to transform the original training

data into a higher dimension

• With the new dimension, it searches for the linear optimal

separating hyperplane (i.e., “decision boundary”)

• With an appropriate nonlinear mapping to a sufficiently high

dimension, data from two classes can always be separated by a

hyperplane

• SVM finds this hyperplane using support vectors (“essential”

training tuples) and margins (defined by the support vectors)

21

SVM—History and Applications

• Vapnik and colleagues (1992)—groundwork from Vapnik &

Chervonenkis’ statistical learning theory in 1960s

• Features: training can be slow but accuracy is high owing to their

ability to model complex nonlinear decision boundaries (margin

maximization)

• Used for: classification and numeric prediction

• Applications:

• handwritten digit recognition, object recognition, speaker

identification, benchmarking time-series prediction tests

22

SVM—General Philosophy

Support Vectors

Small Margin Large Margin

23

SVM—Margins and Support Vectors

24

SVM—When Data Is Linearly Separable

m

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples
associated with the class labels yi

There are infinite lines (hyperplanes) separating the two classes but we want to
find the best one (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum
marginal hyperplane (MMH)

25

SVM—Linearly Separable

 A separating hyperplane can be written as

W ● X + b = 0

where W={w1, w2, …, wn} is a weight vector and b a scalar (bias)

 For 2-D it can be written as

w0 + w1 x1 + w2 x2 = 0

 The hyperplane defining the sides of the margin:

H1: w0 + w1 x1 + w2 x2 ≥ 1 for yi = +1, and

H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1

 Any training tuples that fall on hyperplanes H1 or H2 (i.e., the

sides defining the margin) are support vectors

 This becomes a constrained (convex) quadratic optimization problem:

Quadratic objective function and linear constraints Quadratic

Programming (QP) Lagrangian multipliers

Maximum Margin Calculation

• w: decision hyperplane normal vector

• xi: data point i

• yi: class of data point i (+1 or -1)

26

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

𝜌 =
2

||𝒘||

SVM as a Quadratic Programming

• QP

• A better form

27

Objective: Find w and b such that 𝜌 =
2

||𝒘||
 is

maximized;

Constraints: For all {(xi , yi)}

wTxi + b ≥ 1 if yi=1;

wTxi + b ≤ -1 if yi = -1

Objective: Find w and b such that Φ(w) =½ wTw is

minimized;

Constraints: for all {(xi ,yi)}: yi (w
Txi + b) ≥ 1

Solve QP

• This is now optimizing a quadratic function subject to
linear constraints

• Quadratic optimization problems are a well-known
class of mathematical programming problem, and
many (intricate) algorithms exist for solving them
(with many special ones built for SVMs)

• The solution involves constructing a dual problem
where a Lagrange multiplier αi is associated with
every constraint in the primary problem:

28

Primal Form and Dual Form

• More derivations:
http://cs229.stanford.edu/notes/cs229-notes3.pdf

 29

Objective: Find w and b such that Φ(w) =½ wTw is

minimized;

Constraints: for all {(xi ,yi)}: yi (w
Txi + b) ≥ 1

Objective: Find α1…αn such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and

Constraints
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

Primal

Dual

Equivalent under some conditions: KKT conditions

http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf

The Optimization Problem Solution
• The solution has the form:

• Each non-zero αi indicates that corresponding xi is a support vector.

• Then the classifying function will have the form:

• Notice that it relies on an inner product between the test point x and the
support vectors xi

• We will return to this later.

• Also keep in mind that solving the optimization problem involved computing
the inner products xi

Txj between all pairs of training points.

30

w =Σαiyixi b= yk- w
Txk for any xk such that αk 0

f(x) = Σαiyixi
Tx + b

31

Why Is SVM Effective on High Dimensional Data?

 The complexity of trained classifier is characterized by the # of support

vectors rather than the dimensionality of the data

 The support vectors are the essential or critical training examples —they lie

closest to the decision boundary (MMH)

 If all other training examples are removed and the training is repeated, the

same separating hyperplane would be found

 The number of support vectors found can be used to compute an (upper)

bound on the expected error rate of the SVM classifier, which is independent

of the data dimensionality

 Thus, an SVM with a small number of support vectors can have good

generalization, even when the dimensionality of the data is high

32

Soft Margin Classification

• If the training data is not
linearly separable, slack
variables ξi can be added to
allow misclassification of
difficult or noisy examples.

• Allow some errors

• Let some points be moved to
where they belong, at a cost

• Still, try to minimize training
set errors, and to place
hyperplane “far” from each
class (large margin)

ξj

ξi

Sec. 15.2.1

33

Soft Margin Classification
Mathematically

• The old formulation:

• The new formulation incorporating slack variables:

• Parameter C can be viewed as a way to control overfitting

• A regularization term (L1 regularization)

Find w and b such that

Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (w

Txi + b) ≥ 1

Find w and b such that

Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (w

Txi + b) ≥ 1- ξi and ξi ≥ 0 for all i

Sec. 15.2.1

34

Soft Margin Classification – Solution
• The dual problem for soft margin classification:

• Neither slack variables ξi nor their Lagrange multipliers appear in the dual
problem!

• Again, xi with non-zero αi will be support vectors.

• Solution to the dual problem is:

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and

(1) Σαiyi = 0

(2) 0 ≤ αi ≤ C for all αi

w = Σαiyixi

b = yk(1- ξk) - w
Txk where k = argmax αk’

k’ f(x) = Σαiyixi
Tx + b

w is not needed explicitly

for classification!

Sec. 15.2.1

35

Classification with SVMs

• Given a new point x, we can score its projection
onto the hyperplane normal:

• I.e., compute score: wTx + b = Σαiyixi
Tx + b

• Decide class based on whether < or > 0

• Can set confidence threshold t.

-1
0

1

Score > t: yes

Score < -t: no

Else: don’t know

Sec. 15.1

36

Linear SVMs: Summary

• The classifier is a separating hyperplane.

• The most “important” training points are the support vectors;
they define the hyperplane.

• Quadratic optimization algorithms can identify which training
points xi are support vectors with non-zero Lagrangian
multipliers αi.

• Both in the dual formulation of the problem and in the
solution, training points appear only inside inner products:

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and

(1) Σαiyi = 0

(2) 0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b

Sec. 15.2.1

37

Non-linear SVMs

• Datasets that are linearly separable (with some noise) work out
great:

• But what are we going to do if the dataset is just too hard?

• How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x

Sec. 15.2.3

38

Non-linear SVMs: Feature spaces

• General idea: the original feature space can always
be mapped to some higher-dimensional feature space
where the training set is separable:

Φ: x → φ(x)

Sec. 15.2.3

39

The “Kernel Trick”

• The linear classifier relies on an inner product between vectors K(xi,xj)=xi
Txj

• If every data point is mapped into high-dimensional space via some
transformation Φ: x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

• A kernel function is some function that corresponds to an inner product in
some expanded feature space.

• Example:

 2-dimensional vectors x=[x1 x2]; let K(xi,xj)=(1 + xi
Txj)

2
,

 Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

 K(xi,xj)=(1 + xi
Txj)

2
,= 1+ xi1

2xj1
2 + 2 xi1xj1

 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2=

 = [1 xi1
2 √2 xi1xi2 xi2

2 √2xi1 √2xi2]T [1 xj1
2 √2 xj1xj2 xj2

2 √2xj1 √2xj2]

 = φ(xi)
Tφ(xj) where φ(x) = [1 x1

2 √2 x1x2 x2
2 √2x1 √2x2]

Sec. 15.2.3

40

SVM: Different Kernel functions

 Instead of computing the dot product on the transformed data,

it is math. equivalent to applying a kernel function K(Xi, Xj) to

the original data, i.e., K(Xi, Xj) = Φ(Xi) Φ(Xj)

 Typical Kernel Functions

 SVM can also be used for classifying multiple (> 2) classes and

for regression analysis (with additional parameters)

41

Scaling SVM by Hierarchical Micro-Clustering

• SVM is not scalable to the number of data objects in terms of training time

and memory usage

• H. Yu, J. Yang, and J. Han, “Classifying Large Data Sets Using SVM with

Hierarchical Clusters”, KDD'03)

• CB-SVM (Clustering-Based SVM)

• Given limited amount of system resources (e.g., memory), maximize the

SVM performance in terms of accuracy and the training speed

• Use micro-clustering to effectively reduce the number of points to be

considered

• At deriving support vectors, de-cluster micro-clusters near “candidate vector”

to ensure high classification accuracy

http://www.cs.uiuc.edu/homes/hanj/pdf/kdd03_scalesvm.pdf
http://www.cs.uiuc.edu/homes/hanj/pdf/kdd03_scalesvm.pdf

42

CF-Tree: Hierarchical Micro-cluster

 Read the data set once, construct a statistical summary of the data (i.e.,

hierarchical clusters) given a limited amount of memory

 Micro-clustering: Hierarchical indexing structure

 provide finer samples closer to the boundary and coarser samples

farther from the boundary

43

Selective Declustering: Ensure High Accuracy

• CF tree is a suitable base structure for selective declustering

• De-cluster only the cluster Ei such that

• Di – Ri < Ds, where Di is the distance from the boundary to the center point of

Ei and Ri is the radius of Ei

• Decluster only the cluster whose subclusters have possibilities to be the

support cluster of the boundary

• “Support cluster”: The cluster whose centroid is a support vector

44

CB-SVM Algorithm: Outline

• Construct two CF-trees from positive and negative data sets
independently

• Need one scan of the data set

• Train an SVM from the centroids of the root entries

• De-cluster the entries near the boundary into the next level

• The children entries de-clustered from the parent entries are

accumulated into the training set with the non-declustered

parent entries

• Train an SVM again from the centroids of the entries in the
training set

• Repeat until nothing is accumulated

45

Accuracy and Scalability on Synthetic Dataset

• Experiments on large synthetic data sets shows better accuracy
than random sampling approaches and far more scalable than
the original SVM algorithm

46

SVM vs. Neural Network

• SVM

• Deterministic algorithm

• Nice generalization

properties

• Hard to learn – learned in

batch mode using quadratic

programming techniques

• Using kernels can learn very

complex functions

• Neural Network

• Nondeterministic algorithm

• Generalizes well but doesn’t

have strong mathematical

foundation

• Can easily be learned in

incremental fashion

• To learn complex functions—

use multilayer perceptron

(nontrivial)

47

SVM Related Links

• SVM Website: http://www.kernel-machines.org/

• Representative implementations

• LIBSVM: an efficient implementation of SVM, multi-class

classifications, nu-SVM, one-class SVM, including also various

interfaces with java, python, etc.

• SVM-light: simpler but performance is not better than LIBSVM,

support only binary classification and only in C

• SVM-torch: another recent implementation also written in C

http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.kernel-machines.org/

Chapter 8&9. Classification: Part 2

• Neural Networks

• Support Vector Machine

• Summary

48

• Artificial Neural Networks

• Single unit

• Multilayer neural networks

• Backpropagation algorithm

• Support Vector Machine

• Support vectors

• Maximum marginal hyperplane

• Linear separable

• Linear inseparable

• Kernel tricks

49

Announcement
• Homework 1

• Apriori algorithm: some length-l candidate can be pruned by checking
whether all its sub-patterns with length-(l-1) are in frequent

• FP-growth: Need to scan DB twice

• Proposal due tomorrow
• Report

• Sign up meeting time with me on Wednesday afternoon or Thursday
morning

• Homework 2 will be out tomorrow
• No class next week

• The make-up class is canceled

• With homework 2 due on next Friday

• Midterm exam (Feb. 25, the same location, same time as
classes, 6-8pm)
• You can take a A4 “cheating sheet”

• Covers to the content taught by today

50

51

References (1)

• C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press,

1995

• C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data

Mining and Knowledge Discovery, 2(2): 121-168, 1998

• H. Cheng, X. Yan, J. Han, and C.-W. Hsu, Discriminative Frequent pattern Analysis for

Effective Classification, ICDE'07

• H. Cheng, X. Yan, J. Han, and P. S. Yu, Direct Discriminative Pattern Mining for Effective

Classification, ICDE'08

• N. Cristianini and J. Shawe-Taylor, Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods, Cambridge University Press, 2000

• A. J. Dobson. An Introduction to Generalized Linear Models. Chapman & Hall, 1990

• G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and

differences. KDD'99

52

References (2)

• R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2ed. John Wiley, 2001

• T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer-Verlag, 2001

• S. Haykin, Neural Networks and Learning Machines, Prentice Hall, 2008

• D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The

combination of knowledge and statistical data. Machine Learning, 1995.

• V. Kecman, Learning and Soft Computing: Support Vector Machines, Neural Networks,

and Fuzzy Logic, MIT Press, 2001

• W. Li, J. Han, and J. Pei, CMAR: Accurate and Efficient Classification Based on Multiple

Class-Association Rules, ICDM'01

• T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity, and

training time of thirty-three old and new classification algorithms. Machine Learning,

2000

53

References (3)

• B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining, p. 80-

86, KDD’98.

• T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

• D.E. Rumelhart, and J.L. McClelland, editors, Parallel Distributed Processing, MIT Press,

1986.

• P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison Wesley, 2005.

• S. M. Weiss and N. Indurkhya. Predictive Data Mining. Morgan Kaufmann, 1997.

• I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques, 2ed. Morgan Kaufmann, 2005.

• X. Yin and J. Han. CPAR: Classification based on predictive association rules. SDM'03

• H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical

clusters. KDD'03.

