CS6220: DATA MINING TECHNIQUES

Chapter 8&9: Classification: Part 3

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

March 12, 2013

Midterm Report

Grade Distribution

90 - 100	10	20 -	
80 - 89	16	15 -	
70 - 79	8	10 -	
60 - 69	4	10	
<60	1	5 -	

Statistics

Count	39
Minimum Value	55.00
Maximum Value	98.00
Average	82.54
Median	84.00
Standard Deviation	9.18

Announcement

Midterm Solution

<u>https://blackboard.neu.edu/bbcswebdav/pid-12532-dt-wiki-rid-8320466_1/courses/CS6220.32435.201330/mid_term.pdf</u>

Course Project:

- Midterm report due next week
 - A draft for final report
 - Don't forget your project title
 - Main purpose
 - Check the progress and make sure you can finish it by the deadline

Chapter 8&9. Classification: Part 3

- Bayesian Learning 🦊
 - Naïve Bayes
 - Bayesian Belief Network
- Instance-Based Learning
- Summary

Bayesian Classification: Why?

- <u>A statistical classifier</u>: performs *probabilistic prediction, i.e.,* predicts class membership probabilities
- <u>Foundation</u>: Based on Bayes' Theorem.
- <u>Performance</u>: A simple Bayesian classifier, *naïve Bayesian classifier*, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct prior knowledge can be combined with observed data
- <u>Standard</u>: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Basic Probability Review

- Have two dices h₁ and h₂
- The probability of rolling an *i* given die h₁ is denoted
 P(i|h₁). This is a <u>conditional probability</u>
- Pick a die at random with probability P(h_j), j=1 or 2. The probability for picking die h_j and rolling an i with it is called <u>joint probability</u> and is P(i, h_j)=P(h_j)P(i| h_j).
- For any events X and Y, P(X,Y)=P(X|Y)P(Y)
- If we know P(X,Y), then the so-called <u>marginal</u> <u>probability</u> P(X) can be computed as $P(X) = \sum_{y} P(X,Y)$

Bayes' Theorem: Basics

- Bayes' Theorem: $P(h|\mathbf{X}) = \frac{P(\mathbf{X}|h)P(h)}{P(\mathbf{X})}$
 - Let X be a data sample ("evidence")
 - Let h be a *hypothesis* that X belongs to class C
 - P(h) (*prior probability*): the initial probability
 - E.g., **X** will buy computer, regardless of age, income, ...
 - P(X | h) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that X will buy computer, the prob. that X is 31..40, medium income
 - P(X): marginal probability that sample data is observed
 - $P(X) = \sum_{h} P(X|h) P(h)$
 - P(h | **X**), (i.e., *posteriori probability):* the probability that the hypothesis holds given the observed data sample **X**

Classification: Choosing Hypotheses

• *Maximum Likelihood* (maximize the likelihood):

$$h_{ML} = \underset{h \in H}{\operatorname{arg\,max}} P(D \mid h)$$

- *Maximum a posteriori* (maximize the posterior):
 - Useful observation: it does not depend on the denominator P(D)

$$h_{MAP} = \underset{h \in H}{\operatorname{arg\,max}} P(h \mid D) = \underset{h \in H}{\operatorname{arg\,max}} P(D \mid h) P(h)$$

D: the whole training data set

Classification by Maximum A Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector X = (x₁, x₂, ..., x_n)
- Suppose there are *m* classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i | X)
- This can be derived from Bayes' theorem

$$P(C_i | \mathbf{X}) = \frac{P(\mathbf{X} | C_i) P(C_i)}{P(\mathbf{X})}$$

• Since P(X) is constant for all classes, only $P(C_i, \mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$ needs to be maximized

Example: Cancer Diagnosis

- A patient takes a lab test with two possible results (+ve, -ve), and the result comes back positive. It is known that the test returns
 - a correct positive result in only 98% of the cases (true positive); and
 - a correct negative result in only 97% of the cases (true negative).
 - Furthermore, only 0.008 of the entire population has this disease.
 - 1. What is the probability that this patient has cancer?
 - 2. What is the probability that he does not have cancer?3. What is the diagnosis?

Solution

```
P(cancer) = .008P(\neg cancer) = .992P(+ve|cancer) = .98P(-ve|cancer) = .02P(+ve|\neg cancer) = .03P(-ve|\neg cancer) = .97
```

```
Using Bayes Formula:

P(cancer|+ve) = P(+ve|cancer)xP(cancer) / P(+ve)

= 0.98 x 0.008/ P(+ve) = .00784 / P(+ve)

P(¬ cancer|+ve) = P(+ve| ¬ cancer)xP(¬ cancer) / P(+ve)

= 0.03 x 0.992/P(+ve) = .0298 / P(+ve)
```

So, the patient most likely does not have cancer.

Chapter 8&9. Classification: Part 3

- Bayesian Learning
 - Naïve Bayes
 - Bayesian Belief Network
- Instance-Based Learning
- Summary

Naïve Bayes Classifier

 A simplified assumption: attributes are conditionally independent given the class (class conditional independency):

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- $P(C_i) = |C_{i,D}| / |D| (|C_{i,D}| = \# \text{ of tuples of } C_i \text{ in } D)$
- If A_k is categorical, P(x_k|C_i) is the # of tuples in C_i having value x_k for A_k divided by |C_{i, D}|
- If A_k is continuous-valued, $P(x_k | C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$g(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$P(\mathbf{X} | C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

and $P(x_k | C_i)$ is

Naïve Bayes Classifier: Training Dataset

	age	income	student	credit_rating	_comp
- 1	<=30	high	no	fair	no
Class:	<=30	high	no	excellent	no
C1:buys_computer = 'yes'	3140	high	no	fair	yes
C2:buys_computer = 'no'	>40	medium	no	fair	yes
	>40	low	yes	fair	yes
Data to be classified.	>40	low	yes	excellent	no
$/ = (2\pi \alpha) < -20$	3140	low	yes	excellent	yes
∧ – (age <–30,	<=30	medium	no	fair	no
ncome = medium,	<=30	low	yes	fair	yes
Student = yes	>40	medium	yes	fair	yes
Credit_rating = Fair)	<=30	medium	yes	excellent	yes
	3140	medium	no	excellent	yes
	3140	high	yes	fair	yes
	>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

• $P(C_i)$: P(buys computer = "yes") = 9/14 = 0.643P(buys computer = "no") = 5/14 = 0.357• Compute P(X|C_i) for each class P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222 P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6 P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444P(income = "medium" | buys_computer = "no") = 2/5 = 0.4**P**(student = "yes" | buys_computer = "yes) = 6/9 = 0.667 $P(student = "yes" | buys_computer = "no") = 1/5 = 0.2$ P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667 P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4 X = (age <= 30, income = medium, student = yes, credit_rating = fair) $P(X|C_i)$: $P(X|buys computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$ $P(X | buys computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$ $P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$ P(X|buys computer = "no") * P(buys computer = "no") = 0.007

Therefore, X belongs to class ("buys_computer = yes")

age	income studentredit_rating			
<=30	high	no	fair	nc
<=30	high	no	excellent	nc
3140	high	no	fair	ye
>40	medium	no	fair	ye
>40	low	yes	fair	ye
>40	low	yes	excellent	nc
3140	low	yes	excellent	ye
<=30	medium	no	fair	nc
<=30	low	yes	fair	ye
>40	medium	yes	fair	ye
<=30	medium	yes	excellent	ye
3140	medium	no	excellent	ye
3140	high	yes	fair	ye
>40	medium	no	excellent	nc

Avoiding the Zero-Probability Problem

Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

Use Laplacian correction (or Laplacian smoothing)

• Adding 1 to each case

•
$$P(x_k = j | C_i) = \frac{n_{ik,j}+1}{\sum_{j'}(n_{ik,j'}+1)}$$
 where $n_{ik,j}$ is # of tuples in C_i having value $x_k = j$

Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)
 Prob(income = low) = 1/1003
 Prob(income = medium) = 991/1003
 Prob(income = high) = 11/1003

 The "corrected" prob. estimates are close to their "uncorrected" counterparts

***Notes on Parameter Learning**

- Why the probability of $P(X_k|C_i)$ is estimated in this way?
 - http://www.cs.columbia.edu/~mcollins/em.pdf
 - http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/NB.pdf

Naïve Bayes Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc.
 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
- How to deal with these dependencies? Bayesian Belief Networks

Chapter 8&9. Classification: Part 3

- Bayesian Learning
 - Naïve Bayes
 - Bayesian Belief Network
- Instance-Based Learning
- Summary

Bayesian Belief Networks (BNs)

- Bayesian belief network (also known as Bayesian network, probabilistic network): allows class conditional independencies between subsets of variables
- Two components: (1) A *directed acyclic graph* (called a structure) and (2) a set of *conditional probability tables* (CPTs)
- A (*directed acyclic*) graphical model of *causal influence* relationships
 - Represents <u>dependency</u> among the variables
 - Gives a specification of joint probability distribution

- ❑ Nodes: random variables
- ❑ Links: dependency
- X and Y are the parents of Z, and Y is the parent of P
- No dependency between Z and P conditional on Y
- ☐ Has no cycles

A Bayesian Network and Some of Its CPTs

CPT: Conditional Probability Tables

	F	-¬F
S	.90	.01
¬S	.10	.99

	F, T	<i>F</i> , ¬ <i>T</i>	¬ <i>F</i> , <i>T</i>	$\neg F, \neg T$
А	.5	.99	.85	.0001
¬Α	.95	.01	.15	.9999

CPT shows the conditional probability for each possible combination of its parents

Derivation of the probability of a particular combination of values of **X**, from CPT (joint probability):

$$P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(x_i))$$

Inference in Bayesian Networks

- Infer the probability of values of some variable given the observations of other variables
 - E.g., P(Fire = True | Report = True, Smoke = True)?
- Computation
 - Exact computation by enumeration
 - In general, the problem is NP hard
 - Approximation algorithms are needed

Inference by enumeration

- To compute posterior marginal P(X_i | E=e)
 - Add all of the terms (atomic event probabilities) from the full joint distribution
 - If **E** are the evidence (observed) variables and **Y** are the other (unobserved) variables, then:

 $P(X | \mathbf{e}) = \alpha P(X, \mathbf{E}) = \alpha \sum P(X, \mathbf{E}, \mathbf{Y})$

- Each P(X, E, Y) term can be computed using the chain rule
- Computationally expensive!

Example: Enumeration

- P (d|e) = $\alpha \Sigma_{ABC}$ P(a, b, c, d, e) = $\alpha \Sigma_{ABC}$ P(a) P(b|a) P(c|a) P(d|b,c) P(e|c)
- With simple iteration to compute this expression, there's going to be a lot of repetition (e.g., P(e|c) has to be recomputed every time we iterate over C=true)
 - A solution: variable elimination

How Are Bayesian Networks Constructed?

- Subjective construction: Identification of (direct) causal structure
 - People are quite good at identifying direct causes from a given set of variables & whether the set contains all relevant direct causes
 - Markovian assumption: Each variable becomes independent of its non-effects once its direct causes are known
 - E.g., $S \leftarrow F \rightarrow A \leftarrow T$, path $S \rightarrow A$ is blocked once we know $F \rightarrow A$
- Synthesis from other specifications
 - E.g., from a formal system design: block diagrams & info flow
- Learning from data
 - E.g., from medical records or student admission record
 - Learn parameters give its structure or learn both structure and parms
 - Maximum likelihood principle: favors Bayesian networks that maximize the probability of observing the given data set

Learning Bayesian Networks: Several Scenarios

- Scenario 1: Given both the network structure and all variables observable: compute only the CPT entries (Easiest case!)
- Scenario 2: Network structure known, some variables hidden: gradient descent (greedy hill-climbing) method, i.e., search for a solution along the steepest descent of a criterion function
 - Weights are initialized to random probability values
 - At each iteration, it moves towards what appears to be the best solution at the moment, w.o. backtracking
 - Weights are updated at each iteration & converge to local optimum
- Scenario 3: Network structure unknown, all variables observable: search through the model space to *reconstruct network topology*
- Scenario 4: Unknown structure, all hidden variables: No good algorithms known for this purpose
- D. Heckerman. <u>A Tutorial on Learning with Bayesian Networks</u>. In *Learning in Graphical Models*, M. Jordan, ed. MIT Press, 1999.

Chapter 8&9. Classification: Part 3

- Bayesian Learning
 - Naïve Bayes
 - Bayesian Belief Network
- Instance-Based Learning
- Summary

Lazy vs. Eager Learning

- Lazy vs. eager learning
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - **Eager learning** (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - <u>k-nearest neighbor approach</u>
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of Euclidean distance, dist(X₁, X₂)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_q
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

Discussion on the k-NN Algorithm

- *k*-NN for <u>real-valued prediction</u> for a given unknown tuple
 - Returns the mean values of the k nearest neighbors
- <u>Distance-weighted</u> nearest neighbor algorithm
 - Weight the contribution of each of the *k* neighbors according to their distance to the query x_q
 - Give greater weight to closer neighbors

•
$$y_q = \frac{\sum w_i y_i}{\sum w_i}$$
, where x_i 's are x_q 's nearest neighbors

- <u>Robust</u> to noisy data by averaging k-nearest neighbors
- <u>Curse of dimensionality</u>: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, axes stretch or elimination of the least relevant attributes

 $w \equiv \frac{1}{d(x_q, x_i)^2}$

Chapter 8&9. Classification: Part 3

- Bayesian Learning
 - Naïve Bayes
 - Bayesian Belief Network
- Instance-Based Learning
- Summary 🦊

- Bayesian Learning
 - Bayes theorem
 - Naïve Bayes, class conditional independence
 - Bayesian Belief Network, DAG, conditional probability table
- Instance-Based Learning
 - Lazy learning vs. eager learning
 - K-nearest neighbor algorithm