CS6220: DATA MINING TECHNIQUES

Matrix Data: Classification: Part 1

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

September 14, 2014

Matrix Data: Classification: Part 1

Classification: Basic Concepts

- Decision Tree Induction
- Model Evaluation and Selection
- Summary

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by **labels** indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

- Classification
 - predicts categorical class labels
 - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Numeric Prediction
 - models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit/loan approval:
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

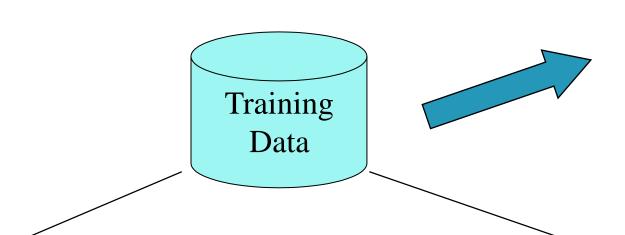
Classification—A Two-Step Process (1)

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - For data point $i : \langle x_i, y_i \rangle$
 - Features: x_i ; class label: y_i
 - The model is represented as classification rules, decision trees, or mathematical formulae
 - Also called classifier
 - The set of tuples used for model construction is training set

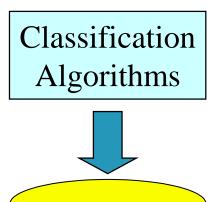
Classification—A Two-Step Process (2)

- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Test set is independent of training set (otherwise overfitting)
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Most used for binary classes
 - If the accuracy is acceptable, use the model to classify new data
- Note: If the test set is used to select models, it is called validation (test) set

Process (1): Model Construction



NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

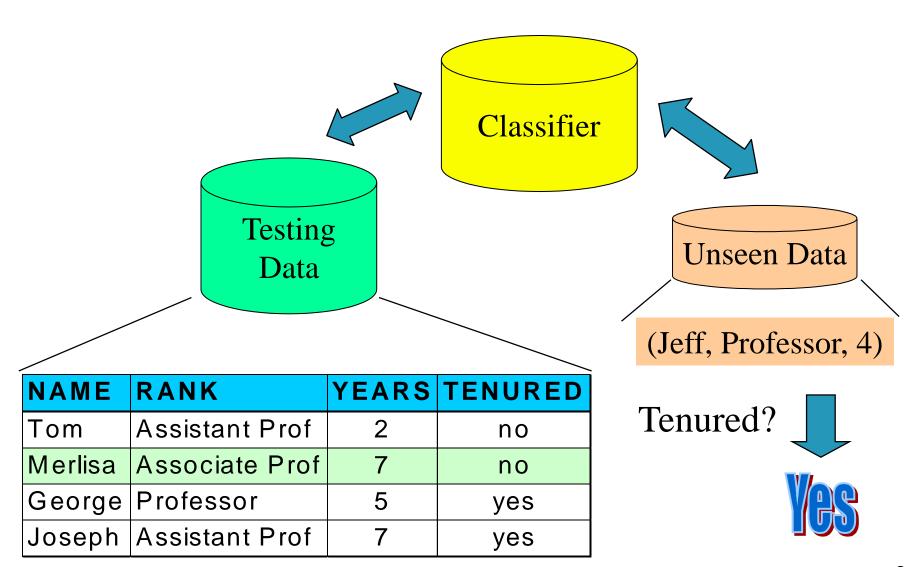


Classifier

(Model)

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Process (2): Using the Model in Prediction



Classification Methods Overview

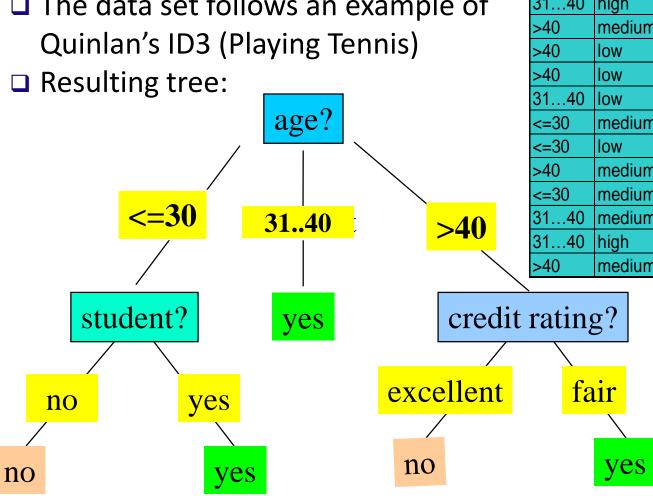
- Part 1
 - Decision Tree
 - Model Evaluation
- Part 2
 - Bayesian Learning: Naïve Bayes, Bayesian belief network
 - Logistic Regression
- Part 3
 - SVM
 - kNN
 - Other Topics

Matrix Data: Classification: Part 1

- Classification: Basic Concepts
- Decision Tree Induction
- Model Evaluation and Selection
- Summary

Decision Tree Induction: An Example

- ☐ Training data set: Buys computer
- ☐ The data set follows an example of



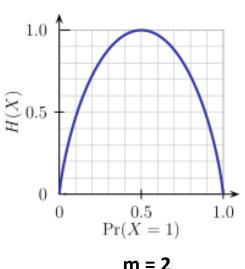
<=30 high no excellent no 3140 high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no 3140 low yes excellent no 3140 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes >40 medium yes fair yes 3140 medium no excellent yes 3140 high yes fair yes	age	income	student	credit_rating	buys_computer
3140 high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no 3140 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes >40 medium yes fair yes 3140 medium no excellent yes 3140 high yes fair yes	<=30	high	no	fair	no
>40 medium no fair yes >40 low yes fair yes >40 low yes excellent no 3140 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes fair yes 3140 medium no excellent yes 3140 high yes fair yes	<=30	high	no	excellent	no
>40 low yes fair yes >40 low yes excellent no 3140 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes 3140 medium no excellent yes 3140 high yes fair yes	3140	high	no	fair	yes
>40 low yes excellent no 3140 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes 3140 medium no excellent yes 3140 high yes fair yes	>40	medium	no	fair	yes
3140 low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes 3140 medium no excellent yes 3140 high yes fair yes	>40	low	yes	fair	yes
<=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes 3140 medium no excellent yes 3140 high yes fair yes	>40	low	yes	excellent	no
<=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes 3140 medium no excellent yes 3140 high yes fair yes	3140	low	yes	excellent	yes
>40 medium yes fair yes <=30 medium yes excellent yes 3140 medium no excellent yes 3140 high yes fair yes	<=30	medium	no	fair	no
<=30 medium yes excellent yes 3140 medium no excellent yes 3140 high yes fair yes	<=30	low	yes	fair	yes
3140 medium no excellent yes 3140 high yes fair yes	>40	medium	yes	fair	yes
3140 high yes fair yes	<=30	medium	yes	excellent	yes
	3140	medium	no	excellent	yes
>40 medium no excellent no	3140	high	yes	fair	yes
	>40	medium	no	excellent	no

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left use majority voting in the parent partition

Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty (impurity) associated with a random variable
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, \dots, y_m\}$,
 - $H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$, where $p_i = P(Y = y_i)$
 - Interpretation:
 - Higher entropy => higher uncertainty
 - Lower entropy => lower uncertainty
- Conditional Entropy
 - $H(Y|X) = \sum_{x} p(x)H(Y|X=x)$



Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

■ Information needed (after using A to split $D^{i=1}$ into v partitions) to classify D: $\underline{v} \mid D$.

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

- Class P: buys_computer = "yes"
- Class N: buys computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940 + \frac{5}{14}I(3,2) = 0.694$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

$$\frac{5}{14}I(2,3)$$
 means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

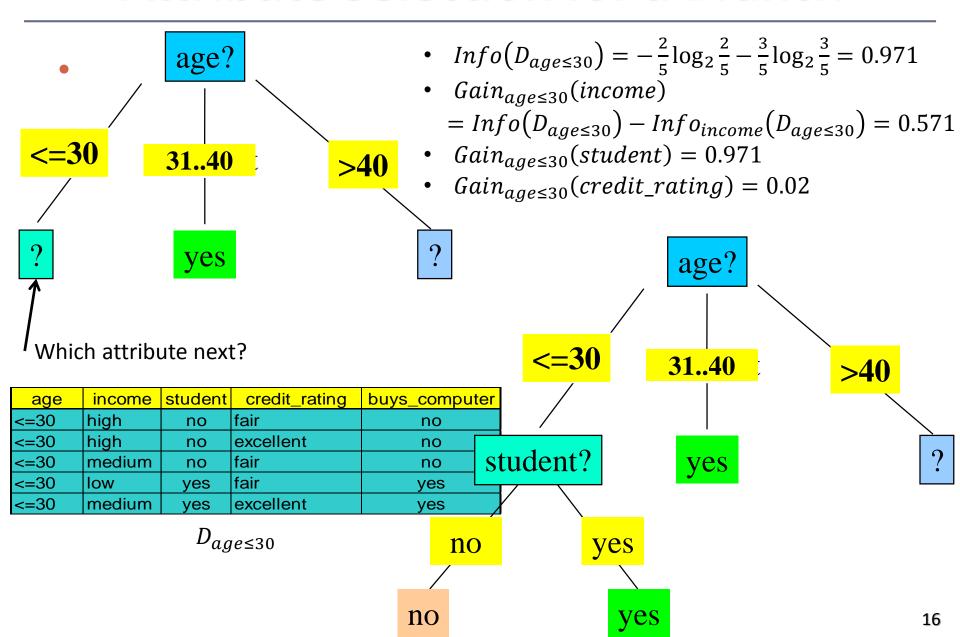
$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$

Attribute Selection for a Branch



Computing Information-Gain for Continuous-Valued Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible *split point*
 - $(a_i+a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
 - The point with the *minimum expected information requirement* for A is selected as the split-point for A
- Split:
 - D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in D satisfying A > split-point

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex. $SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2\left(\frac{4}{14}\right) \frac{6}{14} \times \log_2\left(\frac{6}{14}\right) \frac{4}{14} \times \log_2\left(\frac{4}{14}\right) = 1.557$
 - gain_ratio(income) = 0.029/1.557 = 0.019
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gini Index (CART, IBM IntelligentMiner)

 If a data set D contains examples from n classes, gini index, gini(D) is defined as

$$gini(D) = 1 - \sum_{j=1}^{v} p_j^2$$

where p_i is the relative frequency of class j in D

• If a data set D is split on A into two subsets D_1 and D_2 , the gini

index
$$gini(D)$$
 is defined as
$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$
Poduction in Impurity:

Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

 The attribute provides the smallest gini_{split}(D) (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Computation of Gini Index

• Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂

$$\begin{split} & gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right) Gini(D_1) + \left(\frac{4}{14}\right) Gini(D_2) \\ &= \frac{10}{14} \left(1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2\right) + \frac{4}{14} \left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2\right) \\ &= 0.443 \\ &= Gini_{income} \in \{high\}(D). \end{split}$$

Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450. Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others (why?)
 - Gini index:
 - biased to multivalued attributes

*Other Attribute Selection Measures

- <u>CHAID</u>: a popular decision tree algorithm, measure based on χ^2 test for independence
- C-SEP: performs better than info. gain and gini index in certain cases
- G-statistic: has a close approximation to χ^2 distribution
- MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
 - The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- Multivariate splits (partition based on multiple variable combinations)
 - <u>CART</u>: finds multivariate splits based on a linear comb. of attrs.
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - <u>Prepruning</u>: *Halt tree construction early*-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - <u>Postpruning</u>: *Remove branches* from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Enhancements to Basic Decision Tree Induction

Allow for continuous-valued attributes

• Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals

Handle missing attribute values

- Assign the most common value of the attribute
- Assign probability to each of the possible values

Attribute construction

- Create new attributes based on existing ones that are sparsely represented
- This reduces fragmentation, repetition, and replication

Matrix Data: Classification: Part 1

- Classification: Basic Concepts
- Decision Tree Induction
- Model Evaluation and Selection

Summary

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation
- Comparing classifiers:
 - Confidence intervals
 - Cost-benefit analysis and ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁	
C_1	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	Ρ'	N'	All

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

$$Accuracy = (TP + TN)/All$$

• Error rate: 1 – accuracy, or

Error rate =
$$(FP + FN)/All$$

Class Imbalance Problem:

- One class may be rare, e.g. fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class
- Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
- Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

- **Precision**: exactness what % of tuples that the classifier labeled as positive are actually positive $\frac{TP}{TP+FP}$
- Recall: completeness what % of positive tuples did the classifier label as positive?

 Perfect example 1.0
- Perfect score is 1.0
- Inverse relationship between precision & recall
- F measure (F_1 or F-score): harmonic mean of precision and recall, $F = \frac{2 \times precision \times recall}{precision + recall}$
- F_B: weighted measure of precision and recall
 - assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity)
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

$$Recall = 90/300 = 30.00\%$$

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into *k mutually exclusive* subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - *Stratified cross-validation*: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Estimating Confidence Intervals: Classifier Models M₁ vs. M₂

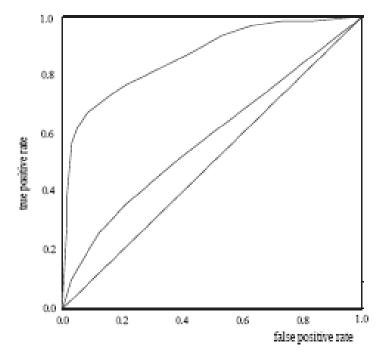
- Suppose we have 2 classifiers, M₁ and M₂, which one is better?
- ullet Use 10-fold cross-validation to obtain $\overline{err}(M_1)$ and $\overline{err}(M_2)$
- These mean error rates are just point estimates of error on the true population of future data cases
- What if the difference between the 2 error rates is just attributed to chance?
 - Use a test of statistical significance
 - Obtain **confidence limits** for our error estimates

Estimating Confidence Intervals: Null Hypothesis

- Perform 10-fold cross-validation of two models: M₁ & M₂
- Assume samples follow normal distribution
- Use two sample t-test (or Student's t-test)
- Null Hypothesis: M₁ & M₂ are the same (means are equal)
- If we can reject null hypothesis, then
 - we conclude that the difference between M_1 & M_2 is statistically significant
 - Chose model with lower error rate

Model Selection: ROC Curves

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- Area under the curve: the closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model



- Vertical axis represents the true positive rate
- Horizontal axis rep. the false positive rate
- The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

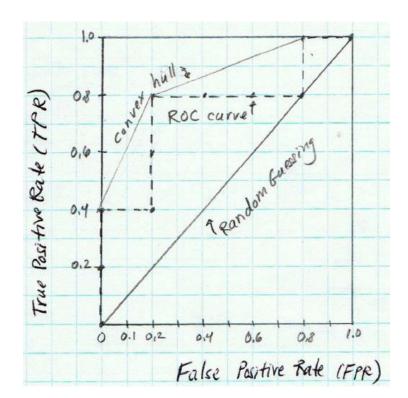
Plotting an ROC Curve

- True positive rate: TPR = TP/P (sensitivity)
- False positive rate: FPR = FP/N (1-specificity)

- Rank tuples according to how likely they will be a positive tuple
 - Idea: when we include more tuples in, we are more likely to make mistakes, that is the trade-off!
 - Nice property: not threshold (cut-off) need to be specified, only rank matters

$Tuple \ \#$	Class	Prob.	TP	FP	TN	FN	TPR	FPR
1	р	0.9	1	0	5	4	0.2	0
2	р	0.8	2	0	5	3	0.4	0
3	n	0.7	2	1	4	3	0.4	0.2
4	р	0.6	3	1	4	2	0.6	0.2
5	р	0.55	4	1	4	1	0.8	0.2
6	n	0.54	4	2	3	1	0.8	0.4
7	n	0.53	4	3	2	1	0.8	0.6
8	n	0.51	4	4	1	1	0.8	0.8
9	р	0.50	5	4	0	1	1.0	0.8
10	n	0.4	5	5	0	0	1.0	1.0

Example



Issues Affecting Model Selection

- Accuracy
 - classifier accuracy: predicting class label
- Speed
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Matrix Data: Classification: Part 1

- Classification: Basic Concepts
- Decision Tree Induction
- Model Evaluation and Selection
- Summary

Summary

- Classification is a form of data analysis that extracts models describing important data classes.
- decision tree induction
- Evaluation
 - Evaluation metrics include: accuracy, sensitivity, specificity, precision, recall, F measure, and $F_{\mathcal{B}}$ measure.
 - k-fold cross-validation is recommended for accuracy estimation.
 - Significance tests and ROC curves are useful for model selection.

Course project sign-up will be due this Sunday

References (1)

- C. Apte and S. Weiss. **Data mining with decision trees and decision rules**. Future Generation Computer Systems, 13, 1997
- C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, 1995
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
 Wadsworth International Group, 1984
- C. J. C. Burges. **A Tutorial on Support Vector Machines for Pattern Recognition**. *Data Mining and Knowledge Discovery*, 2(2): 121-168, 1998
- P. K. Chan and S. J. Stolfo. Learning arbiter and combiner trees from partitioned data for scaling machine learning. KDD'95
- H. Cheng, X. Yan, J. Han, and C.-W. Hsu, <u>Discriminative Frequent Pattern Analysis for</u> <u>Effective Classification</u>, ICDE'07
- H. Cheng, X. Yan, J. Han, and P. S. Yu, <u>Direct Discriminative Pattern Mining for Effective Classification</u>, ICDE'08
- W. Cohen. Fast effective rule induction. ICML'95
- G. Cong, K.-L. Tan, A. K. H. Tung, and X. Xu. **Mining top-k covering rule groups for gene expression data**. SIGMOD'05

References (2)

- A. J. Dobson. An Introduction to Generalized Linear Models. Chapman & Hall, 1990.
- G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. KDD'99.
- R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2ed. John Wiley, 2001
- U. M. Fayyad. Branching on attribute values in decision tree generation. AAAI'94.
- Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences, 1997.
- J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast decision tree construction of large datasets. VLDB'98.
- J. Gehrke, V. Gant, R. Ramakrishnan, and W.-Y. Loh, BOAT -- Optimistic Decision Tree Construction. SIGMOD'99.
- T. Hastie, R. Tibshirani, and J. Friedman. **The Elements of Statistical Learning: Data Mining, Inference, and Prediction.** Springer-Verlag, 2001.
- D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995.
- W. Li, J. Han, and J. Pei, CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules, ICDM'01.

References (3)

- T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 2000.
- J. Magidson. The Chaid approach to segmentation modeling: Chi-squared automatic interaction detection. In R. P. Bagozzi, editor, Advanced Methods of Marketing Research, Blackwell Business, 1994.
- M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining.
 EDBT'96.
- T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
- S. K. Murthy, Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey, Data Mining and Knowledge Discovery 2(4): 345-389, 1998
- J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
- J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. ECML'93.
- J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
- J. R. Quinlan. **Bagging, boosting, and c4.5**. AAAI'96.

References (4)

- R. Rastogi and K. Shim. Public: A decision tree classifier that integrates building and pruning. VLDB'98.
- J. Shafer, R. Agrawal, and M. Mehta. **SPRINT: A scalable parallel classifier for data mining**. VLDB'96.
- J. W. Shavlik and T. G. Dietterich. Readings in Machine Learning. Morgan Kaufmann, 1990.
- P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison Wesley, 2005.
- S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufman, 1991.
- S. M. Weiss and N. Indurkhya. **Predictive Data Mining**. Morgan Kaufmann, 1997.
- I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques, 2ed. Morgan Kaufmann, 2005.
- X. Yin and J. Han. **CPAR: Classification based on predictive association rules**. SDM'03
- H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical clusters. KDD'03.