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Mining Graph/Network Data

-Graph / Network Data 4@
- Ranking on Graph / Network
- Graph/Network Clustering

- Graph/Network Classification

*Summary



Graph, Graph, Everywhere

Internet

from H. Jeong et al Nature 411, 41 (2001)
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Why Graph Mining?

- Graphs are ubiquitous
« Chemical compounds (Cheminformatics)
- Protein structures, biological pathways/networks (Biomformactics)
« Program control flow, trathc flow, and workflow analysis

- XML databases, Web, and social network analysis

- Graph is a general model

« Trees, lattices, sequences, and 1tems are degenerated graphs
- Diversity of graphs

« Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted,
with angles & geometry (topological vs. 2-1)/3-D)

- Complexity of algorithms: many problems are of high complexity



Representation of a Graph

G =<V,E >
-V ={uy, ..., uy }: node set
«E €V XV:edge set
- Adjacency matrix
A= {aij}, ,j=1,..,n
ca;; =1,if <u,uf >€EE
ca; =0,if <uju >¢E
- Undirected graph vs. Directed graph
- A=ATvs. A+ AT
« Weighted graph

* Use Winstead of A, where w;; represents the weight of edge
< ui,uj >



Mining Graph/Network Data

- Graph / Network Data

- Ranking on Graph / Network &
- Graph/Network Clustering

- Graph/Network Classification

*Summary



Ranking on Graph / Network

-PageRank

- Personalized PageRank



The History of PageRank

- PageRank was developed by Larry Page (hence the name
Page-Rank) and Sergey Brin.

- It is first as part of a research project about a new kind of
search engine. That project started in 1995 and led to a
functional prototype in 1998.

- Shortly after, Page and Brin founded Google.



Ranking web pages

-Web pages are not equally “important”

* WWW.CNI.COM VS. a personal webpage

*Inlinks as votes

 The more inlinks, the more important

- Are all inlinks equal?

 Recursive question!
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http://www.cnn.com/

Simple recursive formulation

- Each link’s vote is proportional to the
Importance of its source page

- If page P with importance x has n outlinks,
each link gets x/n votes

-Page P’s own importance is the sum of the
votes on its inlinks
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Matrix formulation

- Matrix M has one row and one column for each web
Page
- Suppose page j has n outlinks
- Ifj ->1, then M;=1/n
* Else M;=0
*Misa
e Columns sum to 1
- Suppose r is a vector with one entry per web page
* 1; 15 the importance score of page 1

 Call 1t the
- r| =1
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Eigenvector formulation

-The flow equations can be written

-So the rank vector is an eigenvector of the
stochastic web matrix

- In fact, 1ts first or principal eigenvector, with
corresponding eigenvalue 1
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Example

y =yl2+a/2
a=y/l2+m
m=a/2

QD

y a m

1/21/2 0
1/2 0 1
012 0

1/21/2 0
1/2 0 1
m 01/2 0

S

D <
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Power Iteration method

-Simple iterative scheme (aka )

-Suppose there are N web pages
- Initialize: r° = [1/N,....,1/N]"
- |terate: r*1 = MrX

-Stop when |r**1-rk|. <&

X|| = 2i<en]|X;| 18 the Li norm

- Can use any other vector norm e.g., Euclidean
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Power lteration Example

y a m
y 1/21/2 0
a |1/2 0 1
m|O01/2 0O
y 1/3 1/3 5/12 3/8 2/5
a = 1/3  1/2 1/3 11/24 ... 2/5
m

1/3 16 1/4 1/6 1/5



Random Walk Interpretation

*lmagine a
- At any time t, surfer 1s on some page P

- At ime t+1, the surfer tollows an outhink from
P uniformly at random

- EEnds up on some page Q linked from P
* Process repeats indefinitely
-Let p(t) be a vector whose ith component

is the probability that the surfer is at page
| at time t

- p(t) 1s a probability distribution on pages

17



*The stationary distribution

Where is the surfer at time t+17
- Follows a link uniformly at random
-p(t+1) = Mp(t)

-Suppose the random walk reaches a state
such that p(t+1) = Mp(t) = p(t)

* Then p(t) 1s called a for
the random walk

»Our rank vector r satisfies r = Mr

* So 1t 18 a stationary distribution for the random
surfer
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*Existence and Uniqueness

A central result from the theory of random walks (aka Markov
processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and
eventually will be reached no matter what

the initial probability distribution at time t
= 0.
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Spider traps

A group of pages is a if there
are no links from within the group to
outside the group

- Random surfer gets trapped

-Spider traps violate the conditions needed
for the random walk theorem

20



Microsoft becomes a spider trap

y a m

y 1/21/2 0

a (1/2 0 0

m| 0172 1

1/3 1/3 1/4  5/24 0
1/3 1/6 1/6 1/8 0

1/3 12 7112 2/3 1



Random teleports

- The Google solution for spider traps

- At each time step, the random surfer has
two options:

- With probability 3, follow a link at random

» With probability 1-B, jump to some page
uniformly at random

- Common values for 3 are in the range 0.8 to

0.9

- Surfer will teleport out of spider trap
within a few time steps
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Random teleports (B = 0.8)

1/2
1/2

1/2
0.8*1/2 | +0.2*

y

1/3
1/3
1/3

1/2 0

1/21/2 0

0 1/2 1

1/3 1/3 1/3

0 +0.2 11/31/3 1/3

1/3 1/3 1/3

S

7115 7/15 1/15
7/15 1/15 1/15
1/15 7/15 13/15
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Random teleports (B = 0.8)

1/21/2 0 1/31/3 1/3
0.8(1/2 0 0 +0.2 11/31/3 1/3
0 1/2 1 1/31/3 1/3

7115 7/15 1/15

7/15 115 1/15
, m|1/15 7/15 13/15

ISP

y
a
m

10.333
0.333

[ 0.333]
0.200

0.333

10.467

[0.280 ]
0.200

0.520

(0.259 ]
0.179

[ 7/33 |
5/33

0.563

21/33
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PageRank

- Construct the N-by-N matrix A as follows
M = BM;; + (1-8)/N

-Verify that M™ is a stochastic matrix

*The r is the principal
eigenvector of this matrix
satisfyingr=M'r

- Equivalently, r is the stationary
distribution of the random walk with
teleports
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Dead ends

- Pages with no outlinks are “
the random surfer

- Nowhere to go on next step

" for

27



Microsoft becomes a dead end

1/21/2 0 1/31/3 1/3
0.8(1/2 0 0 +0.2 11/31/3 1/3
0 1/2 0 1/31/3 1/3

7115 7/15 1/15
7115 1/15 1/15

. m|1/15 7/15 1/15

ISP

y 1/3  1/3 0
a = 1/3 0.2 0
m 1/3 0.2 0




Dealing with dead-ends

- Teleport

- Follow random teleport links with probability
1.0 from dead-ends

« Adjust matrix accordingly

*Prune and propagate
* Preprocess the graph to eliminate dead-ends
- Might require multiple passes
- Compute page rank on reduced graph

- Approximate values for deadends by
propagating values from reduced graph

29



Computing PageRank

- Key step is matrix-vector multiplication
o PREW — M*rold

- Easy if we have enough main memory to
hold M, rold pnew

-Say N =1 billion pages
- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB

« Matrix M~ has N# entries
- 10*8is a large number!

30



Rearranging the equation

r=M’'r, where

M*,

= PM;; + (1-B)/N

I = ZlSjSN M7,
= 2agen [BMy;+ (1-B)/N]

B 2oy Myir+ (1-

B 2oy Myir+ (1-

r=pBMr + [(1-B)/N]y

where [x] is an N-vector with all entries x

B)/N 2y qjen 1,

3)/N, since |r| =1



Sparse matrix formulation

- We can rearrange the page rank equation:
- 1= BMr + [(1-B)/Nly
« [(1-B)/Nly 1s an N-vector with all entries (1-)/N
- M is a sparse matrix!
10 links per node, approx 10N entries

- So in each iteration, we need to:
- Compute "V = Mred

« Add a constant value (1-B)/N to each entry in r¢v

32



Sparse matrix encoding

-Encode sparse matrix using only nonzero
entries

* Space proportional roughly to number of links
*say 10N, or 4*10*1 bilhon = 40GB

- still won’t fit iIn memory, but will fit on disk

0 3 1,5,7
1 5 17, 64, 113, 117, 245
2 2 13, 23
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Personalized PageRank

-Query-dependent Ranking

- For a query webpage q, which webpages are
most important to q?

* The relative important webpages to different
queries would be different
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Calculation of P-PageRank

- Recall PageRank calculation:
1 = BMr + [(1-B)/N]\ or
1/N

= BMr + (1-) qg, where qg = /N

1/N

- For P-PageRank

 Replace g with gg=

1 gth webpage

\o/




Mining Graph/Network Data

- Graph / Network Data

- Ranking on Graph / Network

- Graph/Network Clustering {2
- Graph/Network Classification

*Summary
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Clustering Graphs and Network Data

- Applications

 Bi-partite graphs, e.g., customers and products, authors and
conferences

- Web search engines, e.g., click through graphs and Web
graphs
- Social networks, friendship/coauthor graphs

Clustering books about politics [Newman, 2006]

38



Algorithms

 Graph clustering methods

* Density-based clustering: SCAN (Xu et al.,
KDD’2007)

 Spectral clustering
» Modulanty-based approach
* Probabilistic approach

- Nonnegative matrix factorization

39



SCAN: Density-Based Clustering of
Networks

- How many clusters? 2

« What size should they be?

4
_—

aV
/

- What is the best partitioning? /

\

 Should some points be segregated? |® N / - :

An Example Network

13

= Application: Given simply information of who associates with whom,
could one identify clusters of individuals with common interests or

special relationships (families, cliques, terrorist cells)?

40



A Social Network Model

- Cliques, hubs and outliers

- Individuals in a tight social group, or clique, know many of the same
people, regardless of the size of the group

* Individuals who are hubs know many people in different groups but belong
to no single group. Politicians, for example bridge multiple groups

- Individuals who are outliers reside at the margins of society. Hermits, for
example, know few people and belong to no group

- The Neighborhood of a Vertex

= Define I'(v) as the immediate
neighborhood of a vertex (i.e. the set
of people that an individual knows )

41



Structure Similarity

- The desired features tend to be captured by a measure we
call Structural Similarity

IT(V)NT(W)]
JTW) | T(w)|

o(V,w) =

- Structural similarity is large for members of a cligue and sma
for hubs and outliers

42



Structural Connectivity [1]

- &-Neighborhood: N (v)={wel(v)|o(v,w)=>c¢c}
- Core: CORE, ,(v) <N, (v) |z
- Direct structure reachable:

DirRECH, ,(v,w) < CORE, ,(v) Awe N_(v)

- Structure reachable: transitive closure of direct structure
reachability

- Structure connected:

CONNECT, ,(v,w) < 3JueV :RECH,  (u,v) ARECH,  (u,w)

[1] M. Ester, H. P. Kriegel, J. Sander, & X. Xu (KDD'96) “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases

43



Structure-Connected Clusters

» Structure-connected cluster C

« Connectivity: vv,we C:CONNECT, ,(v,w)

* Maximality: vw,weV :veCAREACH, ,(v,w)=>weC

« Hubs:

- Not belong to any cluster

- Bridge to many clusters

» Qutliers:

- Not belong to any cluster

« Connect to less clusters

outlier
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Running Time

- Running time = O(| E|)
- For sparse networks = O(|V|)

3500
3000

——This algorithm /
2500 ,

——Fast Modularity [2] /
2000 7
1500

1000 /

Running Time (Sec.)

500
0 +————————s --=a*—~r-*7"‘“”7#’f/-====r-7—-*

Num. of Vertices
[2] A. Clauset, M. E. J. Newman, & C. Moore, Phys. Rev. E 70, 066111 (2004).




Spectral Clustering

-Reference: ICDM’09 Tutorial by Chris Ding
-Example:

- Clustering supreme court justices according to

Number of times (%) two Justices voted Iin agreement

Ste Bre (in Son O'Co lKen Heh Sea 1'ho
Stevens (2 GG 63 33 36 25 14 15
Breyer (2 T2 71 55 A7 13 25 24
Ginsherg 66 72 T8 47 49 13 28 26
Souter (3 71 TS — 55 50 44 31 29
O'Connor 33 HH A7 HH 67 Tl o4 o4
Kennedy 36 47 49 50) 67 — [ h8 59
Rehnguist 25 43 43 44 71 TT - G it
Scalia 14 25 25 al 54 ite G 79
Thomas 15 24 26 29 54 59 it 70 —

Table 1: From the voting record of Justices 1995 Term — 2004 Term, the number of times two

justices voted in agreement (in percentage). (Data source: from July 2, 2005 New York Times.
Originallv from Legal Affairs; Harvard Law Review)



Example: Continue

C' = q2q5 + 9393

q3 o
Q'Connor
g gKennady
e = Rehnquist
o
o ”Breyer
c
-
o
>
B souter
CGintsk:verg
nf
Stevens
ngumas
Scalia
2 liberal = » conservative

« Three groups in the Supreme Court:

Stevens
Breyar
Ginsberg
Souter
Q’Connor
Kennedy
Rehnquist
Scalia

Thomas

> 5 ook M
EEEEREER
B &8 0 & © 2 & & E
BEeleoEENE==
EEEn«--slE
B B aEENE=n=
e e EERN
H:-E=sanlEN
H - e m
HE=EEmlnmnm -
sE==um= BN
--I-.I---

- Left leaning group, center-right group, right leaning group.
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Spectral Graph Partition

*Min-Cut

- Minimize the # of cut of edges

61



Objective Function

2-way Spectral Graph Partitioning

» = - » . Y l if I- E J-4
Partitton membership indicator: ¢, =y . . .
-1 ifieB

J =CutSize = lz _WU-[Q; —q; [}

=—Z wylal +q; —2q,9,1= Z q;ld; 0, —w; g,

17

4 (D=W)q

2

Relax indicators ¢g; from discrete values to continuous values,

the solution for min J(g) 1s given by the eigenvectors of

([) — W)q — lq (Fiedler, 1973, 1975)

(Pothen, Simon, Liou, 1990) 62



Minimum Cut with Constraints

minimize cutsize without explicit size constraints

But where to cut ?

Need to balance sizes

63



New Objective Functions

S(AB)=> "> w,

e Ratio Cut (Hangen & Kahng, 1992) P
. s(4,B) s(4,B)
Jo. (A,B) = +
Reut! ) ‘A‘ |B‘
e Normalized Cut (shi & Malik, 2000) d,=>d,
Jo (AB) - s(4.B) | s(4.B) =
Newt W4+ dA dg

s(A4,B) . s(A4,B)
s(4,4)+s(A.B) s(B,B)+s(A4,B)
e Min-Max-Cut (Ding et al, 2001)

s(A,B) N s(A,B)
s(4,4) s(B,B)

Jac(A,B) =

64



Other References

- A Tutorial on Spectral Clustering by U.
Luxburg
http://www.kyb.mpg.de/fileadmin/user u
pload/files/publications/attachments/Lux
burg07 tutorial 4488%5B0%5D.pdf

65
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Mining Graph/Network Data

- Graph / Network Data

- Ranking on Graph / Network

- Graph/Network Clustering

- Graph/Network CIassification«

*Summary
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Label Propagation in the Network

-Given a network, some nodes are given
labels, can we classify the unlabeled
nodes by using link information?

* I..g., Node 12 belongs _P
to Class 1 and Node 5 | > 5/\\
Belongs to Class 2 - / N s"??:ffjiﬁiiid / s




Reference

- Learning from Labeled and Unlabeled
Data with Label Propagation
- By Xi1aojn Zhu and Zoubin Ghahramani

- http://www.cs.cmu.edu/ zhuxj/pub/CMU-
CALD-02-107.pdf
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Problem Formalization

- Given n nodes
-1 with labels (Y3, Y5, ..., Y, are known)

- u without labels (Y41, Y;49, ..., Y, are
unknown)

Y isthen X C label matrix
« Cis the number of labels (classes)

*The adjacency matrix is W
- The probabilistic transition matrix T

l]_P(]_)l)_

W..

2k Wkj

69



The Label Propagation Algorithm

- Ste
- Ste

1

0 1: PropagateY <« TY

0 2: Row-normalize Y

ne summaton of the probability of each

object belonging to each class 1s 1

- Ste

p 3: Reset the labels for the labeled

nodes. Repeat 1-3 until Y converges
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Mining Graph/Network Data

- Graph / Network Data

- Ranking on Graph / Network
- Graph/Network Clustering

- Graph/Network Classification

*Summary -
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Summary

- Graph / Network Data

» Adjacency matrix

- Ranking on Graph / Network

- PageRank
- Personalized PageRank

- Network Clustering
- SCAN

» Spectral clustering

» Network classification
- Label propagation
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