
CS6220: DATA MINING TECHNIQUES

Instructor: Yizhou Sun
yzsun@ccs.neu.edu

November 27, 2014

Mining Graph/Network Data

mailto:sun22@illinois.edu

Methods to Learn
Matrix Data Set Data Sequence

Data
Time Series Graph &

Network

Classification Decision Tree; Naïve
Bayes; Logistic
Regression
SVM; kNN

HMM Label Propagation

Clustering K-means; hierarchical
clustering; DBSCAN;
Mixture Models;
kernel k-means

SCAN; Spectral
Clustering

Frequent
Pattern
Mining

Apriori;
FP-growth

GSP;
PrefixSpan

Prediction Linear Regression Autoregression

Similarity
Search

DTW P-PageRank

Ranking PageRank

2

Mining Graph/Network Data

• Graph / Network Data

• Ranking on Graph / Network

• Graph/Network Clustering

• Graph/Network Classification

• Summary

3

4

Graph, Graph, Everywhere

Aspirin Yeast protein interaction network

fr
o
m

 H
.
Je

o
n
g
 e

t
a
l
N

a
tu

re
 4

1
1
,
4
1
 (

2
0
0
1
)

Internet
Co-author network

5

Why Graph Mining?

• Graphs are ubiquitous

• Chemical compounds (Cheminformatics)

• Protein structures, biological pathways/networks (Bioinformactics)

• Program control flow, traffic flow, and workflow analysis

• XML databases, Web, and social network analysis

• Graph is a general model

• Trees, lattices, sequences, and items are degenerated graphs

• Diversity of graphs

• Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted,

with angles & geometry (topological vs. 2-D/3-D)

• Complexity of algorithms: many problems are of high complexity

Representation of a Graph

• 𝐺 =< 𝑉, 𝐸 >
• 𝑉 = {𝑢1, … , 𝑢𝑛}: node set

• 𝐸 ⊆ 𝑉 × 𝑉: edge set

• Adjacency matrix

• 𝐴 = 𝑎𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛

• 𝑎𝑖𝑗 = 1, 𝑖𝑓 < 𝑢𝑖 , 𝑢𝑗 >∈ 𝐸

• 𝑎𝑖𝑗 = 0, 𝑖𝑓 < 𝑢𝑖 , 𝑢𝑗 >∉ 𝐸

• Undirected graph vs. Directed graph

• 𝐴 = 𝐴T 𝑣𝑠. 𝐴 ≠ 𝐴T

• Weighted graph

• Use W instead of A, where 𝑤𝑖𝑗 represents the weight of edge
< 𝑢𝑖 , 𝑢𝑗 >

6

Mining Graph/Network Data

• Graph / Network Data

• Ranking on Graph / Network

• Graph/Network Clustering

• Graph/Network Classification

• Summary

7

Ranking on Graph / Network

•PageRank

•Personalized PageRank

8

The History of PageRank

• PageRank was developed by Larry Page (hence the name
Page-Rank) and Sergey Brin.

• It is first as part of a research project about a new kind of
search engine. That project started in 1995 and led to a
functional prototype in 1998.

• Shortly after, Page and Brin founded Google.

Ranking web pages

•Web pages are not equally “important”

• www.cnn.com vs. a personal webpage

• Inlinks as votes

• The more inlinks, the more important

•Are all inlinks equal?

• Recursive question!

10

http://www.cnn.com/

Simple recursive formulation

•Each link’s vote is proportional to the
importance of its source page

• If page P with importance x has n outlinks,
each link gets x/n votes

•Page P’s own importance is the sum of the
votes on its inlinks

11

Matrix formulation

• Matrix M has one row and one column for each web
page

• Suppose page j has n outlinks

• If j -> i, then Mij=1/n

• Else Mij=0

• M is a column stochastic matrix

• Columns sum to 1

• Suppose r is a vector with one entry per web page

• ri is the importance score of page i

• Call it the rank vector

• |r| = 1

12

Eigenvector formulation

•The flow equations can be written

r = Mr

•So the rank vector is an eigenvector of the
stochastic web matrix

• In fact, its first or principal eigenvector, with

corresponding eigenvalue 1

13

Example

Yahoo

M’softAmazon

y 1/2 1/2 0

a 1/2 0 1

m 0 1/2 0

y a m

y = y /2 + a /2

a = y /2 + m

m = a /2

r = Mr

y 1/2 1/2 0 y

a = 1/2 0 1 a

m 0 1/2 0 m

14

Power Iteration method

•Simple iterative scheme (aka relaxation)

•Suppose there are N web pages

• Initialize: r0 = [1/N,….,1/N]T

• Iterate: rk+1 = Mrk

•Stop when |rk+1 - rk|1 < 

• |x|1 = 1≤i≤N|xi| is the L1 norm

• Can use any other vector norm e.g., Euclidean

15

Power Iteration Example

Yahoo

M’softAmazon

y 1/2 1/2 0

a 1/2 0 1

m 0 1/2 0

y a m

y

a =

m

1/3

1/3

1/3

1/3

1/2

1/6

5/12

1/3

1/4

3/8

11/24

1/6

2/5

2/5

1/5

. . .

𝒓0 𝒓1 𝒓2 𝒓3 … 𝒓∗

Random Walk Interpretation

• Imagine a random web surfer
• At any time t, surfer is on some page P

• At time t+1, the surfer follows an outlink from
P uniformly at random

• Ends up on some page Q linked from P

• Process repeats indefinitely

•Let p(t) be a vector whose ith component
is the probability that the surfer is at page
i at time t
• p(t) is a probability distribution on pages

17

*The stationary distribution

•Where is the surfer at time t+1?
• Follows a link uniformly at random

• p(t+1) = Mp(t)

•Suppose the random walk reaches a state
such that p(t+1) = Mp(t) = p(t)
• Then p(t) is called a stationary distribution for
the random walk

•Our rank vector r satisfies r = Mr
• So it is a stationary distribution for the random
surfer

18

*Existence and Uniqueness

A central result from the theory of random walks (aka Markov

processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and
eventually will be reached no matter what
the initial probability distribution at time t
= 0.

19

Spider traps

•A group of pages is a spider trap if there
are no links from within the group to
outside the group

• Random surfer gets trapped

•Spider traps violate the conditions needed
for the random walk theorem

20

Microsoft becomes a spider trap

Yahoo

M’softAmazon

y 1/2 1/2 0

a 1/2 0 0

m 0 1/2 1

y a m

y

a =

m

1/3

1/3

1/3

1/3

1/6

1/2

1/4

1/6

7/12

5/24

1/8

2/3

0

0

1

. . .

21

Random teleports

•The Google solution for spider traps

•At each time step, the random surfer has
two options:
• With probability , follow a link at random

• With probability 1-, jump to some page
uniformly at random

• Common values for  are in the range 0.8 to
0.9

•Surfer will teleport out of spider trap
within a few time steps

22

Random teleports ( = 0.8)

Yahoo

M’softAmazon

1/2

1/2

0.8*1/2

0.8*1/2

0.2*1/3

0.2*1/3

0.2*1/3

y 1/2

a 1/2

m 0

y

1/2

1/2

0

y

0.8*

1/3

1/3

1/3

y

+ 0.2*

1/2 1/2 0

1/2 0 0

0 1/2 1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 13/15

0.8 + 0.2

23

Random teleports ( = 0.8)

Yahoo

M’softAmazon

1/2 1/2 0

1/2 0 0

0 1/2 1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 13/15

0.8 + 0.2

y

a =

m

24

PageRank

•Construct the N-by-N matrix A as follows
• M*

ij = Mij + (1-)/N

•Verify that M* is a stochastic matrix

•The page rank vector r is the principal
eigenvector of this matrix
• satisfying r = M*r

•Equivalently, r is the stationary
distribution of the random walk with
teleports

26

Dead ends

•Pages with no outlinks are “dead ends” for
the random surfer

• Nowhere to go on next step

27

Microsoft becomes a dead end

Yahoo

M’softAmazon

y

a =

m

1/3

1/3

1/3

1/3

0.2

0.2

0

0

0

. . .

1/2 1/2 0

1/2 0 0

0 1/2 0

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 1/15

0.8 + 0.2

Non-
stochastic!

28

Dealing with dead-ends

•Teleport
• Follow random teleport links with probability
1.0 from dead-ends

• Adjust matrix accordingly

•Prune and propagate
• Preprocess the graph to eliminate dead-ends

• Might require multiple passes

• Compute page rank on reduced graph

• Approximate values for deadends by
propagating values from reduced graph

29

Computing PageRank

• Key step is matrix-vector multiplication
• rnew = M*rold

• Easy if we have enough main memory to
hold M*, rold, rnew

• Say N = 1 billion pages
• We need 4 bytes for each entry (say)

• 2 billion entries for vectors, approx 8GB

• Matrix M* has N2 entries

• 1018 is a large number!

30

Rearranging the equation

r = M*r, where

M*
ij = Mij + (1-)/N

ri = 1≤j≤N M*
ij rj

ri = 1≤j≤N [Mij + (1-)/N] rj

=  1≤j≤N Mij rj + (1-)/N 1≤j≤N rj

=  1≤j≤N Mij rj + (1-)/N, since |r| = 1

r = Mr + [(1-)/N]N
where [x]N is an N-vector with all entries x

31

Sparse matrix formulation

• We can rearrange the page rank equation:
• r = Mr + [(1-)/N]N

• [(1-)/N]N is an N-vector with all entries (1-)/N

• M is a sparse matrix!
• 10 links per node, approx 10N entries

• So in each iteration, we need to:
• Compute rnew = Mrold

• Add a constant value (1-)/N to each entry in rnew

32

Sparse matrix encoding

•Encode sparse matrix using only nonzero
entries

• Space proportional roughly to number of links

• say 10N, or 4*10*1 billion = 40GB

• still won’t fit in memory, but will fit on disk

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source
node

degree destination nodes

33

Personalized PageRank

•Query-dependent Ranking

• For a query webpage q, which webpages are

most important to q?

• The relative important webpages to different

queries would be different

35

Calculation of P-PageRank
• Recall PageRank calculation:

• r = Mr + [(1-)/N]N or

• r = Mr + (1-) 𝑞0, where 𝑞0 =

1/𝑁
1/𝑁
…
1/𝑁

• For P-PageRank

• Replace 𝑞0 with 𝑞0=

0
0
…
1
…
0

36

qth webpage

Mining Graph/Network Data

• Graph / Network Data

• Ranking on Graph / Network

• Graph/Network Clustering

• Graph/Network Classification

• Summary

37

Clustering Graphs and Network Data

• Applications

• Bi-partite graphs, e.g., customers and products, authors and
conferences

• Web search engines, e.g., click through graphs and Web
graphs

• Social networks, friendship/coauthor graphs

38

Clustering books about politics [Newman, 2006]

Algorithms
• Graph clustering methods

• Density-based clustering: SCAN (Xu et al.,
KDD’2007)

• Spectral clustering

• Modularity-based approach

• Probabilistic approach

• Nonnegative matrix factorization

• …

39

SCAN: Density-Based Clustering of
Networks

• How many clusters?

• What size should they be?

• What is the best partitioning?

• Should some points be segregated?

40

An Example Network

 Application: Given simply information of who associates with whom,

could one identify clusters of individuals with common interests or

special relationships (families, cliques, terrorist cells)?

A Social Network Model

• Cliques, hubs and outliers

• Individuals in a tight social group, or clique, know many of the same

people, regardless of the size of the group

• Individuals who are hubs know many people in different groups but belong

to no single group. Politicians, for example bridge multiple groups

• Individuals who are outliers reside at the margins of society. Hermits, for

example, know few people and belong to no group

• The Neighborhood of a Vertex

41

v

 Define () as the immediate

neighborhood of a vertex (i.e. the set

of people that an individual knows)

Structure Similarity

• The desired features tend to be captured by a measure we

call Structural Similarity

• Structural similarity is large for members of a clique and small

for hubs and outliers

|)(||)(|

|)()(|
),(

wv

wv
wv




=




42

v

Structural Connectivity [1]

• -Neighborhood:

• Core:

• Direct structure reachable:

• Structure reachable: transitive closure of direct structure

reachability

• Structure connected:

}),(|)({)( = wvvwvN

  |)(|)(, vNvCORE

)()(),(,, vNwvCOREwvDirRECH  

),(),(:),(,,, wuRECHvuRECHVuwvCONNECT  

[1] M. Ester, H. P. Kriegel, J. Sander, & X. Xu (KDD'96) “A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases

43

Structure-Connected Clusters

• Structure-connected cluster C

• Connectivity:

• Maximality:

• Hubs:

• Not belong to any cluster

• Bridge to many clusters

• Outliers:

• Not belong to any cluster

• Connect to less clusters

),(:, , wvCONNECTCwv 

CwwvREACHCvVwv ),(:, ,

hub

outlier

44

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

45

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

0.63

46

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

0.75

0.67

0.82

47

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

48

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

0.67

49

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

0.73

0.73

0.73

50

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

51

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

0.51

52

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

0.68

53

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

0.51

54

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

55

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7 0.51

0.51

0.68

56

13

9

10

11

7

8

12

6

4

0

1
5

2

3

Algorithm

 = 2

 = 0.7

57

Running Time

• Running time = O(|E|)
• For sparse networks = O(|V|)

[2] A. Clauset, M. E. J. Newman, & C. Moore, Phys. Rev. E 70, 066111 (2004).
58

Spectral Clustering

•Reference: ICDM’09 Tutorial by Chris Ding

•Example:

• Clustering supreme court justices according to

their voting behavior

59

Example: Continue

60

Spectral Graph Partition

•Min-Cut

• Minimize the # of cut of edges

61

Objective Function

62

Minimum Cut with Constraints

63

New Objective Functions

64

Other References

•A Tutorial on Spectral Clustering by U.
Luxburg
http://www.kyb.mpg.de/fileadmin/user_u
pload/files/publications/attachments/Lux
burg07_tutorial_4488%5B0%5D.pdf

65

http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488[0].pdf

Mining Graph/Network Data

• Graph / Network Data

• Ranking on Graph / Network

• Graph/Network Clustering

• Graph/Network Classification

• Summary

66

Label Propagation in the Network

•Given a network, some nodes are given
labels, can we classify the unlabeled
nodes by using link information?

• E.g., Node 12 belongs

to Class 1 and Node 5

Belongs to Class 2

67

Reference

•Learning from Labeled and Unlabeled
Data with Label Propagation

• By Xiaojin Zhu and Zoubin Ghahramani

• http://www.cs.cmu.edu/~zhuxj/pub/CMU-

CALD-02-107.pdf

68

Problem Formalization

•Given n nodes
• l with labels (𝑌1, 𝑌2, … , 𝑌𝑙 𝑎𝑟𝑒 𝑘𝑛𝑜𝑤𝑛)

• u without labels (𝑌𝑙+1, 𝑌𝑙+2, … , 𝑌𝑛 are
unknown)

•𝑌 𝑖𝑠 𝑡ℎ𝑒 𝑛 × 𝐶 𝑙𝑎𝑏𝑒𝑙 𝑚𝑎𝑡𝑟𝑖𝑥
• C is the number of labels (classes)

•The adjacency matrix is W

•The probabilistic transition matrix T

•𝑇𝑖𝑗 = 𝑃 𝑗 → 𝑖 =
𝑤𝑖𝑗

 𝑘𝑤𝑘𝑗

69

The Label Propagation Algorithm

•Step 1: Propagate 𝑌 ← 𝑇𝑌

•Step 2: Row-normalize Y

• The summation of the probability of each

object belonging to each class is 1

•Step 3: Reset the labels for the labeled
nodes. Repeat 1-3 until Y converges

70

Mining Graph/Network Data

• Graph / Network Data

• Ranking on Graph / Network

• Graph/Network Clustering

• Graph/Network Classification

• Summary

71

Summary

• Graph / Network Data
• Adjacency matrix

• Ranking on Graph / Network
• PageRank

• Personalized PageRank

• Network Clustering
• SCAN

• Spectral clustering

• Network classification
• Label propagation

72

