CS 6220: Course Project Description

Instructor: Yizhou Sun
9/29/2014
General Goal

• Apply data mining algorithms and techniques to real-world problem
 • Formalize the problem into a data mining task
 • Apply or propose solutions to the task
 • Evaluate different solutions you have proposed
Dataset (ArnetMiner Publication Data)

• Data:
 • Provided by ArnetMiner (ArnetMiner.org)

• #index ---- index id of this paper
 #* ---- paper title
 #@ ---- authors (separated by semicolons)
 #t ---- year
 #c ---- publication venue
 #% ---- the id of references of this paper (there are multiple lines, with each indicating a reference)
 #! ---- abstract
Problem

• Goal:
 • Citation prediction for papers. Our goal is to predict the top-10 references for a given paper published in 2013, based on the information such as abstract, authors, venue, and title of the paper.
Grading

• Group formation (1 point)
 • 3-4 people per group
 • Where to submit: Sign-up in blackboard
 • When to submit: by this Sunday (9/21/14, 11:59pm)
 • What to submit: Group name, group members, group leader

• Midterm report (4 points) (deadline: 10/19/14)
 • A first submission in Kaggle
 • A report indicating your solution plan

• Kaggle competition result, final report and code (25 points) (Deadline: 12/8/14)
 • Kaggle competition result (based on up to 3 different solutions): 15 points
 • Report and code: 10 points
Kaggle Inclass Link

 - Every team can only have one account: the same name as your group name (GroupID_GroupName)
 - You can select up to 3 versions for your final review
 - The final testing file would be a superset to the existing one
Collaboration Rules

• Every team member get the same score
 • Exception: the team has the right to claim someone as a freerider, and votes to downgrade his/her score

• In the final report, you need to include a table describing your work distribution
 • e.g.,

<table>
<thead>
<tr>
<th>Task</th>
<th>People</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Collecting and preprocessing data</td>
<td>Student A</td>
</tr>
<tr>
<td>2. Implementing Algorithm 1</td>
<td>Student B</td>
</tr>
<tr>
<td>3. Implementing Algorithm 2</td>
<td>Student C and D</td>
</tr>
<tr>
<td>4. Evaluating and comparing algorithms</td>
<td>Student A</td>
</tr>
<tr>
<td>5. Writing report</td>
<td>Student B and C</td>
</tr>
</tbody>
</table>

• Finally, you will be asked to submit a peer evaluation form (only be seen to the instructor and TAs)