CS 6220: Course Project Description

Instructor: Yizhou Sun

9/29/2014

General Goal

- Apply data mining algorithms and techniques to real-world problem
 - Formalize the problem into a data mining task
 - Apply or propose solutions to the task
 - Evaluate different solutions you have proposed

Dataset (ArnetMiner Publication Data)

• Data:

- Provided by ArnetMiner (ArnetMiner.org)
- #index ---- index id of this paper

#* ---- paper title

- #@ ---- authors (separated by semicolons)
- #t ---- year
- #c ---- publication venue

#% ---- the id of references of this paper (there are multiple lines, with each indicating a reference)

#! ---- abstract

Problem

- Goal:
 - Citation prediction for papers. Our goal is to predict the top-10 references for a given paper published in 2013, based on the information such as abstract, authors, venue, and title of the paper.

Grading

- Group formation (1 point)
 - 3-4 people per group
 - Where to submit: Sign-up in blackboard
 - When to submit: by this Sunday (9/21/14, 11:59pm)
 - What to submit: Group name, group members, group leader
- Midterm report (4 points) (deadline: 10/19/14)
 - A first submission in Kaggle
 - A report indicating your solution plan
- Kaggle competition result, final report and code (25 points) (Deadline: 12/8/14)
 - Kaggle competition result (based on up to 3 different solutions): 15 points
 - Report and code: 10 points

Kaggle Inclass Link

- <u>http://inclass.kaggle.com/c/nu-cs6220-14f/</u>
 - Every team can only have one account: the same name as your group name (GroupID_GroupName)
 - You can select up to 3 versions for your final review
 - The final testing file would be a superset to the existing one

Collaboration Rules

- Every team member get the same score
 - Exception: the team has the right to claim someone as a freerider, and votes to downgrade his/her score
- In the final report, you need to include a table describing your work distribution

• e.g.,	Task	People
	1. Collecting and preprocessing data	Student A
	2. Implementing Algorithm 1	Student B
	3. Implementing Algorithm 2	Student C and D
	4. Evaluating and comparing algorithms	Student A
	5. Writing report	Student B and C

• Finally, you will be asked to submit a peer evaluation form (only be seen to the instructor and TAs)