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ABSTRACT 
Network clustering (or graph partitioning) is an important task for 
the discovery of underlying structures in networks. Many 
algorithms find clusters by maximizing the number of intra-cluster 
edges. While such algorithms find useful and interesting 
structures, they tend to fail to identify and isolate two kinds of 
vertices that play special roles – vertices that bridge clusters 
(hubs) and vertices that are marginally connected to clusters 
(outliers).  Identifying hubs is useful for applications such as viral 
marketing and epidemiology since hubs are responsible for 
spreading ideas or disease.  In contrast, outliers have little or no 
influence, and may be isolated as noise in the data. In this paper, 
we proposed a novel algorithm called SCAN (Structural 
Clustering Algorithm for Networks), which detects clusters, hubs 
and outliers in networks. It clusters vertices based on a structural 
similarity measure. The algorithm is fast and efficient, visiting 
each vertex only once.  An empirical evaluation of the method 
using both synthetic and real datasets demonstrates superior 
performance over other methods such as the modularity-based 
algorithms. 

Categories and Subject Descriptors 
I.5.3 [PATTERN RECOGNITION]: Clustering – Algorithms, 
Similarity measures. 

General Terms 
Algorithms, Performance 

Keywords 
Network clustering, Graph partitioning, Community Structure, 
Hubs, Outliers 

1. INTRODUCTION 
Much data of current interest to the scientific community can be 
modeled as networks (or graphs). A network is sets of vertices, 
representing objects, connected together by edges, representing 
the relationship between objects. For example, a social network 
can be viewed as a graph where individuals are represented by 
vertices; and the friendship between individuals are edges [1].  
Similarly, the world-wide web can be modeled as a graph, where 
web pages are represented as vertices that are connected by an 
edge when one pages contains a hyperlink to another [2] [3]. 

Network clustering (or graph partitioning) is a fundamental 
approach for detecting hidden structures in networks that, because 
of many interesting applications, is drawing increased attention in 

computer science [4][5], physics [11], and bioinformatics [6]. 
Various methods have been developed.  These methods tend to 
cluster networks such that there are a dense set of edges within 
every cluster and few edges between clusters. Modularity-based 
algorithms [6][11][12] and normalized cut [4][5] are successful 
examples. However, they do not distinguish the roles of the 
vertices in the networks.  Some vertices are members of clusters; 
some vertices are hubs that bridge many clusters but don’t belong 
to any, and some vertices are outliers that have only a weak 
association with a particular cluster.   The situation is illustrated in 
Figure 1. 

 
Figure 1. A Network with 2 Clusters, a Hub and an Outlier. 

The existing methods such as modularity-based algorithm [12]  
will partition this example into two clusters: one consisting of 
vertices 0 to 6 and the other consisting of vertices 7 to 13.  They 
do not isolate vertex 6, a hub whose membership in either cluster 
is disputable, or vertex 13, which has only a single connection to 
the network.  

The identification and isolation of hubs is essential for many 
applications. As an example, the identification of hubs in the 
WWW improves the search for relevant authoritative web pages 
[7]. Furthermore, hubs are believed to play a crucial role in viral 
marketing [8] and epidemiology [9]. 

In this paper, we propose a new method for network clustering 
called SCAN (Structural Clustering Algorithm for Networks). The 
goal of our method is to find clusters, hubs, and outliers in large 
networks. To achieve this goal, we use the neighborhood of the 
vertices as clustering criteria instead of only their direct 
connections. Vertices are grouped into the clusters by how they 
share neighbors. Doing so makes sense when you consider the 
detection of communities in large social networks.  Two people 
who share many friends should be clustered in the same 
community. 

Refer again to the example in figure 1.  Consider vertices 0 and 5, 
which are connected by an edge.  Their neighborhoods are the 
vertex sets {0, 1, 4, 5, 6} and {0, 1, 2, 3, 4, 5}, respectively.  They 
share many neighbors and thus are reasonably grouped together in 
the same cluster.  In contrast, consider the neighborhoods of 
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vertex 13 and vertex 9.  These two vertices are connected, but 
share only two common neighbors, i.e. {9, 13}. Therefore, it is 
doubtful that they should be grouped into the same cluster. The 
situation for vertex 6 is a little different. It has many neighbors, 
but they are sparsely interconnected.  

Our method, SCAN, identifies two clusters, {0, 1, 2, 3, 4, 5} and 
{7, 8, 9, 10, 11, 12}, and isolates vertex 13 as an outlier and 
vertex 6 as a hub. 

SCAN has the following features: 

• It detects clusters, hubs, and outliers by using the 
structure and the connectivity of the vertices as 
clustering criteria. Through theoretical analysis and 
experimental evaluation we will demonstrate that SCAN 
can find meaningful clusters and identify hubs and 
outliers in very large networks. 

• It is fast. Its running time on a network with n vertices 
and m edges is O(m).  In contrast, the running time of 
the fast modularity-based algorithm [12], the fastest 
existing network clustering algorithm, is O(md log n). 

The paper is organized as follows. We review the related work for 
network clustering algorithms in section 2. We formulize the 
notion of structure-connected clusters in section 3. We describe 
the algorithm SCAN in section 4. We give a computation 
complexity analysis of SCAN in section 5. We compare SCAN to 
the fast modularity-based network clustering algorithm in section 
6. Finally, we present our conclusions and suggest future work in 
section 7. 

2. RELATED WORK 
Network clustering (or graph partitioning) is the division of a 
graph into a set of sub-graphs, called clusters. More specifically, 
given a graph G = {V, E}, where V is a set of vertices and E is a 
set of edges between vertices, the goal of graph partitioning is to 
divide G into k disjoint sub-graphs Gi = {Vi, Ei}, in which Vi ∩ Vj 

= Φ for any i≠j, and ∑
=

=
k

i
iVV

1

.  The number of sub-graphs, k, 

may or may not be known a priori. In this paper, we focus on 
simple, undirected, and un-weighted graphs.  
The problem of finding good clustering of networks has been 
studied for some decades in many fields, particularly computer 
science and physics.   Here we review some of the more common 
methods. 
The min-max cut method [4] seeks to partition a graph G={V, E} 
into two clusters A and B. The principle of min-max clustering is 
minimizing the number of connections between A and B and 
maximizing the number of connections within each.  A cut is 
defined the number of edges that would have to be removed to 
isolate the vertices in cluster A from those in cluster B. The min-
max cut algorithm searches for the clustering that creates two 
clusters whose cut is minimized and while maximizing the 
number of remaining edges.  
A pitfall of this method is that, if one cuts out a single vertex from 
the graph, one will probably achieve the optimum. Therefore, in 
practice, the optimization must be accompanied with some 
constraint, such as A and B should be of equal or similar size, or 
|A| ≈ |B|.  Such constraints are not always appropriate; for 
example, in social networks some communities are much larger 
than the others.  

To amend the issue, a normalized cut was proposed [5], which 
normalizes the cut by the total number connections between each 
cluster to the rest of the graph. Therefore, cutting out one vertex 
or some small part of the graph will no longer always yield an 
optimum.  
Both min-max cut and normalized cut methods partition a graph 
into two clusters. To divide a graph into k clusters, one has to 
adopt a top-down approach, splitting the graph into two clusters, 
and then further splitting these clusters, and so on, until k clusters 
have been detected. There is no guarantee of the optimality of 
recursive clustering.  There is no measure of the number of 
clusters that should be produced when k is unknown.  There is no 
indicator to stop the bisection procedure.   
Recently, modularity was proposed as a quality measure of 
network clustering [11]. For a clustering of graph with k clusters, 
the modularity is defined as: 
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L is the number of edges in the graph, ls is the number of edges 
between vertices within cluster s, and ds is the sum of the degrees 
of the vertices in cluster s. The modularity of a clustering of a 
graph is the fraction of all edges that lie within each cluster minus 
the fraction that would lie within each cluster if the graph’s 
vertices were randomly connected. Optimal clustering is achieved 
when the modularity is maximized. Modularity is defined such 
that it is 0 for two extreme cases: when all vertices partitioned into 
a single cluster, and when the vertices are clustered at random. 
Note that the modularity measures the quality of any network 
clustering.  Normalized and min-max cut measures only the 
quality of a clustering of two clusters. 
Finding the maximum Q is NP-complete. Instead of performing 
an exhaustive search, various optimization approaches are 
proposed. For example, a greedy method based on a hierarchical 
agglomeration clustering algorithm is proposed in [12], which is 
faster than many competing algorithms: its running time on a 
graph with n vertices and m edges is O(md log n) where d is the 
depth of the dendrogram describing the hierarchical cluster 
structure.  Also, Guimera and Amaral [6] optimize modularity 
using simulated annealing. 
To summarize, the network clustering methods discussed in this 
section aim to find clusters such that there are many connections 
between vertices within the same clusters and few without. While 
all these network clustering methods successfully find clusters, 
they are generally unable to detect hubs and outliers like those in 
the example in Figure 1.  Such vertices invariably are included in 
one cluster or another. 

3. THE NOTION OF STRUCTURE-
CONNECTED CLUSTERS 

Our goal is both to cluster networks optimally and to identify and 
isolate hubs and outliers. Therefore, both connectivity and local 
structure is used in our definition of optimal clustering. In this 
section, we formulize the notion of a structure-connected cluster, 
which extends that of a density-based cluster [10] and can 
distinguish good clusters, hubs, and outliers in networks. In 
section 4, we present, SCAN, an efficient algorithm to find the 
optimal clustering of networks. 
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3.1 Structure-connected Clusters 
The existing network clustering methods reviewed in section 2 are 
designed to find optimal clustering of networks based on the 
number of edges between vertices or between clusters.  Direct 
connections are important, but they represent only one aspect of 
the network structure.  We think the neighborhood around two 
connected vertices is also important.  The neighborhood of a 
vertex includes all the vertices connected to it by an edge. When 
you consider a pair of connected vertices, their combined 
neighborhood reveals neighbors common to both vertices. 

Our method is based on common neighbors. Two vertices are 
assigned to a cluster according to how they share neighbors. This 
makes sense when you consider social communities.  People who 
share many friends create a community, and the more friends they 
have in common, the more intimate the community. But in social 
networks there are different kinds of actors.  There are also people 
who are outsiders (like hermits), and there are people who are 
friendly with many communities but belong to none (like 
politicians).  The latter play a special role in small-world networks 
as hubs [13].  Such a hub is illustrated by vertex 6 in Figure 1.   

In this paper, we focus on simple, undirected and un-weighted 
graph. Let G = {V, E} be a graph, where V is a set of vertices; and 
E is set of pairs (unordered) of distinct vertices, called edges.  

The structure of a vertex can be described by its neighborhood. A 
formal definition of vertex structure is given as follows. 

DEFINITION 1 (VERTEX STRUCTURE) 

Let v ∈ V, the structure of v is defined by its neighborhood, 
denoted by Γ(v) 

 Γ(v) = {w ∈ V | (v,w) ∈ E} ∪ {v} 

In Figure 1 vertex 6 is a hub sharing neighbors with two clusters. 
If we only use the number of shared neighbors, vertex 6 will be 
clustered into either of the clusters or cause the two clusters to 
merge. Therefore, we normalize the number of common neighbors 
by the geometric mean of the two neighborhoods’ size. 

DEFINITION 2 (STRUCTURAL SIMILARITY) 

|)(||)(|
|)()(|),(

wv
wvwv

ΓΓ
ΓΓ

=
Iσ  

When a member of a cluster shares a similar structure with one of 
its neighbors, their computed structural similarity will be large.  
We apply a threshold ε to the computed structural similarity when 
assigning cluster membership, formulized in the followingε.-
neighborhood definition. 

DEFINITION 3 (ε-NEIGHBORHOOD) 

}),(|)({)( εσε ≥Γ∈= wvvwvN  

When a vertex shares structural similarity with enough neighbors, 
it becomes a nucleus or seed for a cluster. Such a vertex is called a 
core vertex.  Core vertices are a special class of vertices that have 
a minimum of μ neighbors with a structural similarity that 
exceeds the threshold ε. From core vertices we grow the clusters.  
In this way the parameters μ and ε determine the clustering of 
networks. For a given ε, the minimal size of a cluster is 
determined by μ. 

DEFINITION 4 (CORE) 

Let ε ∈ ℜ and μ ∈ ℵ. A vertex v ∈ V is called a core w.r.t. ε and 
μ, if its ε-neighborhood contains at least μ vertices, formally: 

μεμε ≥⇔ |)(|)(, vNvCORE  

We grow clusters from core vertices as follows.  If a vertex is in 
ε-neighborhood of a core, it should be also in the same cluster. 
They share a similar structure and are connected. This idea is 
formulized in the following definition of direct structure 
reachability. 

DEFINITION 5 (DIRECT STRUCTURE REACHABILITY) 

)()(),( ,, vNwvCOREwvDirREACH εμεμε ∈∧⇔  

Direct structure reachablility is symmetric for any pair of cores. 
However, it is asymmetric if one of the vertices is not a core. The 
following definition is a canonical extension of direct structure 
reachability. 

DEFINITION 6 (STRUCTURE REACHABILITY) 

Let ε ∈ ℜ and μ ∈ ℵ. A vertex w ∈ V is structure reachable from 
v ∈ V w.r.t ε and μ, if there is a chain of vertices v1,…,vn ∈ V, v1 = 
v, vn = w such that vi+1 is directly structure reachable from vi, 
formally: 

⇔),(, wvREACH με  

∧=∧=∈∃ wvvvVvv nn 11 :,...  

).,(:}1,...,1{ 1, +−∈∀ ii vvDirREACHni με  

The structure reachability is transitive, but it is asymmetric. It is 
only symmetric for a pair of cores. More specifically, the 
structure-reachability is a transitive closure of direct structure-
reachablility. 

Two non-core vertices in the same cluster may not be structure-
reachable because the core condition may not hold for them. But 
they still belong to the same cluster because they both are 
structure reachable from the same core. This idea is formulized in 
the following definition of structure connectivity. 

DEFINITION 7 (STRUCTURE CONNECTIVITY) 

Let ε ∈ ℜ and μ ∈ ℵ. A vertex v ∈ V is structure-connected to a 
vertex w ∈ V w.r.t ε and μ, if there is a vertex u ∈ V such that 
both v and w are structure reachable from u, formally: 

⇔),(, wvCONNECT με  

).,(),(: ,, wuREACHvuREACHVu μεμε ∧∈∃  

The structure connectivity is a symmetric relation. For the 
structure reachable vertices, it is also reflective. 

Now we are ready to define a cluster as structure-connected 
vertices, which is maximal w.r.t. structure reachability. 

DEFINITION 8 (STRUCTURE-CONNECTED CLUSTER) 

Let ε ∈ ℜ and μ ∈ ℵ. A non-empty subset C ⊆ V is called a 
structure-connected cluster w.r.t ε and μ, if all vertices in C are 
structure-connected and C is maximal w.r.t structure reachability, 
formally: 

⇔)(, CCLUSTER με  

(1) Connectivity:  
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),(:, , wvCONNECTCwv με∈∀  

(2) Maximality: 

CwwvREACHCvVwv ∈⇒∧∈∈∀ ),(:, ,με  

Now we can define a clustering of a network G w.r.t. the given 
parameters ε and μ as all structure-connected clusters in G. 

DEFINITION 9 (CLUSTERING) 

Let ε ∈ ℜ and μ ∈ ℵ. A clustering P of network G = <V, E> 
w.r.t. ε and μ consists of all structure-connected clusters w.r.t. ε 
and μ in G, formally: 

CLUSTERINGε,μ(P) ⇔ P = {C ⊆ V | CLUSTERε,μ(C)} 

A vertex is either a member of a structure-connected cluster, or it 
is isolated, i.e. it does not belong to any of the structure-connected 
cluster. If a vertex is not a member of any structure-connected 
clusters, it is either a hub or an outlier, depending on its 
neighborhood.  

DEFINITION 10 (HUB) 

Let ε ∈ ℜ and μ ∈ ℵ. For a given clustering P, i.e. 
CLUSTERINGε,μ(P), if an isolated vertex v ∈ V has neighbors 
belonging to two or more different clusters w.r.t. ε and μ, it is a 
hub (it bridges different clusters) w.r.t. ε and μ, formally, 

HUB∈,μ(v) ⇔ 

(1) v is not a member of any cluster: 

∀ C ∈ P: v ∉ C  

(2) v bridges different clusters: 

∃ p, q ∈ Γ(v): ∃ X, Y ∈ P: X ≠ Y ∧ p ∈ X  ∧  q ∈ Y. 

DEFINITION 11 (OUTLIER) 

Let ε ∈ ℜ and μ ∈ ℵ. For a given clustering P, i.e. 
CLUSTERINGε,μ(P), an isolated vertex v ∈ V is an outlier if and 
only if all its neighbors either belong to only one cluster or do not 
belong to any cluster, formally, 

OUTLIER∈,μ(v) ⇔ 

(1) v is not a member of any cluster: 

∀ C ∈ P: v ∉ C  

(2) v does not bridge different clusters: 

¬∃ p, q ∈ Γ(v): ∃ X, Y ∈ P: X ≠ Y ∧ p ∈ X  ∧  q ∈ Y. 

In practice, the definition of a hub and an outlier is flexible.  It 
may be more useful to regard hubs as a special kind of outlier, 
since both are isolated vertices.  The more clusters in which an 
outlier has neighbors, the more strongly that vertex acts as a hub 
between those clusters.  This point will be discussed further when 
we consider actual networks. 

The following lemmas are important for validating the correctness 
of our proposed algorithm. Intuitively, the lemmas mean the 
following. Given a graph G=<V,E> and two parameters ε and μ, 
we can find structure-connected clusters in a two-step approach. 
First, choose an arbitrary vertex from V satisfying the core 
condition as a seed. Second, retrieve all the vertices that are 

structure reachable from the seed to obtain the cluster grown from 
the seed. 

LEMMA 1. 

Let v∈V. If v is a core, then the set of vertices, which are structure 
reachable from v is a structure connected cluster, formally:  

)},(|{)( ,, wvREACHVwCvCORE μεμε ∈=∧  

)(, CPARTITION με⇒  

PROOF: 

(1) C ≠ 0: 

By assumption, COREε,μ(v) and thus, REACHε,μ(v,v) ⇒ v ∈ C. 

(2) Maximality: 

Let p ∈ C and q ∈ V and REACHε,μ(p,q). 

⇒ REACHε,μ(v,p) ∧ REACHε,μ(p,q) 

⇒ REACHε,μ(v,q), since structure reachability is transitive. 

⇒ q ∈ C. 

(3) Connectivity: 

∀ p, q ∈ C: REACHε,μ(v,p) ∧ REACHε,μ(v,q) 

⇒ CONNECTε,μ(p,q), via v. � 

Furthermore, a structure-connected cluster C with respect to ε, μ 
is uniquely determined by any of its cores, i.e., each vertex in C is 
structure reachable from any of the cores of C and, therefore, a 
structure-connected cluster C contains exactly the vertices which 
are structure reachable from an arbitrary core of C. 

LEMMA 2. 

Let C ⊆ V be a structure-connected cluster. Let p ∈ C be a core. 
Then, C equals the set of vertices, which are structure reachable 
from p, formally: 

CLUSTERε,μ(C) ∧ p ∈ C ∧ COREε,μ(p) 

⇒ C = {v ∈ V | REACHε,μ(p,v)} 

PROOF: 

Let Ĉ = {v ∈ V | REACHε,μ(p,v)}. We have to show that C = Ĉ: 

(1) Ĉ ⊆ C: it is obvious from the definition of Ĉ. 

(2) C ⊆ Ĉ: Let q ∈ C. By assumption, p ∈ C ∧  
CLUSTERε,μ(C). 

⇒ ∃ u ∈ C: REACHε,μ(u,p) ∧ REACHε,μ(u,q) 

⇒ REACHε,μ(p,u), since both u and p are cores; and structure 
reachability is symmetric for cores. 

⇒ REACHε,μ(p,q), since structure reachability is transitive. 

⇒  q ∈ Ĉ.  � 

4. ALGORITHM SCAN 
In this section, we describe the algorithm SCAN which 
implements the search for clusters, hubs and outliers.  As 
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mentioned in section 3.1, the search begins by first visiting each 
vertex once to find structure-connected clusters, and then visiting 
the isolated vertices to identify them as either a hub or an outlier.  

The pseudo code of the algorithm SCAN is presented in Figure 2. 
SCAN performs one pass of a network and finds all structure-
connected clusters for a given parameter setting. At the beginning 
all vertices are labeled as unclassified. The SCAN algorithm 
classifies each vertex either a member of a cluster or a non-
member. For each vertex that is not yet classified, SCAN checks 
whether this vertex is a core (STEP 1 in Figure 2). If the vertex is 
a core, a new cluster is expanded from this vertex (STEP 2.1 in 
Figure 2). Otherwise, the vertex is labeled as a non-member 
(STEP 2.2 in Figure 2). To find a new cluster, SCAN starts with 
an arbitrary core v and search for all vertices that are structure-
reachable from v in STEP 2.1. This is sufficient to find the 
complete cluster containing vertex v, due to lemma 2. In STEP 
2.1, a new cluster ID is generated which will be assigned to all 
vertices found in STEP 2.1. SCAN begins by inserting all vertices 
in ε-neighborhood of vertex v into a queue. For each vertex in the 
queue it computes all directly reachable vertices and inserts those 
vertices into the queue which are still unclassified. This is 
repeated until the queue is empty. 

 
Figure 2. The Pseudo Code of the Algorithm SCAN 

The non-member vertices can be further classified as hubs or 
outliers in STEP 3. If an isolated vertex has edges to two or more 

clusters, it is may be classified as a hub. Otherwise, it is an outlier.  
This final classification is done according to what is appropriate 
for the network.  As mentioned earlier, the more clusters in which 
an outlier has neighbors, the more strongly that vertex acts as a 
hub between those clusters.  Likewise, a vertex might bridge only 
two clusters, but how strongly it is viewed as a hub may depend 
on how aggressively it bridges them. 

As discussed in Section 3, the results of SCAN do not depend on 
the order of processed vertices, i.e. the obtained clustering of 
network (number of clusters and association of cores to clusters) 
is determinate. 

5. COMPLEXITY ANALYSIS 
In this section, we present an analysis of the computation 
complexity of the algorithm SCAN. Given a graph with m edges 
and n vertices, SCAN first finds all structure-connected clusters 
w.r.t. a given parameter setting by checking each vertex of the 
graph (STEP 1 in Figure 2). This entails retrieval of all the 
vertex’s neighbors. Using an adjacency list, a data structure where 
each vertex has a list of which vertices it is adjacent to, the cost of 
a neighborhood query is proportional to the number of neighbors, 
that is, the degree of the query vertex. Therefore, the total cost is 
O(deg(v1)+deg(v2)+…deg(vn)), where deg(vi), i = 1,2,…,n is the 
degree of vertex vi. If we sum all the vertex degrees in G, we 
count each edge exactly twice: once from each end. Thus the 
running time is O(m).  

We also derive the running time in terms of the number of 
vertices, should the number of edges be unknown.  In the worst 
case, each vertex connects to all the other vertices for a complete 
graph. The worst case total cost, in terms of the number of 
vertices, is O(n(n-1)), or O(n2). However, real networks generally 
have sparser degree distributions. In the following we derive the 
complexity for an average case, for which we know the 
probability distribution of the degrees. One type of network is the 
random graph, studied by Erdös and Rényi [20].   Random graphs 
are generated by placing edges randomly between vertices. 
Random graphs have been employed extensively as models of real 
world networks of various types, particularly in epidemiology. 
The degree of a random graph has a Poisson distribution:  

!
)1()(

k
ezpp

k
n

kp
zk

knk ≈−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −  

which indicates that most nodes have approximately the same 
number of links (close to the average degree E(k)=z). In the case 
of random graphs the complexity of SCAN is O(n).  

Many real networks, such as social networks, biological networks 
and the WWW follow a power-law degree distribution.  The 
probability that a node has k edges,P(k), is on the order k-α, where 
α is the degree exponent. A value between 2 and 3 was observed 
for the degree exponent for most biological and non-biological 
networks studied by the Faloutsos brothers [21] and Barabási and 
Oltvai [22]. The expected value of degree is E(k)= α/(α-1). In this 
case the average cost of SCAN is again O(n). 

Therefore, the complexity in terms of the number of edges in the 
graph for SCAN algorithm is in general linear. The complexity in 
terms of the number of vertices is quadratic in the worst case of a 
complete graph. For real networks like social networks, biological 
networks and computer networks, SCAN expects linear 
complexity with respect to the number of vertices. This is 
confirmed by our empirical study described in the next section. 

ALGORITHM SCAN(G=<V, E>, ε, μ) 
// all vertices in V are labeled as unclassified; 

for each unclassified vertex v ∈ V do 
// STEP 1. check whether v is a core; 

if COREε,μ(v) then 
// STEP 2.1. if v is a core, a new cluster is expanded; 

generate new clusterID; 
insert all x ∈ Nε (v) into queue Q; 
while Q ≠ 0 do 
 y = first vertex in Q; 
 R = {x ∈ V | DirREACHε,μ(y, x)}; 
 for each x ∈ R do 
 if x is unclassified or non-member then 
 assign current clusterID to x; 
 if x is unclassified then 
 insert x into queue Q; 
 remove y from Q; 

else 
// STEP 2.2. if v is not a core, it is labeled as non-member 
 label v as non-member; 
end for. 
// STEP 3. further classifies non-members 
for each non-member vertex v do 
 if ( ∃ x, y ∈ Γ(v) ( x.clusterID ≠ y.clusterID) then 
 label v as hub 
 else 
 label v as outlier; 
end for. 
end SCAN. 

828

Research Track Paper



6. EVALUATION 
In this section we evaluate the algorithm SCAN using both 
synthetic and real datasets. The performance of SCAN is 
compared with FastModularity, a fast modularity-based network 
clustering algorithm proposed by Clauset et al in [12], which is 
faster than many competing algorithms: its running time on a 
graph with n vertices and m edges is O(md log n) where d is the 
depth of the dendrogram describing the hierarchical cluster 
structure. We implemented SCAN in C++. We used the original 
source code of FastModularity by Clauset et al [17]. All the 
experiments were conducted on a PC with a 2.0 GHz Pentium 4 
processor and 1 GB of RAM. 

6.1 Efficiency 
To evaluate the computational efficiency of the proposed 
algorithm we generate ten graphs with the number of vertices 
ranging from 1,000 to 1,000,000 and the number of edges ranging 
from 2,182 to 2,000,190.  We adapted the construction as used in 
[11] as follows: first we generate clusters such that each vertex 
connects to vertices within the same cluster with a probability Pi, 
and connects to vertices outside its cluster with a probability 
Po<Pi. Next we add a number of hubs and outliers. An example of 
a generated graph is presented in Figure 3.  
The running time for FastModularity and SCAN on the synthetic 
graphs are plotted in Figure 4 and 5, respectively.  Running time 
is plotted in both as a function of the number of nodes and the 
number of edges.  Figure 5 shows that SCAN’s performance is in 
fact linear w.r.t. to the number of vertices and the number of 
edges, while FastModularity’s performance is basically quadratic 
and scales poorly for large graphs.  Note the difference in scale 
for the y-axis between the two figures. 

6.2 Effectiveness 
To evaluate the effectiveness of network clustering, we use real 
datasets whose clusters are known a priori. These real datasets 
include American College Football and Books about US politics. 
We also apply the clustering algorithm to customer segmentation. 
We use adjusted Rand index (ARI) [15] as a measure of 
effectiveness of network clustering algorithms in addition to 
visually comparing the generated clusters to the actual. 

 
Figure 3. A Synthetic Graph with 1,000 Vertices 

 
Figure 4. Running Time for FastModularity 

 
Figure 5. Running Time for SCAN 

6.2.1 Adjusted Rand Index 
A measure of agreement is needed when comparing the results of 
a network clustering algorithm to the expected clustering. Rand 
Index [14] serves this purpose. One problem with the Rand Index 
is that the expected value when comparing two random clustering 
is not constant.  An Adjusted Rand Index was proposed by Hubert 
and Arabie [15] to fix this problem. The Adjusted Rand Index 
(ARI) is defined as follows: 

 
where ni,j is the number of vertices in both cluster xi and yj; and ni,⋅ 
and n⋅,j is the number of vertices in cluster xi and yj respectively.  
Milligan and Cooper [16] evaluated many different indices for 
measuring agreement between two network clustering with 
different numbers of clusters and recommend the Adjusted Rand 
Index as the measure of choice. We adopt the Adjusted Rand 
Index as our measure of agreement between the network 
clustering result and the true clustering of the network. 

6.2.2 College Football 
The first real dataset we examine is the 2006 NCAA Football 
Bowl Subdivision (formerly Division 1-A) football schedule.  
This example is inspired by the set studied by Newman and 
Girvan [11], who consider contests between Div. 1-A teams in 
2000.  Our set is more complex, considering all contests of the 
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Bowl Subdivision schools including those against schools in 
lower divisions.   
The challenge is to discover the underlying structure of this 
network – the college conference system.  The National Collegiate 
Athletic Association (NCAA) divides 115 schools into eleven 
conferences.  In addition there are four independent schools at this 
top level: Army, Navy, Temple, and Notre Dame. Each Bowl 
Subdivision school plays against schools within their own 
conference, against schools in other conferences, and against 
lower division schools.  The network contains 180 vertices (119 
Bowl Subdivision schools and 61 lower division schools) 
interconnected by 787 edges.  Figure 6 shows this network with 
schools in the same conference identified by color. 

 Figure 6. NCAA Football Bowl Subdivision schedule as a 
network, showing the 12 conferences in color, independent 

schools in black, and lower division schools in white. 
This example illustrates kinds of structures that our method seeks 
to address.  Schools in the same conference are clusters.  The four 
independent schools play teams in many conferences but belong 
to none; they are hubs.  The lower division schools are only 
weakly connected to the clusters in the network; they are outliers. 
First we cluster this network by using the FastModularity 
algorithm.  The results, for which the modularity is 0.599 is 
shown in Figure 7. Maximizing Newman’s modularity gives a 
satisfying network clustering, identifying nine clusters. All 
schools in the same conference are clustered together. However, 
two of the conferences are merged (the Western Athletic and 
Mountain West conferences and the Mid-American and Big Ten 
conferences), the four independent schools are classified into 
various conferences despite their hub-like properties. All lower 
division teams are assigned to clusters. 
Next we cluster the network using our SCAN algorithm, using the 
parameters (ε= 0.5, μ = 2).  This partition succeeds in capturing 
all the features of the graph. Eleven clusters are identified, 
corresponding exactly to the eleven conferences.  All schools in 
the same conference are clustered together.  The independent 
schools and the lower division schools are unclassified – they 
stand apart from the clusters.  The four independent schools show 
strong properties as hubs; they have inactive edges that connect 

them to a large number of clusters – at minimum five. In contrast 
the lower division schools have only week connections to clusters 
– one or two, and in a single case three.  They are true outliers.  
This partition matches perfectly the underlying structure shown in 
Figure 6. 

 
Figure 7. NCAA Football Bowl Subdivision schedule as 

clustered by FastModularity Algorithm. 

6.2.3 Books about US politics 
The second example is the classification of books about US 
politics. We use the dataset of Books about US politics compiled 
by Valdis Krebs [18]. The vertices represent books about US 
politics sold by the online bookseller Amazon.com.  The edges 
represent frequent co-purchasing of books by the same buyers, as 
indicated by the "customers who bought this book also bought 
these other books" feature on Amazon. The vertices have been 
given values "l", "n", or "c" to indicate whether they are "liberal", 
"neutral", or "conservative".  These alignments were assigned 
separately by Mark Newman [19] based on a reading of the 
descriptions and reviews of the books posted on Amazon. The 
political books graph is illustrated in Figure 8. The 
“conservative”, “neutral” and “liberal” books are represented by 
red, gray and blue respectively.  

First we apply the SCAN algorithm to the political books graph, 
using the parameters (ε= 0.35, μ = 2). Our goal is to find clusters 
that represent the different political orientations of the books. The 
result is presented in Figure 9. SCAN successfully finds three 
clusters representing “conservative”, “neutral” and “liberal” books 
respectively. The SCAN clusters are illustrated using three 
different shapes: squares for “conservative” books and triangles 
for “neutral” books and circles for “liberal” books. Additionally, 
each vertex is labeled with the book title. 

The result for the FastModularity algorithm is presented in Figure 
10.  FastModularity found 4 clusters, presented using circles, 
triangles, squares, and hexagons. Although two dominant clusters, 
represented by circles and squares, align well with the 
“conservative” and “liberal” classes, the “neutral” class is mostly 
misclassified. This demonstrates again that FastModularity 
handles poorly vertices that bridge clusters. 
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Figure 8. Political Book Graph. 

 
Figure 9. The Result of SCAN on Political Book Graph. 

 
Figure 10. The Result of FastModularity on Political Book 

Graph. 

6.2.4 Customer Segmentation 
Finally we apply network clustering algorithms to detecting 
groups of records for the same individual, a problem called 
Customer Data Integration (CDI). Records consisting of names 
and addresses are matched against each other using techniques 
that record with similar information despite variations in the 
names and addresses. If two records match we connect them with 
an edge. From a large file we extract sets of interconnected 

records for study.  We test two graphs, CG1 and CG2, (shown in 
Figure 11). Graph CG1 represents data for two individuals and 
two poor-quality records that represent no true individual. Graph 
CG2 represents four individuals, one of whom is represented by a 
single instance. 

 CG1    CG2 
Figure 11. Customer Graphs CG1 and CG2. 

The clustering results of SCAN, using the parameters (ε= 0.7, μ = 
2), are presented in Figure 12. The results demonstrate that SCAN 
successfully found all the clusters and outliers. 

 

 
       CG1                       CG2 

Figure 12. The Result of SCAN on CG1 and CG2. 

The results of FastModularity are presented in Figure 13. It is 
clear that FastModularity failed to identify any outliers. 

 
 

 CG1    CG2 

Figure 13. The Result of FastModularity on CG1 and CG2. 

6.2.5 Adjusted Rand Index Comparison 
As mentioned in Section 6.2.1, the Adjust Rand Index is an 
effective measure of the similarity of a clustering result to the true 
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clustering. The results for College Football, Political Books, CG1 
and CG2 are presented in Table 1. 
The ARI results clearly demonstrate that SCAN outperforms 
FastModularity at producing clustering that resemble the true 
clustering of the real world networks in our study. 

Table 1. Adjust Rand Index Comparison. 

 SCAN FastModularity 

College football 1 0.24 

Political books 0.71 0.64 

CG1 1 0.85 

CG2 1 0.68 

6.2.6 Input Parameters 
SCAN algorithm uses two parameters: ε and μ. To choose them 
we adapted the heuristic suggested for DBSCAN in [10]. This 
involves making a k-nearest neighbor query for a sample of 
vertices and noting the nearest structural similarity as defined in 
Section 3.1. The query vertices are then sorted in ascending order 
of nearest structural similarity. A typical k-nearest similarity plot 
is shown in Figure 14. The knee indicated by a vertical line shows 
that an appropriate ε value for this graph is 0.7.  This knee 
represents a separation of vertices belonging to clusters to the 
right from hubs and outliers to the left. Usually a sample of 10% 
of the vertices is sufficient to locate the knee.  In the absence of 
such an analysis, an ε value between 0.5 and 0.8 is normally 
sufficient to achieve a good clustering result. We recommend a 
value for μ, of 2. 

 
Figure 14. Sorted k-Nearest Structural Similarity. 

7. CONCLUSIONS 
Network clustering is a fundamental task in many fields of science 
and engineering. Many algorithms have been proposed from 
practitioners in different disciplines including computer science 
and physics. Successful examples are Min-Max Cut [4] and 
Normalized Cut [5], as well as Modularity-based algorithms 
[6][11][12]. While such algorithms can successfully detect 
clusters in networks, they tend to fail to identify and isolate two 
kinds of vertices that play special roles – vertices that bridge 
clusters (hubs) and vertices that are marginally connected to 
clusters (outliers).  Identifying hubs is essential for applications 
such as viral marketing and epidemiology. As vertices that bridge 
clusters, hubs are responsible for spreading ideas or disease.  In 
contrast, outliers have little or no influence, and may be isolated 
as noise in the data.  

In this paper, we proposed a method called SCAN (Structural 
Clustering Algorithm for Networks) to detect clusters, hubs and 
outliers in networks. SCAN clusters vertices based on their 
common neighbors. Two vertices are assigned to a cluster 
according to how they share neighbors. This makes sense when 
you consider social communities.  People who share many friends 
create a community, and the more friends they have in common, 
the more intimate the community. But in social networks there are 
different kinds of actors.  There are also people who are outsider 
(like hermits), and there are people who are friendly with many 
communities but belong to none (like politicians).  The latter play 
a special role in small-world networks as hubs [13].  
We applied SCAN to some real world networks including finding 
conferences using only the NCCA College Football schedule, 
grouping political books based on co-purchasing information, and 
customer data integration. In addition, we compared SCAN with 
the fast modularity-based algorithm in terms of both efficiency 
and effectiveness. The theoretical analysis and empirical 
evaluation demonstrate superior performance over the modularity-
based network clustering algorithms. 
In the future we plan to apply SCAN to analyze biological 
networks such as metabolic networks and gene co-expression 
networks. 
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