
SCAN: A Structural Clustering Algorithm for Networks
Xiaowei Xu

University of Arkansas at Little Rock
xwxu@ualr.edu

Nurcan Yuruk, Zhidan Feng
University of Arkansas at Little Rock
{nxyuruk, zxfeng@ualr.edu}

Thomas A. J. Schweiger
Acxiom Corporation

Tom.Schweiger@acxiom.com

ABSTRACT
Network clustering (or graph partitioning) is an important task for
the discovery of underlying structures in networks. Many
algorithms find clusters by maximizing the number of intra-cluster
edges. While such algorithms find useful and interesting
structures, they tend to fail to identify and isolate two kinds of
vertices that play special roles – vertices that bridge clusters
(hubs) and vertices that are marginally connected to clusters
(outliers). Identifying hubs is useful for applications such as viral
marketing and epidemiology since hubs are responsible for
spreading ideas or disease. In contrast, outliers have little or no
influence, and may be isolated as noise in the data. In this paper,
we proposed a novel algorithm called SCAN (Structural
Clustering Algorithm for Networks), which detects clusters, hubs
and outliers in networks. It clusters vertices based on a structural
similarity measure. The algorithm is fast and efficient, visiting
each vertex only once. An empirical evaluation of the method
using both synthetic and real datasets demonstrates superior
performance over other methods such as the modularity-based
algorithms.

Categories and Subject Descriptors
I.5.3 [PATTERN RECOGNITION]: Clustering – Algorithms,
Similarity measures.

General Terms
Algorithms, Performance

Keywords
Network clustering, Graph partitioning, Community Structure,
Hubs, Outliers

1. INTRODUCTION
Much data of current interest to the scientific community can be
modeled as networks (or graphs). A network is sets of vertices,
representing objects, connected together by edges, representing
the relationship between objects. For example, a social network
can be viewed as a graph where individuals are represented by
vertices; and the friendship between individuals are edges [1].
Similarly, the world-wide web can be modeled as a graph, where
web pages are represented as vertices that are connected by an
edge when one pages contains a hyperlink to another [2] [3].

Network clustering (or graph partitioning) is a fundamental
approach for detecting hidden structures in networks that, because
of many interesting applications, is drawing increased attention in

computer science [4][5], physics [11], and bioinformatics [6].
Various methods have been developed. These methods tend to
cluster networks such that there are a dense set of edges within
every cluster and few edges between clusters. Modularity-based
algorithms [6][11][12] and normalized cut [4][5] are successful
examples. However, they do not distinguish the roles of the
vertices in the networks. Some vertices are members of clusters;
some vertices are hubs that bridge many clusters but don’t belong
to any, and some vertices are outliers that have only a weak
association with a particular cluster. The situation is illustrated in
Figure 1.

Figure 1. A Network with 2 Clusters, a Hub and an Outlier.

The existing methods such as modularity-based algorithm [12]
will partition this example into two clusters: one consisting of
vertices 0 to 6 and the other consisting of vertices 7 to 13. They
do not isolate vertex 6, a hub whose membership in either cluster
is disputable, or vertex 13, which has only a single connection to
the network.

The identification and isolation of hubs is essential for many
applications. As an example, the identification of hubs in the
WWW improves the search for relevant authoritative web pages
[7]. Furthermore, hubs are believed to play a crucial role in viral
marketing [8] and epidemiology [9].

In this paper, we propose a new method for network clustering
called SCAN (Structural Clustering Algorithm for Networks). The
goal of our method is to find clusters, hubs, and outliers in large
networks. To achieve this goal, we use the neighborhood of the
vertices as clustering criteria instead of only their direct
connections. Vertices are grouped into the clusters by how they
share neighbors. Doing so makes sense when you consider the
detection of communities in large social networks. Two people
who share many friends should be clustered in the same
community.

Refer again to the example in figure 1. Consider vertices 0 and 5,
which are connected by an edge. Their neighborhoods are the
vertex sets {0, 1, 4, 5, 6} and {0, 1, 2, 3, 4, 5}, respectively. They
share many neighbors and thus are reasonably grouped together in
the same cluster. In contrast, consider the neighborhoods of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008...$5.00.

824

Research Track Paper

vertex 13 and vertex 9. These two vertices are connected, but
share only two common neighbors, i.e. {9, 13}. Therefore, it is
doubtful that they should be grouped into the same cluster. The
situation for vertex 6 is a little different. It has many neighbors,
but they are sparsely interconnected.

Our method, SCAN, identifies two clusters, {0, 1, 2, 3, 4, 5} and
{7, 8, 9, 10, 11, 12}, and isolates vertex 13 as an outlier and
vertex 6 as a hub.

SCAN has the following features:

• It detects clusters, hubs, and outliers by using the
structure and the connectivity of the vertices as
clustering criteria. Through theoretical analysis and
experimental evaluation we will demonstrate that SCAN
can find meaningful clusters and identify hubs and
outliers in very large networks.

• It is fast. Its running time on a network with n vertices
and m edges is O(m). In contrast, the running time of
the fast modularity-based algorithm [12], the fastest
existing network clustering algorithm, is O(md log n).

The paper is organized as follows. We review the related work for
network clustering algorithms in section 2. We formulize the
notion of structure-connected clusters in section 3. We describe
the algorithm SCAN in section 4. We give a computation
complexity analysis of SCAN in section 5. We compare SCAN to
the fast modularity-based network clustering algorithm in section
6. Finally, we present our conclusions and suggest future work in
section 7.

2. RELATED WORK
Network clustering (or graph partitioning) is the division of a
graph into a set of sub-graphs, called clusters. More specifically,
given a graph G = {V, E}, where V is a set of vertices and E is a
set of edges between vertices, the goal of graph partitioning is to
divide G into k disjoint sub-graphs Gi = {Vi, Ei}, in which Vi ∩ Vj

= Φ for any i≠j, and ∑
=

=
k

i
iVV

1

. The number of sub-graphs, k,

may or may not be known a priori. In this paper, we focus on
simple, undirected, and un-weighted graphs.
The problem of finding good clustering of networks has been
studied for some decades in many fields, particularly computer
science and physics. Here we review some of the more common
methods.
The min-max cut method [4] seeks to partition a graph G={V, E}
into two clusters A and B. The principle of min-max clustering is
minimizing the number of connections between A and B and
maximizing the number of connections within each. A cut is
defined the number of edges that would have to be removed to
isolate the vertices in cluster A from those in cluster B. The min-
max cut algorithm searches for the clustering that creates two
clusters whose cut is minimized and while maximizing the
number of remaining edges.
A pitfall of this method is that, if one cuts out a single vertex from
the graph, one will probably achieve the optimum. Therefore, in
practice, the optimization must be accompanied with some
constraint, such as A and B should be of equal or similar size, or
|A| ≈ |B|. Such constraints are not always appropriate; for
example, in social networks some communities are much larger
than the others.

To amend the issue, a normalized cut was proposed [5], which
normalizes the cut by the total number connections between each
cluster to the rest of the graph. Therefore, cutting out one vertex
or some small part of the graph will no longer always yield an
optimum.
Both min-max cut and normalized cut methods partition a graph
into two clusters. To divide a graph into k clusters, one has to
adopt a top-down approach, splitting the graph into two clusters,
and then further splitting these clusters, and so on, until k clusters
have been detected. There is no guarantee of the optimality of
recursive clustering. There is no measure of the number of
clusters that should be produced when k is unknown. There is no
indicator to stop the bisection procedure.
Recently, modularity was proposed as a quality measure of
network clustering [11]. For a clustering of graph with k clusters,
the modularity is defined as:

∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

k

s

ss

L
d

L
lQ

1

2

2

L is the number of edges in the graph, ls is the number of edges
between vertices within cluster s, and ds is the sum of the degrees
of the vertices in cluster s. The modularity of a clustering of a
graph is the fraction of all edges that lie within each cluster minus
the fraction that would lie within each cluster if the graph’s
vertices were randomly connected. Optimal clustering is achieved
when the modularity is maximized. Modularity is defined such
that it is 0 for two extreme cases: when all vertices partitioned into
a single cluster, and when the vertices are clustered at random.
Note that the modularity measures the quality of any network
clustering. Normalized and min-max cut measures only the
quality of a clustering of two clusters.
Finding the maximum Q is NP-complete. Instead of performing
an exhaustive search, various optimization approaches are
proposed. For example, a greedy method based on a hierarchical
agglomeration clustering algorithm is proposed in [12], which is
faster than many competing algorithms: its running time on a
graph with n vertices and m edges is O(md log n) where d is the
depth of the dendrogram describing the hierarchical cluster
structure. Also, Guimera and Amaral [6] optimize modularity
using simulated annealing.
To summarize, the network clustering methods discussed in this
section aim to find clusters such that there are many connections
between vertices within the same clusters and few without. While
all these network clustering methods successfully find clusters,
they are generally unable to detect hubs and outliers like those in
the example in Figure 1. Such vertices invariably are included in
one cluster or another.

3. THE NOTION OF STRUCTURE-
CONNECTED CLUSTERS

Our goal is both to cluster networks optimally and to identify and
isolate hubs and outliers. Therefore, both connectivity and local
structure is used in our definition of optimal clustering. In this
section, we formulize the notion of a structure-connected cluster,
which extends that of a density-based cluster [10] and can
distinguish good clusters, hubs, and outliers in networks. In
section 4, we present, SCAN, an efficient algorithm to find the
optimal clustering of networks.

825

Research Track Paper

3.1 Structure-connected Clusters
The existing network clustering methods reviewed in section 2 are
designed to find optimal clustering of networks based on the
number of edges between vertices or between clusters. Direct
connections are important, but they represent only one aspect of
the network structure. We think the neighborhood around two
connected vertices is also important. The neighborhood of a
vertex includes all the vertices connected to it by an edge. When
you consider a pair of connected vertices, their combined
neighborhood reveals neighbors common to both vertices.

Our method is based on common neighbors. Two vertices are
assigned to a cluster according to how they share neighbors. This
makes sense when you consider social communities. People who
share many friends create a community, and the more friends they
have in common, the more intimate the community. But in social
networks there are different kinds of actors. There are also people
who are outsiders (like hermits), and there are people who are
friendly with many communities but belong to none (like
politicians). The latter play a special role in small-world networks
as hubs [13]. Such a hub is illustrated by vertex 6 in Figure 1.

In this paper, we focus on simple, undirected and un-weighted
graph. Let G = {V, E} be a graph, where V is a set of vertices; and
E is set of pairs (unordered) of distinct vertices, called edges.

The structure of a vertex can be described by its neighborhood. A
formal definition of vertex structure is given as follows.

DEFINITION 1 (VERTEX STRUCTURE)

Let v ∈ V, the structure of v is defined by its neighborhood,
denoted by Γ(v)

 Γ(v) = {w ∈ V | (v,w) ∈ E} ∪ {v}

In Figure 1 vertex 6 is a hub sharing neighbors with two clusters.
If we only use the number of shared neighbors, vertex 6 will be
clustered into either of the clusters or cause the two clusters to
merge. Therefore, we normalize the number of common neighbors
by the geometric mean of the two neighborhoods’ size.

DEFINITION 2 (STRUCTURAL SIMILARITY)

|)(||)(|
|)()(|),(

wv
wvwv

ΓΓ
ΓΓ

=
Iσ

When a member of a cluster shares a similar structure with one of
its neighbors, their computed structural similarity will be large.
We apply a threshold ε to the computed structural similarity when
assigning cluster membership, formulized in the followingε.-
neighborhood definition.

DEFINITION 3 (ε-NEIGHBORHOOD)

}),(|)({)(εσε ≥Γ∈= wvvwvN

When a vertex shares structural similarity with enough neighbors,
it becomes a nucleus or seed for a cluster. Such a vertex is called a
core vertex. Core vertices are a special class of vertices that have
a minimum of μ neighbors with a structural similarity that
exceeds the threshold ε. From core vertices we grow the clusters.
In this way the parameters μ and ε determine the clustering of
networks. For a given ε, the minimal size of a cluster is
determined by μ.

DEFINITION 4 (CORE)

Let ε ∈ ℜ and μ ∈ ℵ. A vertex v ∈ V is called a core w.r.t. ε and
μ, if its ε-neighborhood contains at least μ vertices, formally:

μεμε ≥⇔ |)(|)(, vNvCORE

We grow clusters from core vertices as follows. If a vertex is in
ε-neighborhood of a core, it should be also in the same cluster.
They share a similar structure and are connected. This idea is
formulized in the following definition of direct structure
reachability.

DEFINITION 5 (DIRECT STRUCTURE REACHABILITY)

)()(),(,, vNwvCOREwvDirREACH εμεμε ∈∧⇔

Direct structure reachablility is symmetric for any pair of cores.
However, it is asymmetric if one of the vertices is not a core. The
following definition is a canonical extension of direct structure
reachability.

DEFINITION 6 (STRUCTURE REACHABILITY)

Let ε ∈ ℜ and μ ∈ ℵ. A vertex w ∈ V is structure reachable from
v ∈ V w.r.t ε and μ, if there is a chain of vertices v1,…,vn ∈ V, v1 =
v, vn = w such that vi+1 is directly structure reachable from vi,
formally:

⇔),(, wvREACH με

∧=∧=∈∃ wvvvVvv nn 11 :,...

).,(:}1,...,1{ 1, +−∈∀ ii vvDirREACHni με

The structure reachability is transitive, but it is asymmetric. It is
only symmetric for a pair of cores. More specifically, the
structure-reachability is a transitive closure of direct structure-
reachablility.

Two non-core vertices in the same cluster may not be structure-
reachable because the core condition may not hold for them. But
they still belong to the same cluster because they both are
structure reachable from the same core. This idea is formulized in
the following definition of structure connectivity.

DEFINITION 7 (STRUCTURE CONNECTIVITY)

Let ε ∈ ℜ and μ ∈ ℵ. A vertex v ∈ V is structure-connected to a
vertex w ∈ V w.r.t ε and μ, if there is a vertex u ∈ V such that
both v and w are structure reachable from u, formally:

⇔),(, wvCONNECT με

).,(),(: ,, wuREACHvuREACHVu μεμε ∧∈∃

The structure connectivity is a symmetric relation. For the
structure reachable vertices, it is also reflective.

Now we are ready to define a cluster as structure-connected
vertices, which is maximal w.r.t. structure reachability.

DEFINITION 8 (STRUCTURE-CONNECTED CLUSTER)

Let ε ∈ ℜ and μ ∈ ℵ. A non-empty subset C ⊆ V is called a
structure-connected cluster w.r.t ε and μ, if all vertices in C are
structure-connected and C is maximal w.r.t structure reachability,
formally:

⇔)(, CCLUSTER με

(1) Connectivity:

826

Research Track Paper

),(:, , wvCONNECTCwv με∈∀

(2) Maximality:

CwwvREACHCvVwv ∈⇒∧∈∈∀),(:, ,με

Now we can define a clustering of a network G w.r.t. the given
parameters ε and μ as all structure-connected clusters in G.

DEFINITION 9 (CLUSTERING)

Let ε ∈ ℜ and μ ∈ ℵ. A clustering P of network G = <V, E>
w.r.t. ε and μ consists of all structure-connected clusters w.r.t. ε
and μ in G, formally:

CLUSTERINGε,μ(P) ⇔ P = {C ⊆ V | CLUSTERε,μ(C)}

A vertex is either a member of a structure-connected cluster, or it
is isolated, i.e. it does not belong to any of the structure-connected
cluster. If a vertex is not a member of any structure-connected
clusters, it is either a hub or an outlier, depending on its
neighborhood.

DEFINITION 10 (HUB)

Let ε ∈ ℜ and μ ∈ ℵ. For a given clustering P, i.e.
CLUSTERINGε,μ(P), if an isolated vertex v ∈ V has neighbors
belonging to two or more different clusters w.r.t. ε and μ, it is a
hub (it bridges different clusters) w.r.t. ε and μ, formally,

HUB∈,μ(v) ⇔

(1) v is not a member of any cluster:

∀ C ∈ P: v ∉ C

(2) v bridges different clusters:

∃ p, q ∈ Γ(v): ∃ X, Y ∈ P: X ≠ Y ∧ p ∈ X ∧ q ∈ Y.

DEFINITION 11 (OUTLIER)

Let ε ∈ ℜ and μ ∈ ℵ. For a given clustering P, i.e.
CLUSTERINGε,μ(P), an isolated vertex v ∈ V is an outlier if and
only if all its neighbors either belong to only one cluster or do not
belong to any cluster, formally,

OUTLIER∈,μ(v) ⇔

(1) v is not a member of any cluster:

∀ C ∈ P: v ∉ C

(2) v does not bridge different clusters:

¬∃ p, q ∈ Γ(v): ∃ X, Y ∈ P: X ≠ Y ∧ p ∈ X ∧ q ∈ Y.

In practice, the definition of a hub and an outlier is flexible. It
may be more useful to regard hubs as a special kind of outlier,
since both are isolated vertices. The more clusters in which an
outlier has neighbors, the more strongly that vertex acts as a hub
between those clusters. This point will be discussed further when
we consider actual networks.

The following lemmas are important for validating the correctness
of our proposed algorithm. Intuitively, the lemmas mean the
following. Given a graph G=<V,E> and two parameters ε and μ,
we can find structure-connected clusters in a two-step approach.
First, choose an arbitrary vertex from V satisfying the core
condition as a seed. Second, retrieve all the vertices that are

structure reachable from the seed to obtain the cluster grown from
the seed.

LEMMA 1.

Let v∈V. If v is a core, then the set of vertices, which are structure
reachable from v is a structure connected cluster, formally:

)},(|{)(,, wvREACHVwCvCORE μεμε ∈=∧

)(, CPARTITION με⇒

PROOF:

(1) C ≠ 0:

By assumption, COREε,μ(v) and thus, REACHε,μ(v,v) ⇒ v ∈ C.

(2) Maximality:

Let p ∈ C and q ∈ V and REACHε,μ(p,q).

⇒ REACHε,μ(v,p) ∧ REACHε,μ(p,q)

⇒ REACHε,μ(v,q), since structure reachability is transitive.

⇒ q ∈ C.

(3) Connectivity:

∀ p, q ∈ C: REACHε,μ(v,p) ∧ REACHε,μ(v,q)

⇒ CONNECTε,μ(p,q), via v. �

Furthermore, a structure-connected cluster C with respect to ε, μ
is uniquely determined by any of its cores, i.e., each vertex in C is
structure reachable from any of the cores of C and, therefore, a
structure-connected cluster C contains exactly the vertices which
are structure reachable from an arbitrary core of C.

LEMMA 2.

Let C ⊆ V be a structure-connected cluster. Let p ∈ C be a core.
Then, C equals the set of vertices, which are structure reachable
from p, formally:

CLUSTERε,μ(C) ∧ p ∈ C ∧ COREε,μ(p)

⇒ C = {v ∈ V | REACHε,μ(p,v)}

PROOF:

Let Ĉ = {v ∈ V | REACHε,μ(p,v)}. We have to show that C = Ĉ:

(1) Ĉ ⊆ C: it is obvious from the definition of Ĉ.

(2) C ⊆ Ĉ: Let q ∈ C. By assumption, p ∈ C ∧
CLUSTERε,μ(C).

⇒ ∃ u ∈ C: REACHε,μ(u,p) ∧ REACHε,μ(u,q)

⇒ REACHε,μ(p,u), since both u and p are cores; and structure
reachability is symmetric for cores.

⇒ REACHε,μ(p,q), since structure reachability is transitive.

⇒ q ∈ Ĉ. �

4. ALGORITHM SCAN
In this section, we describe the algorithm SCAN which
implements the search for clusters, hubs and outliers. As

827

Research Track Paper

mentioned in section 3.1, the search begins by first visiting each
vertex once to find structure-connected clusters, and then visiting
the isolated vertices to identify them as either a hub or an outlier.

The pseudo code of the algorithm SCAN is presented in Figure 2.
SCAN performs one pass of a network and finds all structure-
connected clusters for a given parameter setting. At the beginning
all vertices are labeled as unclassified. The SCAN algorithm
classifies each vertex either a member of a cluster or a non-
member. For each vertex that is not yet classified, SCAN checks
whether this vertex is a core (STEP 1 in Figure 2). If the vertex is
a core, a new cluster is expanded from this vertex (STEP 2.1 in
Figure 2). Otherwise, the vertex is labeled as a non-member
(STEP 2.2 in Figure 2). To find a new cluster, SCAN starts with
an arbitrary core v and search for all vertices that are structure-
reachable from v in STEP 2.1. This is sufficient to find the
complete cluster containing vertex v, due to lemma 2. In STEP
2.1, a new cluster ID is generated which will be assigned to all
vertices found in STEP 2.1. SCAN begins by inserting all vertices
in ε-neighborhood of vertex v into a queue. For each vertex in the
queue it computes all directly reachable vertices and inserts those
vertices into the queue which are still unclassified. This is
repeated until the queue is empty.

Figure 2. The Pseudo Code of the Algorithm SCAN

The non-member vertices can be further classified as hubs or
outliers in STEP 3. If an isolated vertex has edges to two or more

clusters, it is may be classified as a hub. Otherwise, it is an outlier.
This final classification is done according to what is appropriate
for the network. As mentioned earlier, the more clusters in which
an outlier has neighbors, the more strongly that vertex acts as a
hub between those clusters. Likewise, a vertex might bridge only
two clusters, but how strongly it is viewed as a hub may depend
on how aggressively it bridges them.

As discussed in Section 3, the results of SCAN do not depend on
the order of processed vertices, i.e. the obtained clustering of
network (number of clusters and association of cores to clusters)
is determinate.

5. COMPLEXITY ANALYSIS
In this section, we present an analysis of the computation
complexity of the algorithm SCAN. Given a graph with m edges
and n vertices, SCAN first finds all structure-connected clusters
w.r.t. a given parameter setting by checking each vertex of the
graph (STEP 1 in Figure 2). This entails retrieval of all the
vertex’s neighbors. Using an adjacency list, a data structure where
each vertex has a list of which vertices it is adjacent to, the cost of
a neighborhood query is proportional to the number of neighbors,
that is, the degree of the query vertex. Therefore, the total cost is
O(deg(v1)+deg(v2)+…deg(vn)), where deg(vi), i = 1,2,…,n is the
degree of vertex vi. If we sum all the vertex degrees in G, we
count each edge exactly twice: once from each end. Thus the
running time is O(m).

We also derive the running time in terms of the number of
vertices, should the number of edges be unknown. In the worst
case, each vertex connects to all the other vertices for a complete
graph. The worst case total cost, in terms of the number of
vertices, is O(n(n-1)), or O(n2). However, real networks generally
have sparser degree distributions. In the following we derive the
complexity for an average case, for which we know the
probability distribution of the degrees. One type of network is the
random graph, studied by Erdös and Rényi [20]. Random graphs
are generated by placing edges randomly between vertices.
Random graphs have been employed extensively as models of real
world networks of various types, particularly in epidemiology.
The degree of a random graph has a Poisson distribution:

!
)1()(

k
ezpp

k
n

kp
zk

knk ≈−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

which indicates that most nodes have approximately the same
number of links (close to the average degree E(k)=z). In the case
of random graphs the complexity of SCAN is O(n).

Many real networks, such as social networks, biological networks
and the WWW follow a power-law degree distribution. The
probability that a node has k edges,P(k), is on the order k-α, where
α is the degree exponent. A value between 2 and 3 was observed
for the degree exponent for most biological and non-biological
networks studied by the Faloutsos brothers [21] and Barabási and
Oltvai [22]. The expected value of degree is E(k)= α/(α-1). In this
case the average cost of SCAN is again O(n).

Therefore, the complexity in terms of the number of edges in the
graph for SCAN algorithm is in general linear. The complexity in
terms of the number of vertices is quadratic in the worst case of a
complete graph. For real networks like social networks, biological
networks and computer networks, SCAN expects linear
complexity with respect to the number of vertices. This is
confirmed by our empirical study described in the next section.

ALGORITHM SCAN(G=<V, E>, ε, μ)
// all vertices in V are labeled as unclassified;

for each unclassified vertex v ∈ V do
// STEP 1. check whether v is a core;

if COREε,μ(v) then
// STEP 2.1. if v is a core, a new cluster is expanded;

generate new clusterID;
insert all x ∈ Nε (v) into queue Q;
while Q ≠ 0 do
 y = first vertex in Q;
 R = {x ∈ V | DirREACHε,μ(y, x)};
 for each x ∈ R do
 if x is unclassified or non-member then
 assign current clusterID to x;
 if x is unclassified then
 insert x into queue Q;
 remove y from Q;

else
// STEP 2.2. if v is not a core, it is labeled as non-member
 label v as non-member;
end for.
// STEP 3. further classifies non-members
for each non-member vertex v do
 if (∃ x, y ∈ Γ(v) (x.clusterID ≠ y.clusterID) then
 label v as hub
 else
 label v as outlier;
end for.
end SCAN.

828

Research Track Paper

6. EVALUATION
In this section we evaluate the algorithm SCAN using both
synthetic and real datasets. The performance of SCAN is
compared with FastModularity, a fast modularity-based network
clustering algorithm proposed by Clauset et al in [12], which is
faster than many competing algorithms: its running time on a
graph with n vertices and m edges is O(md log n) where d is the
depth of the dendrogram describing the hierarchical cluster
structure. We implemented SCAN in C++. We used the original
source code of FastModularity by Clauset et al [17]. All the
experiments were conducted on a PC with a 2.0 GHz Pentium 4
processor and 1 GB of RAM.

6.1 Efficiency
To evaluate the computational efficiency of the proposed
algorithm we generate ten graphs with the number of vertices
ranging from 1,000 to 1,000,000 and the number of edges ranging
from 2,182 to 2,000,190. We adapted the construction as used in
[11] as follows: first we generate clusters such that each vertex
connects to vertices within the same cluster with a probability Pi,
and connects to vertices outside its cluster with a probability
Po<Pi. Next we add a number of hubs and outliers. An example of
a generated graph is presented in Figure 3.
The running time for FastModularity and SCAN on the synthetic
graphs are plotted in Figure 4 and 5, respectively. Running time
is plotted in both as a function of the number of nodes and the
number of edges. Figure 5 shows that SCAN’s performance is in
fact linear w.r.t. to the number of vertices and the number of
edges, while FastModularity’s performance is basically quadratic
and scales poorly for large graphs. Note the difference in scale
for the y-axis between the two figures.

6.2 Effectiveness
To evaluate the effectiveness of network clustering, we use real
datasets whose clusters are known a priori. These real datasets
include American College Football and Books about US politics.
We also apply the clustering algorithm to customer segmentation.
We use adjusted Rand index (ARI) [15] as a measure of
effectiveness of network clustering algorithms in addition to
visually comparing the generated clusters to the actual.

Figure 3. A Synthetic Graph with 1,000 Vertices

Figure 4. Running Time for FastModularity

Figure 5. Running Time for SCAN

6.2.1 Adjusted Rand Index
A measure of agreement is needed when comparing the results of
a network clustering algorithm to the expected clustering. Rand
Index [14] serves this purpose. One problem with the Rand Index
is that the expected value when comparing two random clustering
is not constant. An Adjusted Rand Index was proposed by Hubert
and Arabie [15] to fix this problem. The Adjusted Rand Index
(ARI) is defined as follows:

where ni,j is the number of vertices in both cluster xi and yj; and ni,⋅
and n⋅,j is the number of vertices in cluster xi and yj respectively.
Milligan and Cooper [16] evaluated many different indices for
measuring agreement between two network clustering with
different numbers of clusters and recommend the Adjusted Rand
Index as the measure of choice. We adopt the Adjusted Rand
Index as our measure of agreement between the network
clustering result and the true clustering of the network.

6.2.2 College Football
The first real dataset we examine is the 2006 NCAA Football
Bowl Subdivision (formerly Division 1-A) football schedule.
This example is inspired by the set studied by Newman and
Girvan [11], who consider contests between Div. 1-A teams in
2000. Our set is more complex, considering all contests of the

829

Research Track Paper

Bowl Subdivision schools including those against schools in
lower divisions.
The challenge is to discover the underlying structure of this
network – the college conference system. The National Collegiate
Athletic Association (NCAA) divides 115 schools into eleven
conferences. In addition there are four independent schools at this
top level: Army, Navy, Temple, and Notre Dame. Each Bowl
Subdivision school plays against schools within their own
conference, against schools in other conferences, and against
lower division schools. The network contains 180 vertices (119
Bowl Subdivision schools and 61 lower division schools)
interconnected by 787 edges. Figure 6 shows this network with
schools in the same conference identified by color.

 Figure 6. NCAA Football Bowl Subdivision schedule as a
network, showing the 12 conferences in color, independent

schools in black, and lower division schools in white.
This example illustrates kinds of structures that our method seeks
to address. Schools in the same conference are clusters. The four
independent schools play teams in many conferences but belong
to none; they are hubs. The lower division schools are only
weakly connected to the clusters in the network; they are outliers.
First we cluster this network by using the FastModularity
algorithm. The results, for which the modularity is 0.599 is
shown in Figure 7. Maximizing Newman’s modularity gives a
satisfying network clustering, identifying nine clusters. All
schools in the same conference are clustered together. However,
two of the conferences are merged (the Western Athletic and
Mountain West conferences and the Mid-American and Big Ten
conferences), the four independent schools are classified into
various conferences despite their hub-like properties. All lower
division teams are assigned to clusters.
Next we cluster the network using our SCAN algorithm, using the
parameters (ε= 0.5, μ = 2). This partition succeeds in capturing
all the features of the graph. Eleven clusters are identified,
corresponding exactly to the eleven conferences. All schools in
the same conference are clustered together. The independent
schools and the lower division schools are unclassified – they
stand apart from the clusters. The four independent schools show
strong properties as hubs; they have inactive edges that connect

them to a large number of clusters – at minimum five. In contrast
the lower division schools have only week connections to clusters
– one or two, and in a single case three. They are true outliers.
This partition matches perfectly the underlying structure shown in
Figure 6.

Figure 7. NCAA Football Bowl Subdivision schedule as

clustered by FastModularity Algorithm.

6.2.3 Books about US politics
The second example is the classification of books about US
politics. We use the dataset of Books about US politics compiled
by Valdis Krebs [18]. The vertices represent books about US
politics sold by the online bookseller Amazon.com. The edges
represent frequent co-purchasing of books by the same buyers, as
indicated by the "customers who bought this book also bought
these other books" feature on Amazon. The vertices have been
given values "l", "n", or "c" to indicate whether they are "liberal",
"neutral", or "conservative". These alignments were assigned
separately by Mark Newman [19] based on a reading of the
descriptions and reviews of the books posted on Amazon. The
political books graph is illustrated in Figure 8. The
“conservative”, “neutral” and “liberal” books are represented by
red, gray and blue respectively.

First we apply the SCAN algorithm to the political books graph,
using the parameters (ε= 0.35, μ = 2). Our goal is to find clusters
that represent the different political orientations of the books. The
result is presented in Figure 9. SCAN successfully finds three
clusters representing “conservative”, “neutral” and “liberal” books
respectively. The SCAN clusters are illustrated using three
different shapes: squares for “conservative” books and triangles
for “neutral” books and circles for “liberal” books. Additionally,
each vertex is labeled with the book title.

The result for the FastModularity algorithm is presented in Figure
10. FastModularity found 4 clusters, presented using circles,
triangles, squares, and hexagons. Although two dominant clusters,
represented by circles and squares, align well with the
“conservative” and “liberal” classes, the “neutral” class is mostly
misclassified. This demonstrates again that FastModularity
handles poorly vertices that bridge clusters.

830

Research Track Paper

Figure 8. Political Book Graph.

Figure 9. The Result of SCAN on Political Book Graph.

Figure 10. The Result of FastModularity on Political Book

Graph.

6.2.4 Customer Segmentation
Finally we apply network clustering algorithms to detecting
groups of records for the same individual, a problem called
Customer Data Integration (CDI). Records consisting of names
and addresses are matched against each other using techniques
that record with similar information despite variations in the
names and addresses. If two records match we connect them with
an edge. From a large file we extract sets of interconnected

records for study. We test two graphs, CG1 and CG2, (shown in
Figure 11). Graph CG1 represents data for two individuals and
two poor-quality records that represent no true individual. Graph
CG2 represents four individuals, one of whom is represented by a
single instance.

 CG1 CG2
Figure 11. Customer Graphs CG1 and CG2.

The clustering results of SCAN, using the parameters (ε= 0.7, μ =
2), are presented in Figure 12. The results demonstrate that SCAN
successfully found all the clusters and outliers.

 CG1 CG2

Figure 12. The Result of SCAN on CG1 and CG2.

The results of FastModularity are presented in Figure 13. It is
clear that FastModularity failed to identify any outliers.

 CG1 CG2

Figure 13. The Result of FastModularity on CG1 and CG2.

6.2.5 Adjusted Rand Index Comparison
As mentioned in Section 6.2.1, the Adjust Rand Index is an
effective measure of the similarity of a clustering result to the true

831

Research Track Paper

clustering. The results for College Football, Political Books, CG1
and CG2 are presented in Table 1.
The ARI results clearly demonstrate that SCAN outperforms
FastModularity at producing clustering that resemble the true
clustering of the real world networks in our study.

Table 1. Adjust Rand Index Comparison.

 SCAN FastModularity

College football 1 0.24

Political books 0.71 0.64

CG1 1 0.85

CG2 1 0.68

6.2.6 Input Parameters
SCAN algorithm uses two parameters: ε and μ. To choose them
we adapted the heuristic suggested for DBSCAN in [10]. This
involves making a k-nearest neighbor query for a sample of
vertices and noting the nearest structural similarity as defined in
Section 3.1. The query vertices are then sorted in ascending order
of nearest structural similarity. A typical k-nearest similarity plot
is shown in Figure 14. The knee indicated by a vertical line shows
that an appropriate ε value for this graph is 0.7. This knee
represents a separation of vertices belonging to clusters to the
right from hubs and outliers to the left. Usually a sample of 10%
of the vertices is sufficient to locate the knee. In the absence of
such an analysis, an ε value between 0.5 and 0.8 is normally
sufficient to achieve a good clustering result. We recommend a
value for μ, of 2.

Figure 14. Sorted k-Nearest Structural Similarity.

7. CONCLUSIONS
Network clustering is a fundamental task in many fields of science
and engineering. Many algorithms have been proposed from
practitioners in different disciplines including computer science
and physics. Successful examples are Min-Max Cut [4] and
Normalized Cut [5], as well as Modularity-based algorithms
[6][11][12]. While such algorithms can successfully detect
clusters in networks, they tend to fail to identify and isolate two
kinds of vertices that play special roles – vertices that bridge
clusters (hubs) and vertices that are marginally connected to
clusters (outliers). Identifying hubs is essential for applications
such as viral marketing and epidemiology. As vertices that bridge
clusters, hubs are responsible for spreading ideas or disease. In
contrast, outliers have little or no influence, and may be isolated
as noise in the data.

In this paper, we proposed a method called SCAN (Structural
Clustering Algorithm for Networks) to detect clusters, hubs and
outliers in networks. SCAN clusters vertices based on their
common neighbors. Two vertices are assigned to a cluster
according to how they share neighbors. This makes sense when
you consider social communities. People who share many friends
create a community, and the more friends they have in common,
the more intimate the community. But in social networks there are
different kinds of actors. There are also people who are outsider
(like hermits), and there are people who are friendly with many
communities but belong to none (like politicians). The latter play
a special role in small-world networks as hubs [13].
We applied SCAN to some real world networks including finding
conferences using only the NCCA College Football schedule,
grouping political books based on co-purchasing information, and
customer data integration. In addition, we compared SCAN with
the fast modularity-based algorithm in terms of both efficiency
and effectiveness. The theoretical analysis and empirical
evaluation demonstrate superior performance over the modularity-
based network clustering algorithms.
In the future we plan to apply SCAN to analyze biological
networks such as metabolic networks and gene co-expression
networks.

8. REFERENCES
[1] S. Wasserman and K. Faust, “Social Network Analysis.”

Cambridge University Press, Cambridge (1994).
[2] R. Albert, H. Jeong, and A.-L. Barabási, “Diameter of the

world-wide web.” Nature 401, 130–131 (1999).
[3] J. M. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan,

and A. Tomkins, “The Web as a graph: Measurements,
models and methods.” In Proceedings of the International
Conference on Combinatorics and Computing, number 1627
in Lecture Notes in Computer Science, pp. 1–18, Springer,
Berlin (1999).

[4] C. Ding, X. He, H. Zha, M. Gu, and H. Simon, “A min-max
cut algorithm for graph partitioning and data clustering”,
Proc. of ICDM 2001.

[5] J. Shi and J. Malik, “Normalized cuts and image
segmentation”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol 22, No. 8, 2000.

[6] R. Guimera and L. A. N. Amaral, “Functional cartography of
complex metabolic networks.” Nature 433, 895–900 (2005).

[7] J. Kleinberg. “Authoritative sources in a hyperlinked
environment.” Proc. 9th ACM-SIAM Symposium on
Discrete Algorithms, 1998.

[8] P. Domingos and M. Richardson, “Mining the Network
Value of Customers”, Proc. 7th ACM SIGKDD, pp. 57 – 66,
2001.

[9] Y. Wang, D. Chakrabarti, C. Wang and C. Faloutsos,
“Epidemic Spreading in Real Networks: An Eigenvalue
Viewpoint”, SRDS 2003 (pages 25-34), Florence, Italy

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. "A Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise". In Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining (KDD'96), Portland, OR, pages
291-316. AAAI Press, 1996.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10

Rank of Vertices

k-
ne

ar
es

t s
im

ila
rit

y

Hubs/Outliers Clusters

832

Research Track Paper

[11] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks”, Phys. Rev. E 69, 026113
(2004).

[12] A. Clauset, M. E. J. Newman, and C. Moore, “Finding
community in very large networks”, Physical Review E 70,
066111 (2004).

[13] D. J. Watts and S. H. Strogatz, “Collective dynamics of
'small-world' networks,” Nature, 393:440-442 (1998)

[14] W. M. Rand, “Objective criteria for the evaluation of
clustering methods.” Journal of the American Statistical
Association, 66, pp846–850 (1971).

[15] L. Hubert and P. Arabie, “Comparing Partitions”. Journal of
Classification, 193–218, 1985.

[16] G. W. Milligan and M. C. Cooper, “A study of the
comparability of external criteria for hierarchical cluster

analysis”, Multivariate Behavioral Research, 21, 441–458,
1986.

[17] http://cs.unm.edu/~aaron/research/fastmodularity.htm.
[18] http://www.orgnet.com/.
[19] http://www-personal.umich.edu/~mejn/netdata/.
[20] P. Erdös and A. Rényi, Publ. Math. (Debrecen) 6, 290

(1959).
[21] M. Faloutsos, P. Faloutsos and C. Faloutsos, On Power-Law

Relationships of the Internet Topology, SIGCOMM 1999.
[22] A.-L. Barabási and Z. N. Oltvai, Nature Reviews Genetics 5,

101-113 (2004).

833

Research Track Paper

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

