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Abstract Complex networks exist in a wide range of real world systems, such as
social networks, technological networks, and biological networks. During the last
decades, many researchers have concentrated on exploring some common things
contained in those large networks include the small-world property, power-law degree
distributions, and network connectivity. In this paper, we will investigate another
important issue, community discovery, in network analysis. We choose Nonnega-
tive Matrix Factorization (NMF) as our tool to find the communities because of its
powerful interpretability and close relationship between clustering methods. Target-
ing different types of networks (undirected, directed and compound), we propose
three NMF techniques (Symmetric NMF, Asymmetric NMF and Joint NMF). The
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correctness and convergence properties of those algorithms are also studied. Finally
the experiments on real world networks are presented to show the effectiveness of the
proposed methods.

Keywords Community discovery - Nonnegative matrix factorization

1 Introduction

Nowadays, complex networks exist in a wide variety of systems in different areas, such
as social networks (Scott 2000; Wasserman and Faust 1994), technological networks
(Amaral et al. 2000; Watts and Strogatz 1998), biological networks (Sharan 2005;
Watts and Strogatz 1998) and information networks (Albert et al. 1999; Faloutsos et
al.). Despite the diverse physical meanings behind those networks, they usually exhibit
common topological properties, such as the small-world phenomenon (Barthelemy
and Amaral 1999) and the power-law degree distribution (Faloutsos et al.). Besides
that, most real world networks demonstrate that the nodes (or units) contained in
their certain parts are densely connected to each other (Palla et al. 2005), which are
usually called clusters or communities (Girvan and Newman 2002). Efficiently iden-
tifying those communities can help us to know the nature of those networks better and
facilitate the analysis on those large networks.

Generally, a network can be represented as a graph, where the graph nodes stand for
the units in the network, and the graph edges denote the unit relationships.
A typical network with 4 inside communities is illustrated in Fig. 1, where nodes
with different colors belong to different communities, and different communities may
share commons units.

During the last decades, many algorithms have been proposed to identify the com-
munities contained in a network. For example, the k-means clustering method, the

Fig. 1 Illustration of a typical network and its inside communities. Nodes with different colors correspond
to different communities, and the numbers on the nodes correspond to their indices
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hierarchical agglomerative clustering (HAC) method (Newman 2004a), the modu-
larity optimization method (Newman 2004b) and the probabilistic method based on
latent models (Zhang et al. 2007). More recently, the graph based partitioning methods
(von Luxburg 2007; Weiss 1999) have aroused considerable interests in machine
learning and data mining fields, and these methods have also been successfully applied
to community discovery (Flake et al. 2000; Ino et al. 2005; Miao et al. 2008; Ruan and
Zhang 2007). The basic idea behind those methods is to treat the whole network as a
large graph, then the communities would correspond to the inside subgraphs, which
can be identified via graph partitioning methods.

Despite the theoretical and empirical success of graph based methods, they still
own some limitations. On one hand, these algorithms usually result in an eigenvalue
decomposition problem and the communities can be identified from the resultant
eigenvectors. However, it is generally hard to tell the exact physical meanings of
those eigenvectors, which is important for explaining the final results when associated
with real world applications. On the other hand, it is difficult for them to tackle the
overlapping clusters.

As another research topic, Nonnegative Matrix Factorization (NMF) has emerged
as a powerful tool for data analysis with enhanced interpretability. It was originally
proposed as a method for finding matrix factors with parts-of-whole interpretations
(Lee and Seung 1999). Later NMF has been successfully applied to environmetrics
(Paatero and Tapper 1994), chemometrics (Xie et al. 1999), information retrieval
(Pauca et al. 2004), bioinformatics (Brunet et al. 2004), etc. More recently, Ding et al.
pointed out that the NMF based algorithms have close relationships with kmeans and
graph partitioning methods (Ding et al. 2005, 2006a,b). Moreover, they also show that
the results of NMF could be more easily explained (Ding et al. 2008).

In this paper, we propose to apply the NMF based algorithms for community dis-
covery. We consider three types of networks, the undirected network, directed network
and compound network, and we develop three different techniques, Symmetric NMF
(SNMF), Asymmetric NMF (ANMF) and Joint NMF (JNMF) to identify the hidden
communities on different networks. The correctness and convergence properties of
these algorithms are also studied. Finally we conduct a set of experiments on real
world networks to show the effectiveness of those algorithms. It is worthwhile to
highlight several aspects of the proposed algorithms:

— Since all the resultant matrices are nonnegative, our methods own a high inter-
pretability.

— Our method does not force the final resultant clusters to be exclusive, which makes
it be capable of dealing with overlapping clusters.

— Some prior knowledge (e.g. side-information) can be easily incorporated into
those algorithms (Wang et al. 2008b).

The rest of this paper will be organized as follows. Section 2 will introduce commu-
nity discovery in undirected networks together with the SNMF algorithm. The details
of the ANMF and HNMF algorithms will be introduced in Sects. 3 and 4. The exper-
imental results on real world networks will be introduced in Sect. 5, followed by the
conclusions and discussions in Sect. 6.
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2 Community discovery in undirected networks

In this section we will consider the problem of community discovery in undirected
networks, in which all the relationships between pairwise units are symmetric, i.e.,
all information carried on the network edges are undirected. In order to present our
algorithm more clearly, we first introduce a motivating example.

2.1 A motivating example

An undirected network can be represented as an undirected graph G. Assume it is
composed of k communities (clusters) Cy, ..., Cg of size pi, ..., pk, and the nodes
in each cluster C; are connecting to each other with the same weight s; while the nodes
in different clusters are disconnected with each other. Then, without loss of generality,
we assume that the rows belong to a particular cluster are contiguous, so that all data
points belonging to the first cluster appear first and the second cluster next, etc '.
Then the adjacency matrix of G can be represented as

S;0 ---0
0S -0
G=|. . . .
00 ---S;

where S; is p; X p; constant matrix with all its elements equal to s;. Then we can
factorize G = XSX | where

r10---0

0...0 510 ---0

10-.-0 0 s---0
X=lot..o|" 5={::.

Do 00 --- s

1001

In the above factorization, X provides the cluster membership and the diagonal ele-
ments s; of S shows the connectivity within each cluster.

Note that in this simple case, the tri-factorization of G to XSX ' is equivalent to
the solution of perform eigenvalue decomposition on G. In real world applications,
the network structure may not be such clear and G will have non-zero off-diagonal
entries. Particularly, when there are overlapping clusters, the columns of X will not
be orthogonal to each other. In this case the tri-factorization of G will be no longer
equivalent to its eigenvalue decomposition as in spectral clustering methods. Then the
problem of community discovery in networks can be casted as the following NMF
problem:

! This can be achieved by multiplying the adjacency matrix G with a permutation matrix if necessary.
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min (G, XSX "), )]
X>0,S>0

where £(A, B) is a general loss defined on matrices A, B, among which the Euclidean
Loss

(A, B) = [|A - B|I7 = D (A;; — B;))’
ij

is one of the commonly used loss types. In this paper, we will also make use of such
Euclidean loss.

In the undirected case, G is symmetric, thus S is also symmetric. In the following
we will introduce how to minimize the loss using NMF methods in both cases.

2.2 Symmetric nonnegative matrix factorization

If G is symmetric, then S is symmetric. We can then absorb S into X, i.e., X = XS!/2,
Then our problem is to solve the following problem

~ ATI2
min HG—XX H , )
X>0 F

According to Wang et al. (2008a), X can be solve by the following multiplicative
update rule

P S G
Xik «— Xik | 5+ 77—/~ 3
(2XX X)_k
l

After convergence, the obtained X" is just the scale partition matrix of the network G of
size n x K, whose i-th row corresponds to the cluster (community) membership of the
i-th unit. We can further normalize X to make > j Xi j = 1, such that Xik corresponds
to the posterior probability that the i-th unit belongs to the k-th community.

2.3 An illustrative example

Before we go into the details of applying NMF based methods for community dis-
covery on other types of networks, first let’s see an illustrative example here on how
SNMF works on undirected networks. The network structure is shown in Fig. 1, and
we construct the adjacency matrix G € R"*"(n = 30) as G;; = 1 if there is an edge
connecting node i and node j; and G;; = 0 otherwise. The scaled partition matrix
X is randomly initialized. The final results of applying Eq. 3 to update X till conver-
gence are shown in Fig. 2, where the more the color of the (i, j)-th block tends to
red, the more probable that unit i belongs to community j. From the figures we can
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i i i
4 56 10 14 16171819 2324 28 29

Fig. 2 Results of applying SNMF to discover the communities in the network shown in Fig. 1, in which
the x-axis corresponds to the data indices, and the y-axis represents the community categories

clearly see that our SNMF can successfully discover the community structure in the
network. Moreover, for the overlapping region of two communities (e.g. node 18 and
19), SNMF can also successfully detect them and assign possibilities to them which
indicating the extent they belonging to each cluster.

3 Community discovery in directed graph

Another type of frequently used network is the directed network, i.e., the edges con-
tained in the network are all directed, which makes the adjacency matrix A asymmet-
ric since A;; # A j;. A simple directed network with the same topology structure as
Fig. 1 is shown in Fig. 3. In the following we will introduce an Asymmetric Non-

negative Matrix Factorization (ANMF) approach to detect communities in a directed
network.

3.1 Asymmetric nonnegative matrix factorization

As stated above, the adjacency matrix A is asymmetric in the directed case. Now
consider the model under Euclidean distance.

min  £(A, XSX'),
X,S

st.  XeR[ SeRrRYM “4)

def . . . . .
where £(X,Y) = ||X — Y||%. Note that since A is asymmetric, S is also asymmetric.

We do not enforce the normalization constraint on X at this moment. We can further
normalize X it by transferring a diagonal matrix between X and S as

XSX' = XD HMmSDTH) XD H T 5)

Then we have the following theorem.
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Fig. 3 A simple directed network

Theorem 1 The loss €(A,XSX ") is nonincreasing under the alternative update
rules:

X X [ATXS +AXST], : 6

T [xsxTXsT+xsTx xs], ) ©
[X"AX],,

Sk« Sy 7

k< Sk [XTXSX'X],, (N

The loss is invariant under these updates if and only if X and S are at a stationary
point of the loss with the constraints.

Proof See Appendix 1.

3.2 An illustrative example

We also give an intuitive example here to illustrate how ANMF works on directed
networks. The topology of the network is shown in Fig. 3, which is the same as in
Fig. 1 except for the directed edges. We first constructed the n x n(n = 30) adjacent
matrix A as A;; = 1 is there is an edge pointing from X; to X;; and A;; = 0 otherwise.
Matrices X and S are randomly initialized. The final iteration result of X after con-
vergence is shown in Fig. 4, from which we can see that our algorithm can correctly
discover the community structure of the network.

4 Community discovery in compound networks

In the previous sections we have introduced how to make use of the NMF based meth-
ods for community discovery in one network, and the network can be undirected or
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4 56 10 14 16171819 2324 2829

Fig. 4 Results of applying ANMF to discover the communities in the network shown in Fig. 1, in which
the x-axis corresponds to the data indices, and the y-axis represents the community categories

directed. However, in real world applications, we may face with multiple networks
for heterogeneous data analysis. For example, in an automatic movie recommendation
system, we are given at least three networks: (i) the user network which shows the
relationships among users with common watching interests; (ii) the movie network
which shows the content relationship among movies (e.g., they are on the same topic
or belong to the same category); and (iii) the user-movie network shows the ratings
that the users give to those movies. We can analyze these networks to answer the
following problems:

— Hidden Links: Two users do not have any links in the user network, but they have
similar opinions on the watched movies (i.e., give similar ratings to those movies).
Similarly, two movies do not have any links in the movie network, but they are
watched by the same user or by different user with similar ratings.

— Hidden Clusters: This can be seen as extensions of hidden links. In fact, we want
to identify user clusters or movie clusters based on all the information available
(e.g., user network, movie network, and user-movie network).

— Boundary Spanners: The users that are familiar with many users (via user network)
while they do not watch similar movies or give similar ratings as their friends can
be thought as boundary spanners. The boundary spanners are well-positioned to
be innovators, since they have access to ideas and information flow into other
clusters.

Our aim is to develop a versatile model to formally analyze data associated with
multiple networks. For simplicity, we only consider the data sets with two types of
entities, and we assume all the networks are undirected. The algorithms for analyzing
data associated with more networks or directed networks can be similarly derived,
but much more complicated. First let’s introduce some notations. We use U to denote
the user-user matrix, D to denote the movie-movie matrix, and M to denote the user-
movie matrix. We are looking for a latent matrix X, which reflects some “intrinsic”
relationships between the users and the movies, such that the following three objec-
tives are minimized simultaneously: |[M —X]||, |U— XXT|, ID—XTX]|.Insuch
a way, we are able to better recover the relationships between user and movie, and
the community structures of user and movie. In the following we will formalize this
problem mathematically.
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4.1 Joint nonnegative matrix factorization
As stated above, the problem we aim to solve is

min £(X,M, U, D)
s.t. X e R

where £(X, M, U, D) & |M — X|2 + «|U — XXT |2 + 8D — X"X|12, and & >0,

B > 0 are constants to tradeoff the importance between different terms. Then we have
the following theorem.

Theorem 2 The loss £(X, M, U, D) is nonincreasing under the alternative update
rule

[M +20UX + XIA)]”

X," Xi‘ Y 8
j o< Ajj 2+ B) [XXTX]l.j (®)

where D = 28D — 1. To guarantee the nonnegativeness of X, we should set the
similarities between pairwise movies to be larger than 1 /2.

Proof See Appendix II.

4.2 An illustrative example

In this section we will give a concrete example to illustrate the utility of our method.
Specifically, suppose that we are given the following 5 references.

— Rakesh Agrawal, Ramakrishnan Srikant: Fast Algorithms for Mining Association
Rules in Large Databases. Proc. 20th Int. Conf. Very Large Data Bases, 1994, pp.
487-499.

— W. Bruce Croft, Jamie Callan: A Language Modeling Approach to Metadata for
Cross-Database Linkage and Search. Proceedings of the 2004 annual national
conference on Digital government research, 2004, pp. 1-2.

— John D. Lafferty, Chengxiang Zhai: Document Language Models, Query Models,
and Risk Minimization for Information Retrieval. SIGIR, 2001, pp. 111-119.

— Deng Cai, Qiaozhu Mei, Jiawei Han, Chengxiang Zhai: Modeling hidden topics
on document manifold. Proceeding of the 17th ACM conference on Information
and knowledge management, 2008, pp. 911-920.

— Jiawei Han, Yongjian Fu: Mining Multiple-Level Association Rules in Large
Databases. IEEE Trans. Knowl. Data Eng. (1999) 11(5):798-804.

Then we can construct a 5 x 5 author-author similarity matrix U according to their
co-author relationships (i.e., U;; = 1 if author i and author j have co-authored for
one paper, otherwise U;; = 0. U is symmetric). Moreover, we also construct a dictio-
nary (Large, Database, Association, Rule, Language, Model, Information Retrieval,
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VLDE

DigGov

SIGIR

CIKM

TKDE

Fig. 5 The inferred hidden relationships between the authors and the papers

Mine) from the paper titles by collecting them and removing the stop words, so we
can also construct a paper-paper similarity matrix by computing the cosine similarity
of pairwise paper titles. We also have a given author-paper relationship matrix, which
indicates who write the paper. We set « = = 1, and the predicted hidden author-
paper relationship is shown in Fig. 1, where the red color indicates strong relation-
ships, while blue color suggests weak relationships. From the figure we can discover
that:

— The authors have strong relationships with their own papers, which is consistent
with the prior information.

— The co-authorship can be revealed. For example, Lafferty and Chengxiang have
co-authored the SIGIR paper, and Chengxiang also wrote the CIKM paper, then
Lafferty also has a strong relationship with the CIKM paper.

— The paper similarity can be revealed. For example, Rakesh wrote the VLDB paper
on association rule mining, then he also has a strong relationship with the TKDE
paper which also talked about association rule mining.

Therefore we can see that our algorithm can integrates the author-author relation-
ships, paper-paper relationships and author-paper relationships together, and it really
finds out some “hidden relationships” between authors and papers. (Fig. 5).

5 Experiments

In this section we will present a set of experiments on real world data sets to validate
the effectiveness of our NMF based algorithms for community discovery.

@ Springer
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Table 1 The results of applying  Group 1 Subutai Ahmad, Volker Tresp, R. Hofmann
SNMF to the NIPS co-author Ralph Neuneier, H.G. Zimmermann
network Group 2 T.J. Sejnowski, A. Pouget, P. Viola,

J. R. Movellan, G. Tesauro, K. Doya,
N. N. Schraudolph, P. Dayan, G. E. Hinton

Group 3 J. C. Platt, S. Nowlan, J. Shawe-Taylor
Nello Cristianini

Group 4 Satinder P. Singh , M. Kearns, Andy Barto,
R. S. Sutton, David Cohn

Group 5 John Moody, Todd Leen, Y.Kabashima
David Saad

Group 6 Y. Bengio,J. Denker, Y. LeCun,

1. Guyon, H. P. Graf,
L. Bottou, S. Solla

Group 7 C. Williams, D. Barber
H. Hertz, M. Opper
Group 8 C. Koch, A. Moore, R. Goodman
B. Mel, H. Seung, D. Lee
Group 9 M. Jordan, Z. Ghahramani, C. Bishop

T. Jaakkola, L. Saul
P. Smyth, D. Wolpert

Group 10 A. Smola, B. Scholkopf, V. Vapnik
P. Barlett, R. Meir, R. Williamson

5.1 Undirected network
5.1.1 An illustrative example

We use the NIPS Conference Papers Vol. 0—12 Data Set* in our experiments. It con-
tains all the paper information of NIPS proceedings from volume O to volume 12.
There are totally 2037 authors with 1740 papers. We use the co-author data to con-
struct the undirected network. The (i, j)-th element of such adjacency matrix G of
such co-author graph is equal to the number of co-authored NIPS papers of the i-th
and the j-th authors. So the size of G is 2037 x 2037.

We first treat G as the similarity matrix between authors and apply K-means algo-
rithm to initialize the scaled partition matrix Xin Eq. 2 and then apply Eq. 3 to update it
until convergence® After we getting X, we can first row-normalize it to > j X; =1,
and finally the community that the i-th author belonging to can be determined as
l; = argmax; X; - We set the number of communities to be 10 manually, and some
representative authors in each community are illustrated in Table 1.

2 Available at http://www.cs.toronto.edu/~roweis/data.html.

3 Here convergence is defined as that the change of X in two successive iteration steps are no larger than a
specified threshold ¢.
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Fig. 6 The co-author network structures on some of the discovered communities. The nodes represent
different authors, and the node size indicates the paper number of the corresponding author. The edges
connecting pairwise authors indicate that the two authors have co-authored at least one NIPS paper, and the
black numbers on the edges correspond to the number of NIPS papers the two authors co-authored, and the
red numbers correspond to their co-authored papers on the DBLP record. The red lines denote that the two
authors have co-authored no NIPS papers, but they have other co-authored papers according to the DBLP

To better demonstrate the quality of the results, we draw the co-author structures for
some of the communities, which are shown in Fig. 6. From the figure we can discover
some typical characteristics of these structures:

— Generally there are one or several “superstars” in each community, for example,
V. Tresp, T. J. Sejnowski, Y. Lecunn and M. Jordan. The whole community can be
effectively consolidated through the wide social relationships of these superstars.

— The authors that have co-authored NIPS papers also tend to co-author papers
on other conferences/journals. This can be observed by the red numbers on
the network edges (the number of co-authored papers according to the DBLP
record), which are usually larger than the associated black numbers (the number of

co-authored NIPS papers).

— The authors in the same community that have never co-authored any NIPS paper
may tend to cooperate for other papers, which can be observed by the red lines

in the figures.
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Table 2 The basic information of WebKB

School Course Dept. Faculty Other Project Staff Student Total
Cornell 44 1 34 581 18 21 128 827
Texas 36 1 46 561 20 2 148 814
Washington 71 1 30 907 18 10 123 1166
Wisconsin 85 0 38 894 25 12 156 1210

Besides, we can also infer how active the authors are in the NIPS community accord-
ing to their label entropies. The label entropy of the i-th author can be computed as

le(i) = — ZX,’j IOgXl‘j
J

According to our experiments, the authors with the highest label entropy are V. Vap-
nik, M. Jordan and G. Hinton, which are all big names in today’s machine learning
community.

5.1.2 Qualitative comparisons

We further compare the performance of the proposed Symmetric Nonnegative Matrix
Factorization (SNMF) method with other competitive algorithms. The data set we used
here is the WebKB data set*, which consists of about 6000 web pages from computer
science departments of four schools (Cornell, Texas, Washington, and Wisconsin).
The web pages are classified into seven categories. The numbers of pages in each
category are shown in Table 2.

Besides the proposed SNMF algorithm, we also implement the Symmetric Tri-
Nonnegative Matrix Factorization (STriNMF) (Ding et al. 2006b) algorithm and the
Symmetric Convex Coding (SCC) (Long et al. 2007). For all the algorithms, we use
the same document relationship matrix which is just the inner-product matrix between
the document vectors. We randomly initialize the matrices updated and proceed mul-
tiplicative updates over 400 iterations. We calculate the clustering accuracy (Wang
et al. 2008b), normalized mutual information (Strehl et al. 2002)° and the objective
function loss they aim to minimize after each iteration step. Finally we average all
these values over 100 different initializations and report the performances in Figs. 7,
8 and 9. From these figures we can clearly see that our proposed SNMF algorithm,
although only requires update one matrix at each iteration (the other two algorithms
need to update two matrices at each iteration), can achieve better clustering results
(in terms of clustering accuracy and NMI) and low function loss. Moreover, we also

4 http://www.cs.cmu.edu/~WebKB/. The data set we used in our experiments can be downloaded from
http://www.nec-labs.com/~zsh/files/link-fact-data.zip.

5 Once we obtained the relaxed cluster indicator matrix (X in SNMF, H in STriNMF (Ding et al. 2006b),
and B in SCC (Long et al. 2007)), the cluster assignment of a specific data point is just the index of its cor-
responding row. For example, in SNMF, once we got X, the cluster assignment for x; is just arg max; X;;.
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Fig. 7 Averaged clustering accuracy results for different matrix factorization based methods. The x-axis
is the number of iterations, and the y-axis is the clustering accuracy averaged over 100 independent runs

record the final averaged clustering performance over 400 iterations with STriNMF
and SCC, and spectral clustering (where we use the document inner-product matrix
as the similarity matrix) and Kernel K-means (with linear inner-product kernel, and
the results are also averaged over 100 independent runs with random initializations).
The results are shown in Tables 3 and 4. From the tables we can clearly observe the
superiority of our proposed SNMF algorithm.

5.2 Directed network
5.2.1 An illustrative example

We use the Enron email data set(Priebe et al. 2005) to evaluate the effectiveness of our
ANMF method on directed networks. The data set contains the email communication
records among 184 users in a period of 189 weeks, from 1998 to 2002.

We construct an 184x184 adjacency matrix A for such directed email graph, whose
(i, j)-th element is computed as the number of emails that user i sent to user j during
that period. The matrices X and S are initialized randomly, and then iteratively updated
using Egs. 6 and 7 until convergence. The number of communities is set to 4.

Table 5 shows the communities of the Enron data set discovered by the ANMF
algorithm, where we give some representative employees of each community together
with their jobs. After checking the working departments of these employees, we find
that the people in the same community usually work in the same department. This is
quite reasonable since people tend to send email to their colleagues in the same group.
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Fig. 8 Averaged normalized mutual information results for different matrix factorization based methods.
The x-axis is the number of iterations, and the y-axis is the NMI value averaged over 100 independent runs
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Fig. 9 Averaged function loss variations for different matrix factorization based methods. The x-axis is
the number of iterations, and the y-axis is the function loss averaged over 100 independent runs
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Table 3 Averaged clustering accuracy comparison for symmetric algorithms on WebKB data set

Cornell Washington Texas Wisconsin
SNMF 0.4773 0.4766 0.4646 0.3768
STriNMF 0.4525 0.3888 0.4048 0.3796
SCC 0.3880 0.3352 0.3478 0.3164
Spectral clustering 0.4012 0.3790 0.3729 0.3230
Kernel K-means 0.3658 0.3239 0.3374 0.3145

Table 4 Averaged NMI comparison for symmetric algorithms on WebKB data set

Cornell ‘Washington Texas Wisconsin
SNMF 0.1427 0.2114 0.1734 0.1872
STriNMF 0.0994 0.1293 0.1166 0.1731
SCC 0.0637 0.0665 0.0605 0.0889
Spectral clustering 0.0877 0.0897 0.0817 0.1221
Kernel K-means 0.0523 0.0603 0.0623 0.0851

To further validate the correctness of the results, we draw the email sending structure
within each community in Fig. 10, from which we can clearly see that the people in
the same community contact very closely to each other.

5.2.2 Qualitative results

We also utilize the WebKB data set (with the contained webpage link information) to
test the effectiveness of the proposed Asymmetric Nonnegative Matrix Factorization
(ANMF) method, where X and S are randomly initialized, and we record the clus-
tering accuracy, NMI and objective function loss after each iteration with a total of
400 iterations. The results are shown in Figs. 11, 12 and 13, where all the curves are
averaged over 100 independent runs with different initializations. We also compare
the final results of our algorithm with Directed Spectral Clustering (DSC) (Zhou et al.
2005). The experimental results are shown in Tables 6 and 7. From the table we can
see that our algorithm can generally outperform DSC.

5.3 Compound network

In this section, we will apply the JNMF method introduced in Sect. 4 to Collaborative
Filtering (Yu and Tresp 2005). Collaborative filtering exploits the correlations between
item ratings across a set of users. It’s goal is to predict the ratings of a testing user on
new items given his/her historical ratings on other items and also the ratings given by
other like-minded users on all items.
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Table 5 The results of applying

ANMEF to the Enron email Role Name Job
network Legal Mark Haedicke Managing Director
Tana Jones Employee
Marie Heard Sr. Specialist
Mark Taylor Employee
Kay Mann Lawyer
James Derrick Lawyer
Pipeline Kevin Hyatt Director
Stanley Horton President
Shelley Corman V.P.
Kimberly Watson Employee
Lindy Donoho Employee
Trading David Delainey CEO
Executive Sally Beck COO
John Arnold V.P.
Phillip Alen Manager
John Lavorato CEO
Scott Neal V.P.
Government James Steffes V.P.
Affairs Richard Shapiro V.P.
Services Jeff Dasovich Employee
Richard Sanders V.P.
Steven Kean V.P.

We use the MovieLens © data set in our experiments, where we extracted a subset
of 500 users with more than 40 ratings and 500 movie items. The basic characteristics

of those data sets are summarized in Table 8.

In our experiments, we select 200, 300, 400 movies along with all the users from
both data sets and apply them to evaluate our method. We assume that for all the users
we only know 5, 10, 20 ratings that he/she gives. The remaining ratings are used for
testing. Note that the known ratings are randomly selected and each experiment is
carried out 20 times. To show the superiority of our method, we also conduct a set of

competitive approaches including:

— Pearson Correlation Coefficient Based Approach (PCC). The implementations is

the same as in (Resnick et al. 1994).

— Aspect Model Based Approach (AM). The implementations is the same as in

(Hofmann and Puzicha 1999).

6 http://www.grouplens.org/.
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Fig.10 The email network structures of the discovered communities. The nodes represent different employ-
ees, and the edge directions points from the email senders to the receivers, and the number near the arrows
indicate how many emails are sent

— Personality Diagnosis (PD). The implementations is the same as in (Pennock et
al. 2000).

— Nonnegative Matrix Factorization Based Approach (NMF). The implementation
is based on (Chen et al. 2007).

— Item Graph Based Approach (IG). The implementation is the same as in (Wang
et al. 2006).

For our JNMF method, we also explore the user and movie information provided
by the data set to construct the user similarity matrix U and movie similarity matrix D.
For each user, the MovieLens data set provides his/her age, gender, occupation and zip
code. We use the first three attributes to compute user-user similarities (where all the
three information are discretized such that each user is just a three-dimensional vector,
and the user-user similarities can me computed by vector dot-product). The movies
are encoded as 0-1 vectors according to its topic and genre, and the movie-movie
similarities can also computed by vector dot-product. We randomly initialize X and
use Eq. 8 to update it till convergence. In our experiments, we first normalize all the
entries in the rating matrix M, user matrix U and movie matrix D to be [0, 1], and
when the final results come out, we then re-normalize them into scale 1 to 5. « and g
are all set to 0.1 manually, and the mean absolute error (MAE) is used to evaluate the
results of those algorithms, which is defined as
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Fig. 11 Averaged clustering accuracy results for asymmetric nonnegative matrix factorization. The x-axis
is the number of iterations, and the y-axis is the clustering accuracy averaged over 100 independent runs
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Fig. 12 Averaged normalized mutual information results for asymmetric nonnegative matrix factorization.
The x-axis is the number of iterations, and the y-axis is the NMI value averaged over 100 independent runs
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Fig. 13 Averaged function loss variations for asymmetric nonnegative matrix factorization. The x-axis is
the number of iterations, and the y-axis is the function loss averaged over 100 independent runs

Table 6 Averaged clustering accuracy comparison for symmetric algorithms on WebKB data set

Cornell Washington Texas Wisconsin
ANMF 0.4274 0.4509 0.4863 0.4466
DSC 0.4439 0.4023 0.4558 0.4153
Table 7 Averaged NMI comparison for symmetric algorithms on WebKB data set
Cornell Washington Texas Wisconsin
ANMF 0.3287 0.1725 0.3360 0.1179
DSC 0.3450 0.1408 0.2984 0.0923
R.(tj) — R, ()
A — et |Rult)) = RG] o)

||

where U is the set of users and |U/| denotes its size, Ry (f;) denotes the true rating that
user u gives to movie ¢, and Ry, (¢;) denotes the estimated rating that user u gives to

t;.

The prediction results on the training sets of MovieLens is summarized in Table 9.
Note that all the MAE values in both tables are averaged over 20 independent runs.

From these tables we can clearly observe the superiority of our method.
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Table 8 Characteristics of the

eachmovie data set MovieLens
Number of users 500
Number of items 1000
Average ratio of rated items/users 87.7
Density of data 8.77%
Scale of ratings 5
Table 9 Results comparison of different methods on the MovieLens training data set
Training set Algs Given5 Givenl0 Given20
PCC 0.935 0914 0.887
AM 0.951 0.920 0.893
PD 0.916 0.890 0.868
ML_200 NMF 0.915 0.889 0.872
1G 0.872 0.850 0.822
INMF 0.827 0.810 0.788
pPCC 0.946 0.918 0.892
AM 0.984 0.957 0.933
PD 0.925 0.906 0.884
ML_300 NMF 0.922 0.897 0.878
IG 0.882 0.863 0.826
INMF 0.852 0.830 0.809
PCC 0.975 0.953 0912
AM 1.203 1.034 0.973
PD 0.933 0.910 0.897
ML_400 NMF 0.948 0.921 0.904
1G 0.897 0.874 0.832
INMF 0.863 0.845 0.811

6 Conclusions and discussions

In this paper, we propose how to apply nonnegative matrix factorization based methods
to solve the community discovery problem. We have proposed three concrete algo-
rithms, Symmetric NMF, Asymmetric NMF and Joint NMF to work on undirected
networks, directed networks and compound networks, and we also proved the cor-
rectness and convergence of those algorithms. Finally the experiments on real world
network data sets are presented to show the effectiveness of those methods.

Despite the good aspects, there are still some limitations of the proposed algorithms
that are worthy of working on as our future works. (1). The proposed methods strongly
depends on the quality of the provided G (for SNMF), A (for ANMF) or U, M, D (for
JNMF) matrices. If these matrices cannot well reveal the genuine data relationships,
then the algorithm will not produce good results. In the future we will try to design
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a recursive scheme to learn the data relationship matrix and the cluster assignment
matrix together; (2). The power of 1/4 in ANMF and JNMF will make the algorithms
converge somewhat slowly. In the future we will try to construct some other auxiliary
functions that can lead to better update rules.

Appendix I: Proof of Theorem 1
Correctness: First we will prove the correctness of the updating rules in Eqgs. 6 and
7, i.e., we will show that if they converged solutions, then the final solution would

satisfy the KKT condition. By introducing the Lagrangian multipliers 8, and 8, for
the nonnegativity of X and S, we can construct the Lagrangian function of Eq. 4 as

L= HA —XSXT H2 —r(B,X") — tr(B,ST)

Then we have

oL

<=2 (XSXTXST +XSTXTXS — AXST — ATXS) _ B,
oL T T T

S _z(x XSX'X — X AX)—ﬂ2

Let g—g‘( = 0 and % = 0, and follow the KKT complementary slackness condition,
we have

By Xij =2 (XSX'XS" +XSTX'XS — AXS" —ATXS) X;; =0
154 J

ij
Ba,Sij =2 (XTXSXTX - XTAX) 51 =0

Then we can see that the updating rules Eqs. 6 and 7 satisty the above KKT conditions.
Moreover, since matrices A, S, X are all nonnegative during the updating process, so
the final X and S would also be nonnegative. Therefore we prove the correctness of
our algorithm.

Convergence: Now we prove the convergence of our algorithm. Following (Lee
and Seung 2000), we will use the auxiliary function approach to achieve this goal.
Fixing S, since

0A,XSXT) = tr (XSXTXSTXT) . (ATXSXT) e (ATA)

IA

gtr (PsX'XST) + %tr (PsTX'Xs)

“tr (ATXSXT) Fur (ATA) (by Lemma 6)

IA

étr (RSXTXSTXT) + %u (RsTX'XsX")

2t (ATXSZT) — o (ATZSXT)
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—2tr (ATXSXT) +tr (ATA) (by Lemmas 7 and 3)
o, X)

2 S [eTe <13 < =
where Py = [XTX];, / [X'X] | Ru = [XI} / [X], - and Zi; = Xy In(X, /X)),
Thus Q(X, X) satisfied the conditions of being an auxiliary function for X. Then let

{X®} be the series of matrices obtained from the iterations of Egs. 6 and 7, where
the superscript (#) denotes the iteration number. Now let’s define

XD = arg min Q(X, X®)y
By the construction of Q, we have
QX X1) = QXD X1) = Q(XI*D X(*D)

Then the loss £ (G, X"s (X(I))T) = Q(X®, X®) is monotonically decreasing.

Let £(X) = Q(X, i). Then we can find the solution for miny Q (X, X) by the fol-
lowing Karush-Kuhn-Tucker condition

AL X re =T o T
- =22 [XSX'XST + XSTX ' Xs]
0X;k X, ik

X; - _
il [ATXS + AXST] =0
1

ik

So we have the update rule for X as Eq. 6.
Fixing X. If Sy; is zero, S; is a fixed point and satisfies KKT condition. Now we
assume Sy, is positive.

CA,XSXT) = tr (XSXTXSTXT) —2r (ATXSXT) i (ATA)
<t (XTxﬁxTXTT) . (ATXSXT) fu (ATA)

def

= 9GS, S)

where Ty = S,%l /§k1. Let £(S) = Q(S, §) be the auxiliary function of S, then the
Karush-Kuhn-Tucker conditions is
oL Su

— 2K [XTX§XTX]

5 =2 —Z[XTAX] —0.

ki kl

We have the update rule for S as Eq. 7.
Therefore, let £(X, S) = ¢(G, XSX "), then we have

X, 89y > ¢xV, 8@y > (XD, 8V > ...
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So ¢(X, S) is monotonically decreasing. Since £(X, S) is obviously bounded below,
the theorem is proved. O

Appendix IT
First we decompose

J=IM-X|*+a|U-XX"|?+8ID - X"X|?
— (MTM +aUTU+ ,BDTD)
o+ Bt (XTXXTX)

—tr (2MTX +20UXX" + (28D — I)XTX)

LetD = 28D — I, then we have
Convergence: By introducing the Lagrangian multiplier p for the nonnegativity of X,
we can construct the Lagrangian function of J as

L=J—-1tr (yXT)
Then

L .
X = =4(a + B)YXXX) — @M + 4aUX + 2XD) —

Let 2L ax = 0, and follow the KKT complementary slackness condition, we have
VijXij = [4(0{ + A (XX TX) — M + 4aUX + ZXﬁ)] X
i
=0

Then we can see that the update rule Eq. 8 satisfies the above condition.
Correctness: From Lemmas 5 and 6, we have

tr (XTXXTX) <tr (PXTX) <tr (RXTXXT)

where P;j = [X'X]’ / [XTS&] ‘Rj; = [XI};/[X]},. On the other hand, from
ij

Lemmas 2 and 3,
r (MTX) > tr (MTZ) i (MTX)
tr (UXXT) > tr (SETUZ) i (ZTUY() Ftr (SZTUSZ)

r (f)XTX) > ir (ﬁXTZ) i (f)ZTf() +ir (f)XTX)
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where Z,‘j = iij In (Xij/iij)' Then we have

J

IA

r (MTM +aUTU+ ﬁDTD)

T @+ pr (RﬁTiiT) — (MTSE + MTZ)
4 2atr (SiTUTZ +ZTUTX + SZTUTX)

—tr (ﬁXTZ +DZTX + f)XTf()

déf

9(X, X)

which can be served as the auxiliary function of X. To find its local minimum, we can
write the Karush-Kuhn-Tucker condition it should satisfy as

99 X X;j
2 s+ p=L (XX X) _ 2 (2M +4aUX + 2XD) (10)
0X; i ij X,/
Therefore we get
R 1
[M+20Ux+XD] \*

X;j < Xjj <l (11)

2(x + B) [XXTx]l.j

Appendix: Lemmas

Lemma 1 The following inequality holds,
—anx, < —Za, ln—

The equality holds when o; = xi/(zi X;).

Proof Because of the convexity of logarithm, we have
—]nZaizi < - Zai In z;,
i i

where z; > 0 and > ; ; = 1. The equality holds when z;’s are equal to each other.
Plugging z; = x;/«;, we obtain the lemma. O

Lemma 2 Matrices A and X are nonnegative. X is positive. We have
—tr (ATX) < —tr (ATL) —tr (ATX)
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where L;; = Xij In Xij/iij. The equality holds when X=X
Proof By Lemma 1, we have that
—tr (ATX) = —vec(A) Tvec(X)

< —vec(A) Tvec(L) — vec(A) Tvec(X)
— (ATL) —u (ATX)

Lemma 3 Vector b and x are nonnegative, X is nonnegative. Then
~b'xInb'x < —-b'XInb'x+b' (x - %)

The equality holds when X = X.
Proof Since§EIn(§/¢) —&+¢ > 0. O

Lemma 4 Matrices A, B, X are nonnegative. Matrix X is positive. We have
—tr (BXTAX) = —ur (BX'AZ) - r (BZAX)
—tr (BXTAS&) (12)

where Z;j = Xij. In X;; /)~(,~j. The equality holds when X=X

Proof Since
—tr (BXTAZ) = —vecX)T BT ® Ayvec(Z)

Then following Lemma 2, we prove this lemma. O

Lemma 5 Matrix A is nonnegative. Vector X is nonnegative, and X is positive.
We have

1 -~ 1_
xAx < EyTAX + EXTAy

where y; = xi2 /X;. The equality holds when X = x.

Proof Let g; = x; /X, then we have

1 1

EyTAi + EiTAy —x"Ax
1_ -~ 1_ -

= EXTQZAX + EXTAsz —xAx
1 -~

=5 > Ai%iX;(gi —q;)° = 0

ij
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Plugging in X = x, we can verify the equality. O

Lemma 6 Matrices A, B, X are nonnegative. Matrix X is positive. We have
1 ~ -~
r (BXTAX) <t (BYTAX + BXTAY)

where Y;; = Xl.zj /)~(,-j. The equality holds when X=X

Proof By Lemma 5, we have

tr (BXTAX) = vecX)TBT ® A)vec(X)

IA

%vec(Y)T(BT ® Avec(X) + %iT(BT ® A)vec(Y)

1 _ _
Str(BYTAX + BX AY)
Plugging in X = x, we can verify the equality. O

Lemma 7 Matrix A is nonnegative symmetric. Matrix X is nonnegative. Matrix X
is positive. We have

tr (PA) < tr (RAXT)

where Py = [XTX]Z / [XTX]kl and R, = [X]4/[)~(]2l. The equality holds when
X=X

Proof Let Y, = Xl-zk/f(,-k. Since
2
i i i

X2 X2
Py< > ki —yTy (13)

we have

Then, by Lemma 6, we have

ST
tr (PA) < tr (YTYA) =t (YAYT) < RAX
ol S3 . I . .
where Rj; = Yizk /Xik = X;‘k /X Plugging in X = X, we can verify the equality. O
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