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ABSTRACT
Given a snapshot of a social network, can we infer which new inter-
actions among its members are likely to occur in the near future? We
formalize this question as thelink prediction problem, and develop
approaches to link prediction based on measures of the “proximity”
of nodes in a network. Experiments on large co-authorship networks
suggest that information about future interactions can be extracted
from network topology alone, and that fairly subtle measures for de-
tecting node proximity can outperform more direct measures.

General Terms
Algorithms
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Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; J.4 [Social and Be-
havioral Sciences]: Sociology; G.2.2 [Graph Theory]: Network
Problems

1. INTRODUCTION
As part of the recent surge of research on large, complex networks

and their properties, a considerable amount of attention has been de-
voted to the computational analysis ofsocial networks—structures
whose nodes represent people or other entities embedded in a so-
cial context, and whose edges represent interaction, collaboration,
or influence between entities. Natural examples of social networks
include the set of all scientists in a particular discipline, with edges
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joining pairs who have co-authored papers; the set of all employees
in a large company, with edges joining pairs working on a common
project; or a collection of business leaders, with edges joining pairs
who have served together on a corporate board of directors. The
availability of large, detailed datasets encoding such networks has
stimulated extensive study of their properties and the identification of
recurring structural features. (For a thorough recent survey, see [11].)

Social networks are highly dynamic objects; they grow and change
quickly over time through the addition of new edges, signifying the
appearance of new interactions in the underlying social structure.
Understanding the mechanisms by which they evolve is a funda-
mental question that is still not well understood, and it forms the
motivation for our work here. We define and study a basic compu-
tational problem underlying social network evolution, thelink pre-
diction problem: Given a snapshot of a social network at timet, we
seek to accurately predict the edges that will be added to the network
during the interval from timet to a given future timet′.

In effect, the link prediction problem asks: to what extent can the
evolution of a social network be modeled using featuresintrinsic to
the network itself?Consider a co-authorship network among scien-
tists, for example. There are many reasons, exogenous to the net-
work, why two scientists who have never written a paper together
will do so in the next few years: for example, they may happen to
become geographically close when one of them changes institutions.
Such collaborations can be hard to predict. But one also senses that
a large number of new collaborations are hinted at by the topology
of the network: two scientists who are “close” in the network will
have colleagues in common, and will travel in similar circles; this
suggests that they themselves are more likely to collaborate in the
near future. Our goal is to make this intuitive notion precise, and to
understand which measures of “proximity” in a network lead to the
most accurate link predictions. We find that a number of proximity
measures lead to predictions that outperform chance by factors of 40
to 50, indicating that the network topology does indeed contain latent
information from which to infer future interactions. Moreover, cer-
tain fairly subtle measures—involving infinite sums over paths in the
network—often outperform more direct measures, such as shortest-
path distances and numbers of shared neighbors.

We believe that a primary contribution of the present paper is in
the area of network evolution models. While there has been a pro-
liferation of such models in recent years (again see [11]), they have
generally been evaluated only by asking whether they reproduce cer-
tain global structural features observed in real networks. As a result,
it has been difficult to evaluate and compare different approaches on
a principled footing. Link prediction, on the other hand, offers a nat-
ural basis for such evaluations:a network model is useful to the ex-
tent that it can support meaningful inferences from observed network
data. One sees a related approach in recent work of Newman [10],
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who considers the correlation between certain network growth mod-
els and data on the appearance of edges of co-authorship networks.
Concurrently with the present work, Popescul and Ungar [13] have
also investigated a related formulation of the link prediction problem.

In addition to its role as a basic question in social network evo-
lution, the link prediction problem could be relevant to a number of
interesting current applications of social networks. Increasingly, for
example, researchers in AI and data mining have argued that a large
organization, such as a company, can benefit from the interactions
within the informal social network among its members; these serve
to supplement the official hierarchy imposed by the organization it-
self [8, 14]. Effective methods for link prediction could be used to
analyze such a social network, and suggest promising interactions
that have not yet been utilized within the organization. In a different
vein, research in security has recently begun to emphasize the role of
social network analysis, largely motivated by the problem of moni-
toring terrorist networks; link prediction in this context allows one
to conjecture that particular individuals are interacting even though
their interaction has not been directly observed.

2. DATA AND EXPERIMENTAL SETUP
We model a social network as a graphG = 〈V,E〉 in which each

edgee ∈ E represents an interaction between its endpoints at a par-
ticular timet(e). We record multiple interactions by parallel edges
with different time-stamps. For timest < t′, letG[t, t′] denote the
subgraph ofG restricted to edges with time-stamps betweent and
t′. To formulate the link prediction problem, we choose atraining
interval [t0, t′0] and atest interval[t1, t′1] wheret′0 < t1, and give an
algorithm access to the networkG[t0, t

′
0]; it must then output a list

of edges, not present inG[t0, t
′
0], that are predicted to appear in the

networkG[t1, t
′
1].

For our experiments, we use co-authorship networksG obtained
from papers found in five sections of the physics e-Print arXiv,www.
arxiv.org. (See Figure 1.) Occasional syntactic anomalies were
handled heuristically, and authors were identified by first initial and
last name; this appears to introduce only a small amount of error
due to ambiguous identifiers. Our training interval is the period
[1994, 1996], and the test interval is[1997, 1999]. Denote the train-
ing interval subgraphG[1994, 1996] by Gcollab := 〈A,Eold〉, and
let Enew denote the set of edges〈u, v〉 whereu andv co-author a
paper during the test interval but not the training interval—these are
the new interactions we are seeking to predict.

In evaluating link prediction methods, we focus on links between
authors who have each written at least a minimum number of papers:
we define the setCore to be all nodes incident to at leastκtrain edges
in the training interval and at leastκtest edges in the test interval,
whereκtrain andκtest are both set to3. Each link predictorp outputs
a ranked listLp of pairs inA × A − Eold ; these are predicted new
collaborations, in decreasing order of confidence. DefineE∗

new :=
Enew ∩ (Core × Core) andn := |E∗

new |. Our performance measure
for predictorp is then determined as follows: from the ranked list
Lp, we take the firstn pairs inCore × Core, and determine the size
of the intersection of this set of pairs with the setE∗

new .

3. METHODS FOR LINK PREDICTION
In this section, we survey an array of methods for link prediction.

Each assigns a connection weightscore(x, y) to pairs of nodes, pro-
ducing a ranked list in decreasing order ofscore(x, y). A predictor
can thus be viewed as computing a measure of proximity or “similar-
ity” between nodesx andy, relative to the network topology. These
predictors are adapted from techniques used in graph theory and so-
cial network analysis, and many must be modified from their original

training period Core
auths. papers edges auths. |Eold | |Enew |

astro-ph 5343 5816 41852 1561 6178 5751
cond-mat 5469 6700 19881 1253 1899 1150
gr-qc 2122 3287 5724 486 519 400
hep-ph 5414 10254 17806 1790 6654 3294
hep-th 5241 9498 15842 1438 2311 1576

Figure 1: ArXiv sections from which networks were constructed:
astrophysics, condensed matter, general relativity/quantum cos-
mology, and high energy physics (phenomenology and theory).

purposes to measure node-to-node similarity.
Perhaps the most basic approach is to rank pairs by the length of

the shortest path between them inGcollab . Such a measure follows
the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [11]. (We predict a ran-
dom subset of pairs at distance two inGcollab ; distance-one pairs are
edges in the training setEold .)
Methods based on node neighborhoods. For a nodex, let Γ(x) be
the set of neighbors ofx in Gcollab . Several approaches are based on
the idea that two nodesx andy are more likely to form a link ifΓ(x)
andΓ(y) have large overlap; this follows the natural intuition that
such node pairs represent authors with many colleagues in common,
and hence are more likely to come into contact themselves [6].
• Common neighbors.One can directly use this idea by setting

score(x, y) := |Γ(x) ∩ Γ(y)|, the number of common neighbors
of x andy. In collaboration networks, Newman [10] has verified a
correlation between the number of common neighbors ofx andy at
time t, and the probability that they will collaborate in the future.
• Jaccard’s coefficient and Adamic/Adar.The Jaccard coefficient,

commonly used in information retrieval [15], measures the number
of features thatbothx andy have compared to the number of features
thateitherx or y has. Taking “features” as neighbors inGcollab , this
leads toscore(x, y) := |Γ(x) ∩ Γ(y)|/|Γ(x) ∪ Γ(y)|. Adamic and
Adar [1] consider a related measure, in the context of deciding when
two personal home pages are strongly “related.” They compute fea-
tures of the pages, and define the similarity between two pages to be∑

z: feature shared byx, y
1

log(frequency(z))
. This refines the simple count-

ing of common features by weighting rarer features more heavily.
This suggests the measurescore(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachmenthas received considerable attention as a
model of network growth [11]. The basic premise is that the proba-
bility a new edge involves nodex is proportional to|Γ(x)|. Barabasi
et al. [2] and Newman [10] have further proposed, on the basis of
empirical evidence, that the probability of co-authorship ofx andy
is correlated with the product of the number of collaborators ofx
andy, corresponding to the measurescore(x, y) := |Γ(x)| · |Γ(y)|.
Methods based on the ensemble of all paths. A number of methods
refine the notion of shortest-path distance by implicitly considering
the ensemble ofall paths between two nodes.
• Katz [7] defines a measure that directly sums over this collec-

tion of paths, exponentially damped by length to count short paths
more heavily. This leads to the measurescore(x, y) :=

∑∞
�=1 β

� ·
|paths〈�〉x,y|, wherepaths〈�〉x,y is the set of all length-� paths fromx toy.
One can verify that the matrix of scores is given by(I−βM)−1−I,
whereM is the adjacency matrix of the graph. We considerweighted
Katz, wherepaths〈1〉x,y = � if there are� parallel edges〈x, y〉, andun-
weightedKatz, where parallel edges are ignored.
• Hitting time, PageRank, and variants.A random walkonGcollab

starts at a nodex, and iteratively moves to a neighbor ofx cho-
sen uniformly at random. Thehitting timeHx,y from x to y is
the expected number of steps required for a random walk starting
at x to reachy. We also consider the symmetriccommute time
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Cx,y := Hx,y + Hy,x. Both of these measures serve as natural
proximity measures, and hence (negated) can be used asscore(x, y).
One difficulty with hitting time is thatHx,y is quite small whenever
y is a node with a largestationary probabilityπy, regardless of the
identity ofx. Thus we also considernormalizedmeasures−Hx,y ·πy

or−(Hx,y ·πy +Hy,x ·πx). Another difficulty with these measures
is their sensitive dependence to parts of the graph far away fromx
andy, even whenx andy are connected by very short paths. A way
of counteracting this is to allow the random walk fromx to y to pe-
riodically “reset,” returning tox with a fixed probabilityα at each
step; in this way, distant parts of the graph will almost never be ex-
plored. Random resets form the basis of thePageRankmeasure for
Web pages [3], and we can adapt it for link prediction as follows:
Define therooted PageRankmeasure to be the stationary probability
of y in a random walk that returns tox with probabilityα each step,
moving to a random neighbor with probability1 − α.
• SimRank[5] is a fixed point of the following recursive definition:

two nodes are similar insofar as they are joined to similar neighbors.
Numerically, we definescore(x, x) := 1 and, for someγ ∈ [0, 1],

score(x, y) := γ ·
∑

a∈Γ(x)

∑
b∈Γ(y) score(a, b)

|Γ(x)| · |Γ(y)| .

SimRank can be interpreted in terms of a random walk onGcollab : it
is the expected value ofγ�, where� is a random variable giving the
time at which random walks started fromx andy first meet.
Higher-level approaches. We now discuss three “meta-approaches”
that can be used in conjunction with any of the above methods.
• Low-rank approximation.All our link prediction methods can

be formulated in terms of the adjacency matrixM . For example,
common neighbors of two nodes can be computed as the inner prod-
uct between the two corresponding rows ofM . A common technique
when analyzing a large matrixM is to choose a relatively small num-
berk and compute the rank-k matrixMk that best approximatesM
under any of a number of standard matrix norms. This can be done
efficiently using the singular value decomposition, and it forms the
core of methods likelatent semantic analysis[4]. Intuitively, this
can be viewed as a type of “noise-reduction” technique that preserves
most of the structure in the matrix. We consider three applications of
low-rank approximation: (i) the Katz measure, usingMk rather than
M in the underlying formula; (ii) common neighbors, using inner
products of rows inMk rather thanM ; and—most simply of all—
(iii) defining score(x, y) to be the(x, y) entry in the matrixMk.
• Unseen bigrams.Link prediction is akin to the problem of esti-

mating frequencies ofunseen bigramsin language modeling—pairs
of words that co-occur in a test corpus, but not in the corresponding
training corpus (see, e.g., [9]). Following ideas in that literature, we
can improvescore(x, y) using values ofscore(z, y) for nodesz that
are “similar” to x. Suppose we have valuesscore(x, y) computed
under one of the measures above. LetS

〈δ〉
x denote theδ nodes most

related tox underscore(x, ·), for a parameterδ > 0. We then define
enhanced scores in terms of these nodes:score∗(x, y) := |{z : z ∈
Γ(y) ∩ S

〈δ〉
x }| or score∗wtd(x, y) :=

∑
z∈Γ(y)∩S

〈δ〉
x

score(x, z).
• Clustering. We can also try to improve the quality of a predic-

tor by deleting the more “tenuous” edges inGcollab by a clustering
procedure, and then running the predictor on the resulting “cleaned-
up” subgraph. Specifically, consider a measure computing values for
score(x, y). We computescore(u, v) for all edges inEold , and delete
the(1 − ρ) fraction of these edges for which the score is lowest. We
now re-computescore(x, y) for all pairs〈x, y〉 on this subgraph.

4. RESULTS AND DISCUSSION
In Figure 2, we show each predictor’s performance on each arXiv

section, in terms of the factor improvement over random predictions.

(Many collaborations form for reasons outside the scope of the net-
work, so improvement over random is arguably more meaningful
here than raw performance.) A number of methods significantly out-
perform random, suggesting that the network topology alone does
contain useful information; the Katz measure and its variants perform
consistently well, and some of the very simple measures (e.g., com-
mon neighbors and the Adamic/Adar measure) also perform well. At
the same time, there is clearly much room for improvement in per-
formance on this task, and finding ways to take better advantage of
the information in the training data is an interesting open question.
Another issue is to improve the efficiency of the proximity-based
methods on very large networks; fast algorithms for approximating
the distribution of node-to-node distances may be one approach [12].
• The fact that collaboration networks form a small world—i.e.,

there are short paths connecting almost all pairs of scientists [11]—is
normally viewed as vital to the scientific community. In our context,
though, this implies that there are often very short (and very tenuous)
paths between two scientists in unrelated disciplines; this suggests
why the basic graph distance predictor is not competitive with most
of the other approaches studied. Our most successful link predictors
can be viewed as using measures of proximity that are robust to the
few edges that result from rare collaborations between fields.
• Performance of the low-rank approximation methods tends to

be best at an intermediate rank, but ongr-qc they perform best at
rank 1. This suggests a sense in which the collaborations ingr-qc
have a much “simpler” structure. One also observes the apparent
importance of node degree in thehep-ph collaborations: the pref-
erential attachment predictor does uncharacteristically well on this
dataset, outperforming the basic graph distance predictor.
• Certain of the methods show high overlap in the predictions they

make; one such cluster of methods is Katz, low-rank inner product,
and Adamic/Adar. It would be interesting to understand the gener-
ality of these overlap phenomena, especially since some of the large
overlaps (such as the one just mentioned) do not seem to follow ob-
viously from the definitions of the measures.
• Given the low performance of the predictors onastro-ph (and

the fact that none beats simple ranking by common neighbors), it is
an interesting challenge is to formalize a sense in which it is a “diffi-
cult” dataset. By running our predictors on some other datasets, we
have discovered that performance swells dramatically as the topical
focus of the dataset widens. In a narrow field, almost anyone can
collaborate with anyone else, and new collaborations are largely ran-
dom. It would be interesting to make precise a sense in which such
new collaborations are simply not predictable from the training data.
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