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ABSTRACT joining pairs who have co-authored papers; the set of all employees

Given a snapshot of a social network, can we infer which new intdft & 1arge company, with edges joining pairs working on a common
actions among its members are likely to occur in the near future? ject; or a collection of business leaders, with edges joining pairs

formalize this question as tHimk prediction problemand develop WNO have served together on a corporate board of directors. The
approaches to link prediction based on measures of the “proximi vailability of large, detailed datasets encoding such networks has
of nodes in a network. Experiments on large co-authorship netwo imulated extensive study of their properties and the identification of

suggest that information about future interactions can be extracf@&”m_n? structukral fea;]grﬁls. éForat_horg_ugh teﬁentsurvey,dseﬁ [11].)
from network topology alone, and that fairly subtle measures for de-S0cial networks are highly dynamic objects; they grow and change

tecting node proximity can outperform more direct measures,  duickly over time through the addition of new edges, signifying the
appearance of new interactions in the underlying social structure.

Understanding the mechanisms by which they evolve is a funda-
General Terms mental question that is still not well understood, and it forms the
Algorithms motivation for our work here. We define and study a basic compu-
tational problem underlying social network evolution, thek pre-
diction problem Given a snapshot of a social network at timeve

Keywor ds seek to accurately predict the edges that will be added to the network
Social networks, link analysis, link prediction during the interval from time to a given future time’.

In effect, the link prediction problem asks: to what extent can the
Categories and Subj ect Descriptors evolution of a social network be modeled using featumésnsic to

o o ] the network itselfZConsider a co-authorship network among scien-
H.2.8 [Database Applications]: Data Mining; J.4 Bocial and Be-  tjsts, for example. There are many reasons, exogenous to the net-
havioral Sciences]: Sociology; G.2.2 Graph Theory]: Network work, why two scientists who have never written a paper together

Problems will do so in the next few years: for example, they may happen to
become geographically close when one of them changes institutions.
1. INTRODUCTION Such collaborations can be hard to predict. But one also senses that

As part of the recent surge of research on large, complex netwog??rge number of new col!aborations are hinteq at by the topolc_)gy
and their properties, a considerable amount of attention has been et-he network: t\{vo scientists who are closg in th_e ne_twork. W'I.I
voted to the computational analysis sicial networks-structures have colleagues in common, and will travgl in similar circles; .thIS
whose nodes represent people or other entities embedded in aSbggests that they themselves are more likely to collaborate in the

cial context, and whose edges represent interaction, collaboratiﬂﬁgr fu:ur((ej. Ohgrr?oal IS 0 mal;e“ this .'nt.Lt“t,!V.e nOt'Ot?NprECl'S% ?n(tjhto
or influence between entities. Natural examples of social netwo erstand which measures of proximity”in a network 'ead to the

include the set of all scientists in a particular discipline, with edgé'goSt accurate link prednc_:tlons. We find that a number of proximity
measures lead to predictions that outperform chance by factors of 40

*Laboratory for Computer Science, Massachusetts Institute of Tedd-50, indicating that the network topology does indeed contain latent
nology. Email:dl n@ heory. | cs. nit. edu. Supported in part information from which to infer future interactions. Moreover, cer-
by an NSF Graduate Research Fellowship. o tain fairly subtle measures—involving infinite sums over paths in the
;Pepagme% of Complulter gmenge, COtmg”_ Unlv;arg,lty. DEmglhetwork—often outperform more direct measures, such as shortest-
el nber @s. cornel | . edu. oupportied in part by a David path distances and numbers of shared neighbors.

and Lucile Packard Foundation Fellowship and NSF ITR Grant II£ We believe that a primary contribution of the present paper is in
0081334. ) .

the area of network evolution models. While there has been a pro-

liferation of such models in recent years (again see [11]), they have

generally been evaluated only by asking whether they reproduce cer-
Permission to make digital or hard copies of all or part of this work fortain global structural features observed in real networks. As a result,
personal or classroom use is granted without fee provided that copies dtehas been difficult to evaluate and compare different approaches on
not made or distributed for profit or commercial advantage and that copieg principled footing. Link prediction, on the other hand, offers a nat-
bearglr.“sh”t(’t'ce "i”d the full C”att'on %’.‘ tth%f'trSIIP?gte' To copy °ther""'sea}8ral basis for such evaluationa:network model is useful to the ex-
Ir)eeprumis':io’n%ﬁgfofgf‘eiwers ortoredistribute to lIsts, requires prior SpeCili it that it can support meaningful inferences from observed network
CIKM'03, November 3-8, 2003, New Orleans, Louisiana, USA. data. One sees a related approach in recent work of Newman [10],
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who considers the correlation between certain network growth madd- training period Core

) ; e auths.| papers| edges|| auths.| |Eoual| | |[Enew)
els and data on the appearance of edges of co-authorship netw S Tro-ph || 5343 | 5816 | 41852 1561 | 6178 | 5751

Concurrently with the present work, Popescul and Ungar [13] haye 15269 T 6700 1 198811 1253 | 1899 | 1150
also investigated a related formulation of the link prediction probleny, ¢ 2122 [ 3287 | 5724 || 486 519 | 400
In addition to its role as a basic question in social network ev@-hep-ph 5414 | 10254 | 178061 1790 | 6654 | 3294
lution, the link prediction problem could be relevant to a number gfhep-th 5241 | 9498 | 158421 1438 | 2311 | 1576
interesting current applications of social networks. Increasingly, for
example, researchers in Al and data mining have argued that a lalggure 1: ArXiv sectionsfrom which networ kswere constructed:
organization, such as a company, can benefit from the interactiastr ophysics, condensed matter, general relativity/quantum cos-
within the informal social network among its members; these sermeology, and high energy physics (phenomenology and theory).
to supplement the official hierarchy imposed by the organization it-
self [8, 14]. Effective methods for link prediction could be used t@urposes to measure node-to-node similarity.

analyze such a social network, and suggest promising interactiongerhaps the most basic approach is to rank pairs by the length of
that have not yet been utilized within the Organization. Ina diﬁel’emG shortest pa’[h between ’[hen‘@za”ab. Such a measure follows
vein, research in security has recently begun to emphasize the rolgef notion that collaboration networks are “small worlds,” in which
social network analysis, largely motivated by the problem of monindividuals are related through short chains [11]. (We predict a ran-

toring terrorist networks; link prediction in this context allows oNgjom subset of pairs at distance twa(f,;;.5; distance-one pairs are
to conjecture that particular individuals are interacting even thougiges in the training sét

old-)

their interaction has not been directly observed. M ethods based on node neighborhoods. For a noder, letT'(z) be
the set of neighbors af in Gc.uqy. Several approaches are based on
2. DATA AND EXPERIMENTAL SETUP the idea that two nodesandy are more likely to form a link it ()

andI'(y) have large overlap; this follows the natural intuition that

We model a social netw_ork asa graph= (V, .E> In Wh'(.:h each such node pairs represent authors with many colleagues in common,
edgee € F represents an interaction between its endpoints at a PaKd hence are more likely to come into contact themselves [6].

tlc_ular_tlmet(e_). We record multl_ple mter/actlons by/ parallel edges « Common neighborsOne can directly use this idea by setting

with different time-stamps. For times< t', let G[¢,¢'] denote the o :

subgraph ofG restricted to edges with time-stamps betweemd score(x, y) := |['(z) N ['(y)|, the number of common neighbors
grap 9 P of x andy. In collaboration networks, Newman [10] has verified a

p ) o -
orale 1 I precton proiem, e ShaCSUAPNS comelton besueen the rumber of common eighors sk
algorithm éc%ess to the netwofk[t(; 715,)], it mugt ther; output a list timet, and tP'we prob_a_blllty that they WI|| collaborate in the fut_u_re.
of edges, not present [to, th] thai e(lré predicted to appear in the e Jaccard’s cogﬁl_clent an_d Adamlc/Ada'me Jaccard coefficient,

! ol commonly used in information retrieval [15], measures the number

/
neEﬁ?rgﬁ[?X’ té]riments we use co-authorshin netwatksbtained of features thabothz andy have compared to the number of features
p ! p thateitherz or y has. Taking “features” as neighborsGi.», this

from papers found in five sections of the physics e-Print aniwy. leads toscore(z, ) — |T'(z) N T'(y)|/[T(z) U T(y)|. Adamic and

arxi v. org. _(S_ee Figure 1.) Occasmne_tl syntactic an_omgll_e_s Weldar [1] consider a related measure, in the context of deciding when
handled heuristically, and authors were identified by first initial ary o personal home pages are strongly “related.” They compute fea-
last name; t.h's appears _t_o introduce o_nl_y a _smaII amount of eMPtes of the pages, and define the similarity between two pages to be
due to ambiguous identifiers. Our training interval is the peri 1 This refines the simple count-

[1994,1996], and the test interval €997, 1999]. Denote the train- f‘f?a‘”fe Shafedfb%%/ 108“'%‘4“&"@(?);&. foat P heavi
ing interval subgrapl[1994, 1996 by Guotias = (A, Eowa), and ing of common features by weighting rarer features more heavily.

. 2 1
let E,..., denote the set of edgés, v) whereu andwv co-author a This suggests the measustre(z, y)..— z:zngac)ﬁF(y) Tog [T(=)] "
paper during the test interval but not the training interval—these are® Preferential attachmertias received considerable attention as a

the new interactions we are seeking to predict. model of network growth [11]. The basic premise is that the proba-

In evaluating link prediction methods, we focus on links betweelility @ new edge involves nodeis proportional tdl'(z)|. Barabasi
authors who have each written at least a minimum number of papes2!- [2] and Newman [10] have further proposed, on the basis of
we define the sefore to be all nodes incident to at least., edges _emplrlcal ewde_nce, that the probability of co-authorship@ndy
in the training interval and at least..; edges in the test interval, 'S correlated Wlth_the product of the number of collaborators: of
WhET€k irain aNdise.; are both set t8. Each link predictop outputs  &Ndy, corresponding to the measuire(z, y) := |I'(z)] - [I'(y)].

a ranked listL,, of pairs inA x A — E,.; these are predicted new M ethodsbased on theensemble of all paths. A number of methods
collaborations, in decreasing order of confidence. Defiflg, := refine the notion of shortest-path distance by implicitly considering
Enew N (Core x Core) andn := |E.,|. Our performance measurethe ensemble adll paths between two nodes. _

for predictorp is then determined as follows: from the ranked list ® Katz [7] defines a measure that directly sums over this collec-
L,, we take the first pairs inCore x Core, and determine the size tion of paths, exponentially damped by length to count short paths

. . o r
of the intersection of this set of pairs with the $&t,.,. more heavily. This leads to the measseere(z,y) := 32/, 3" -

paths{’) |, wherepaths(") is the set of all lengtHt-paths fromz toy.

One can verify that the matrix of scores is given(lfy- M) ™' — I,

3. METHODSFORLINK PREDICTION whereM is the adjacency matrix of the graph. V\(/e cons'm)ie'rghted

In this section, we survey an array of methods for link predictioriKatz, wherepathsﬁi, = (if there arel parallel edgegz, y), andun-
Each assigns a connection weigbtre(z, y) to pairs of nodes, pro- weightedKatz, where parallel edges are ignored.
ducing a ranked list in decreasing ordersobre(z,y). A predictor e Hitting time, PageRank, and variant8.random wallon G cojias
can thus be viewed as computing a measure of proximity or “similestarts at a node;, and iteratively moves to a neighbor ofcho-
ity” between nodes: andy, relative to the network topology. Thesesen uniformly at random. Thhitting time H,,, from x to y is
predictors are adapted from techniques used in graph theory andtbe-expected number of steps required for a random walk starting
cial network analysis, and many must be modified from their originak « to reachy. We also consider the symmet@ommute time

557



Czy = H.y + Hy.. Both of these measures serve as natur@Many collaborations form for reasons outside the scope of the net-
proximity measures, and hence (negated) can be usedra$z, y). work, so improvement over random is arguably more meaningful
One difficulty with hitting time is thatd, , is quite small whenever here than raw performance.) A number of methods significantly out-
y is a node with a largstationary probabilityr,, regardless of the perform random, suggesting that the network topology alone does
identity ofz. Thus we also considaormalizedmeasures-H,, ,-m, contain useful information; the Katz measure and its variants perform
or —(Hg,y - my + Hy - ™). Another difficulty with these measuresconsistently well, and some of the very simple measures (e.g., com-
is their sensitive dependence to parts of the graph far away frommon neighbors and the Adamic/Adar measure) also perform well. At
andy, even whenc andy are connected by very short paths. A wayhe same time, there is clearly much room for improvement in per-
of counteracting this is to allow the random walk franto y to pe- formance on this task, and finding ways to take better advantage of
riodically “reset,” returning tar with a fixed probabilitya: at each the information in the training data is an interesting open question.
step; in this way, distant parts of the graph will almost never be eAnother issue is to improve the efficiency of the proximity-based
plored. Random resets form the basis of HageRankneasure for methods on very large networks; fast algorithms for approximating
Web pages [3], and we can adapt it for link prediction as followshe distribution of node-to-node distances may be one approach [12].
Define therooted PageRankneasure to be the stationary probability e The fact that collaboration networks form a small world—i.e.,
of y in a random walk that returns towith probability « each step, there are short paths connecting almost all pairs of scientists [11]—is
moving to a random neighbor with probability— «. normally viewed as vital to the scientific community. In our context,

e SimRani{5] is a fixed point of the following recursive definition: though, this implies that there are often very short (and very tenuous)
two nodes are similar insofar as they are joined to similar neighbogmaths between two scientists in unrelated disciplines; this suggests
Numerically, we definacore(z, z) := 1 and, for somey € [0, 1], why the basic graph distance predictor is not competitive with most

of the other approaches studied. Our most successful link predictors
> aer(z) 2ober(y) Score(a, b)

score(z,y) = - can be viewed as using measures of proximity that are robust to the

IT'(2)[ - [T'(y)] few edges that result from rare collaborations between fields.
SimRank can be interpreted in terms of a random walkGon;qs: it e Performance of the low-rank approximation methods tends to
is the expected value of’, where/ is a random variable giving the be best at an intermediate rank, butgm- qc they perform best at
time at which random walks started framandy first meet. rank 1. This suggests a sense in which the collaboratiogs irgjc

Higher-level approaches. We now discuss three “meta-approacheshave a much “simpler” structure. One also observes the apparent
that can be used in conjunction with any of the above methods. importance of node degree in thep- ph collaborations: the pref-
¢ Low-rank approximation.All our link prediction methods can erential attachment predictor does uncharacteristically well on this
be formulated in terms of the adjacency mathik. For example, dataset, outperforming the basic graph distance predictor.
common neighbors of two nodes can be computed as the inner prode Certain of the methods show high overlap in the predictions they
uct between the two corresponding rows\éf A common technique Make; one such cluster of methods is Katz, low-rank inner product,
when analyzing a large matri) is to choose a relatively small num-and Adamic/Adar. It would be interesting to understand the gener-
berk and compute the rank-matrix M}, that best approximate/ ~ ality of these overlap phenomena, especially since some of the large
under any of a number of standard matrix norms. This can be dopkerlaps (such as the one just mentioned) do not seem to follow ob-
efficiently using the singular value decomposition, and it forms thdously from the definitions of the measures.
core of methods likdatent semantic analysi]. Intuitively, this e Given the low performance of the predictorsast r o- ph (and
can be viewed as a type of “noise-reduction” technique that preser¥@e fact that none beats simple ranking by common neighbors), it is
most of the structure in the matrix. We consider three applications @ interesting challenge is to formalize a sense in which it is a “diffi-
low-rank approximation: (i) the Katz measure, usinfg rather than cult” dataset. By running our predictors on some other datasets, we
M in the underlying formula; (i) common neighbors, using innehave discovered that performance swells dramatically as the topical
products of rows iV, rather than/; and—most simply of all— focus of the dataset widens. In a narrow field, almost anyone can
(iii) defining score(x, y) to be the(x, y) entry in the matrixjj. collaborate with anyone else, and new collaborations are largely ran-
e Unseen bigramsLink prediction is akin to the problem of esti- dom. It would be interesting to make precise a sense in which such
mating frequencies ainseen bigramm language modeling—pairs New collaborations are simply not predictable from the training data.

of words that co-occur in a test corpus, but not in the corresponding . -
training corpus (see, e.g., [9]). Following ideas in that literature, wiecknowledgements. We thank Tommi Jaakkola, Lillian Lee, Frank

can improvescore(z, y) using values ofcore(z, ) for nodes: that McSherry, and Grant Wang f(_)r hfelpful disc_ussions, and Paul Ginsparg
are “similar” to . Suppose we have valussore(z, ) computed o generously providing arXiv bibliographic data.
under one of the measures above. E&Y denote thed nodes most
related tor underscore(z, -), for a parametef > 0. We thendefine 5§ REFERENCES
enhanced scores in terms of these nodeste™(z,y) := [{z: z €
I'(y) N Sff)}\ orscorey, (x,y) := ZZGF g0 score(z, z). [1] L. Adamic, E. Adar. Friends and neighbors on the w&tc.
e Clustering. We can also try to improl\’/e the quality of a predic- Networks 25(3), 2003.
tor by deleting the more “tenuous” edgesGh.i.» by a clustering  [2] A. Barabasi, H. Jeong, Z.&ta, E. Ravasz, A. Schubert,
procedure, and then running the predictor on the resulting “cleaned- T. Vicsek. Evolution of the social network of scientific
up” subgraph. Specifically, consider a measure computing values for collaborationPhysica A311(3—4), 2002.

score(z,y). We computecore(u, v) for all edges inF,,4, and delete  [3] S. Brin, L. Page. The anatomy of a large-scale hypertextual
the (1 — p) fraction of these edges for which the score is lowest. We  \Web search engin€omput. Networks ISDNL998.

now re-computecore(z, y) for all pairs(z, y) on this subgraph. [4] S. Deerwester, S. Dumais, G. Furnas, T. Landauer,
R. Harshman. Indexing by latent semantic analykisim.
4. RESULTSAND DISCUSSION Soc. Inform. Scj41(6), 1990.

In Figure 2, we show each predictor's performance on each arXij5] G. Jeh, J. Widom. SimRank: A measure of structural-context
section, in terms of the factor improvement over random predictions.  similarity. In KDD, 2002.
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| | astro-ph | cond-mat | gr-qc | hep-ph | hep-th |
probability that a random prediction is correct 0.475% 0.147%] 0.341%] 0.207%] 0.153%

(=)

graph distance (all distance-two pairs) 9.6 25.3 214 12.2 29.2
common neighbors 18.0 411 27.2 27.0 17.2
preferential attachment 4.7 6.1 7.6 15.2 7.5
Adamic/Adar 16.8 54.8 30.1 33.3 50.5
Jaccard 16.4 423 19.9 277 417
SimRank ~=0.8 14.6 39.3 22.8 26.1 41.7
hitting time 6.5 23.8 25.0 3.8 134
hitting time—normed by stationary distribution 5.3 23.8 11.0 11.3 21.3
commute time 5.2 15.5 331 17.1 234
commute time—normed by stationary distribution 5.3 16.1 11.0 11.3 16.3
rooted PageRank a=0.01 10.8 28.0 331 18.7 29.2
a=0.05 13.8 39.9 35.3 24.6 41.3

a=0.15 16.6 411 27.2 27.6 42.6

a=0.30 17.1 423 25.0 29.9 46.8

a = 0.50 16.8 41.1 24.3 30.7 46.8

Katz (weighted) 5 =10.05 3.0 214 19.9 2.4 12.9
8 =0.005 13.4 54.8 30.1 24.0 52.2

£ = 0.0005 14.5 54.2 30.1 32.6 51.8

Katz (unweighted) 5 =0.05 10.9 417 375 18.7 48.0
6 =0.005 16.8 417 375 24.2 49.7

£ = 0.0005 16.8 41.7 375 24.9 49.7

Low-rank approximation: rank = 1024 152 542 294 34.9 50.1
Inner product rank = 256 14.6 47.1 29.4 324 47.2
rank = 64 13.0 44.7 27.2 30.8 47.6

rank = 16 10.1 214 31.6 279 355

rank = 4 8.8 15.5 42.6 19.6 23.0

rank = 1 6.9 6.0 44.9 17.7 14.6

Low-rank approximation: rank = 1024 8.2 16.7 6.6 18.6 217
Matrix entry rank = 256 154 36.3 8.1 26.2 37.6
rank = 64 13.8 46.5 16.9 28.1 40.9

rank = 16 9.1 21.4 26.5 23.1 34.2

rank = 4 8.8 155 39.7 20.0 22.5

rank = 1 6.9 6.0 44.9 17.7 14.6

Low-rank approximation: rank = 1024 114 274 30.1 271 321
Katz (8 = 0.005) rank = 256 15.4 423 11.0 34.3 38.8
rank = 64 13.1 453 19.1 323 41.3

rank = 16 9.2 21.4 27.2 24.9 35.1

rank = 4 7.0 15.5 41.2 19.7 23.0

rank = 1 0.4 6.0 44.9 17.7 14.6

unseen bigrams common neighbarss 8 135 36.9 30.1 15.6 47.2
(weighted) common neighbor&,= 16 134 39.9 39.0 18.6 48.8
Katz (3 = 0.005), § = 8 16.9 38.1 25.0 24.2 51.3

Katz (6 = 0.005), § = 16 16.5 39.9 35.3 24.8 50.9

unseen bigrams common neighbdrss 8 14.2 405 279 223 39.7
(unweighted) common neighbos= 16 15.3 39.3 42,6 22.1 42.6
Katz (3 = 0.005), 6 = 8 13.1 36.9 324 21.7 38.0

Katz (8 = 0.005), § = 16 10.3 29.8 41.9 12.2 38.0

clustering: p=0.10 7.4 375 471 330 38.0
Katz (3, = 0.001, 52 = 0.1) p=0.15 12.0 46.5 47.1 21.1 44.2
p=0.20 4.6 345 19.9 21.2 35.9

p=0.25 3.3 27.4 20.6 19.5 17.5

Figure 2: Performance of link predictors on the task defined in Section 2. For each predictor and each ar Xiv section, the given
number specifies the factor improvement over random prediction. Italicized entries have performance at least as good as the graph
distance predictor; bold entriesare at least as good as the common neighbor s predictor.
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