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Abstract

To reveal information hiding in link space of biblio-
graphical networks, link analysis has been studied from
different perspectives in recent years. In this paper,
we address a novel problem namely citation prediction,
that is: given information about authors, topics, target
publication venues as well as time of certain research
paper, finding and predicting the citation relationship
between a query paper and a set of previous papers.
Considering the gigantic size of relevant papers, the
loosely connected citation network structure as well as
the highly skewed citation relation distribution, citation
prediction is more challenging than other link prediction
problems which have been studied before. By building
a meta-path based prediction model on a topic discrim-
inative search space, we here propose a two-phase cita-
tion probability learning approach, in order to predict
citation relationship effectively and efficiently. Exper-
iments are performed on real-world dataset with com-
prehensive measurements, which demonstrate that our
framework has substantial advantages over commonly
used link prediction approaches in predicting citation
relations in bibliographical networks.

1 Introduction

Searching for related scientific literatures (a.k.a, lit.
search), is the first and essential step for nearly all sci-
entific research disciplines. Researchers want to find
highly related publications in terms of research fields
and topics, so that they can learn from related work,
compare with previous methods as well as develop new
research ideas. However, with the rapid development of
science and engineering, a gigantic number of research
papers are published each year on various research top-
ics and areas. It is impossible for researchers to follow or
read all publications in his/her research fields. Hence a
system which could help scientific researchers organize
relevant publications is in high demand. Such a sys-
tem should be able to retrieve high quality publications
given research topics, and also measure the relevance
between existing publications and researcher’s current
work.

Google Scholar, PubMed and other key-word-based
literature search tools allow users to query publications
based on key-word and properties associated with the
target papers, e.g., author information, time period of
publication, etc. They also provide related articles by
measuring document similarity between papers. Al-
though these systems find relevant papers and make
lit. search easier than before, key-word-based approach
still returns thousands or millions of relevant papers.
For example, Google Scholar returns more than 2 mil-
lion papers with the query “link prediction”, and more
than 5 million results with the query “citation”. Re-
searchers can easily be drown by this huge amount of
relevant papers returned by key-word-based lit. search
systems. Instead of going through a large number of
papers which match query key-word, researchers pre-
fer to only review a relatively smaller number of publi-
cations closely related to their research topics, of high
quality and also closely related to their research com-
munity, so that they can use as references or citations
directly. To meet this requirement, we here study ci-
tation prediction problem on bibliographic information
network. Aiming to help researchers find highly related
publications effectively and efficiently, we propose a new
citation prediction model and use this model to answer
citation queries.

Citation prediction aims at revealing the citation re-
lationship on bibliographic network. Yet it is different
from other link prediction problems in this network. For
example, citation relationship is directed, while friends
recommendation or co-authorship prediction methods
are predicting undirected relations. Links among co-
authors in publication datasets tend to form communi-
ties and have high structural locality, because authors
tend to collaborate with researchers within their own
research group or with researchers they collaborated be-
fore. However, high quality and relevant papers can be
from anywhere. Due to the evolution of on-line library
systems, scientific researchers can easily get access to
nearly all digitized publications. They can find and re-
view any relevant previous paper on bibliographic net-
work, which causes a relatively sparse yet even distribu-



tion in citation link space. Traditional link prediction
methods [10] [5] commonly rely on locality assumption,
which makes these methods ineffective for citation pre-
diction.

On the other hand, citation prediction methods
should be able to measure document similarity and cap-
ture topic distribution in bibliographic information net-
work. However, solely relying on topic modeling meth-
ods is not sufficient for citation prediction either. Al-
though the number of previous papers is tremendous,
research topics are comparably limited. Hundreds or
even thousands of papers could share a same topic,
which makes topic similarity a very weak evidence in
terms of citation relationship inference. Additionally,
many critical features which might be more related to
citation prediction cannot be represented by topic sim-
ilarity either. For example, if one paper is written by
a well-known researcher in the field, the probability of
this paper getting cited by a future publication is higher
than a paper by a new researcher. Similarly, ranking of
the publication venue (conference/journal) and reputa-
tion of a research group all affect citation probability.
Furthermore, researchers tend to cite papers of their
own, papers within their research groups, or papers of
their peers for different reasons. All these heuristics are
hiding among bibliographic network structure and none
of which can be represented using topic similarity.

In this paper, we study how to predict citation rela-
tionship in bibliographic information network effectively
and efficiently. We propose a novel two-step approach,
attempt to capture both topic and document similarities
as well as hidden network structures that are sensitive
to citation relationship, and use this approach to setup
a citation query processing system. Given author infor-
mation, target publication venues and certain text de-
scription, e.g., title and abstract, of a query paper, our
citation query system searches papers in a publication
network and returns a list of relevant papers, ranked by
the probability of being cited by the query paper. In
order to answer citation queries fast and accurate, we
propose a two-step approach. First, we build discrimi-
native term buckets, which can capture document and
topic similarities without breaking possible citation re-
lations, and put papers into different buckets, which re-
duces search space for both model learning and citation
query answering. Second, we set up a meta path-based
feature space to interpret hidden network information
in bibliographic dataset, and define citation probability
with meta path-based features. With the help of dis-
criminative topic buckets and meta path-based feature
space, it is now possible to learn a citation prediction
model and use this model to answer citation queries.

The major contributions of this paper are summa-

rized as follows.

• We propose a new problem of citation prediction in
a bibliographic network, and analyze the differences
between this problem and the related work, e.g.,
traditional link prediction solutions.

• We propose a new data structure namely discrimi-
native term buckets in order to capture both docu-
ment similarity and potential citation relationship,
and compare this method with traditional topic
modeling approaches.

• We propose to use a meta path-based feature
space to interpret structural information in citation
prediction, and define citation probability within
the scope of meta path-based feature space.

• Experiments on real dataset show that we can
predict citation relationship with high accuracy and
efficiency compared with the state-of-the-art link
prediction methods.

In the rest of the paper, we first introduce the back-
ground and preliminaries about bibliographic informa-
tion network in Section 2. We next discuss discrimi-
native term bucket data structure and present how to
construct term buckets efficiently in Section 3. Meta
path-based feature space building and citation predic-
tion model learning are described in Sections 4 and 5.
Experiments and results are presented followed by re-
lated work and conclusions.

2 Background and Preliminaries

A citation prediction problem is defined on bibliograph-
ical dataset, which can be formatted into a heteroge-
neous information network. In this section, we briefly
introduce some concepts related to information network
and the citation prediction problem.

A heterogeneous information network is a directed
graph, which contains multiple types of entities and/or
links. In order to study meta path-based feature space
and discuss citation prediction model, we first introduce
the definitions of information network and network
schema, which are defined in [13] and [12].

Definition 2.1. (Information Network) An
information network is defined as a directed graph
G = (V,E) with an entity type mapping function
φ : V → A and a link type mapping function
ψ : E → R, where each entity v ∈ V belongs to one
particular entity type φ(v) ∈ A, and each link e ∈ E

belongs to a particular relation type ψ(e) ∈ R.

When the types of entities |A| > 1 and also
the types of relations |R| > 1, the network is called



Figure 1: DBLP network schema

heterogeneous information network ; otherwise it is a
homogeneous information network.

In this information network definition, we specify
both the network structure and types for entities and
links. Also, one can notice that types for two entities
associated to one link can be different. Without loss of
generality, we denote the relation associated to a link
as R(φ(v), φ(v′)) = ψ(e), where v and v′ are the two
entities associated with link e. We use dom(R) = φ(v)
to denote the domain of R, and range(R) = φ(v′) as the
range. We use R−1 to denote the inverse relation of R,
so dom(R) = range(R−1) and range(R) = dom(R−1).

Definition 2.2. (Network Schema) The network
schema is a meta template of a heterogeneous network
G = (V,E) with the entity type mapping φ : V → A and
the link mapping ψ : E → R, which is a directed graph
defined over entity types A, with edges as relations
from R, denoted as TG = (A,R).

The definition of network schema is similar to the
ER (Entity-Relationship) model in database systems. It
serves as a template for a concrete network, and defines
the rules of how entities exist and how links should
be created. An example of heterogeneous information
network and the related network schema can be found
as follows.

Example 2.1. DBLP1 (Digital Bibliography & Library
Project) is a computer science bibliographic dataset,
which can be described as a heterogeneous information
network. It contains four different types of entities
(papers, venues, authors and terms). Links exist be-
tween papers and authors, papers and venues, papers
and terms as well as within paper entities, representing
citation relations.

In this study, we are going to use a subset of DBLP
information network, which exactly follows the network
schema presented in Figure 1. Besides the citation re-
lationship, defined as a directed meta path from the

1http://www.informatik.uni-trier.de/∼ley/db/

Table 1: List of Notations
Notation Description

A, R types of entities and relations
F meta path-based feature space

P, M meta paths and measures
T training dataset
D document collection
B term bucket set
θf weight for meta path-based feature f

CDM citation discriminative measure

node “Paper” to itself, which is the relationship we at-
tempt to predict, we also have links between “Term”
and “Paper”, “Author” and “Paper”, as well as publi-
cation “Venue” and “Paper”, all of which are observable
during the citation prediction process. Notations used
in definitions as well as the rest part of the paper can
be found in Table 1.

3 Discriminative Term Bucketing

For most of citation relations, the prerequisite is a
positive topic and/or term correlation between these
two papers, i.e., these two papers belong to the same
research area, share similar research topics or try to
solve a similar problem. Naturally, the first step of
our citation prediction framework is to catch such
topic or term correlation and be capable of measuring
document similarity in the DBLP information network.
In order to achieve this requirement, topic modeling
methods, which apply and estimate statistical models
document collections, toward unfolding hidden topics,
are intuitive and popular solutions. By comparing topic
distributions of paper pairs, one can calculate document
correlation easily. However, topic modeling methods
might not be suitable for citation prediction for two
reasons. First, topic granularity is hard to guess on an
unknown document collection. Second, topics might not
be citation relationship discriminative. For instance,
one topic might have high weights towards words like
“database”, “query” and “index”, which makes this
topic too broad. Two papers belonging to this topic
does not imply a potential citation relationship.

Aiming to capture citation discriminative term cor-
relation and measure document similarity in the DBLP
information network, we propose a novel method named
discriminative term bucketing (we refer this method as
term bucketing in the rest of the paper). Very similar to
the input and output formats of topic modeling meth-
ods, given certain document collection D, term buck-
eting generates a number of buckets (similar to topics)
which contain a set of terms, and also papers in the



collection can be distributed into different term buck-
ets. What’s more, one paper can belong to multiple
buckets. Within each bucket, papers have a positive
document similarity and also the existence of citation
relationship probability is also higher than papers which
do not share buckets.

Discriminative term bucketing contains three steps.
First, we identify discriminative terms using a link space
discriminative measure, which identifies potential cita-
tion relationship, and then by treating discriminative
terms as bucket seeds (one seed per bucket), and apply-
ing term expansion technique, we collect more terms for
each bucket. Finally, we can distribute the entire paper
dataset into different buckets and finish the building of
term buckets.

In order to measure the ability of identifying ci-
tation relations for each term, we first define citation
discriminative measure as follows. By generating term
paper inverted index in D, for each term t, we collect
all papers with t in them, and denote this paper set as
Pt. By treating each paper in Pt as a node, all the pos-
sible edges within Pt form the complete link space for
Pt, denoted by Gt. Consider citation relations within
Gt as positive and the rest links as negative, we define
the positive-negative ratio as the citation discriminative
measure (CDM) for terms, as in Equation 3.1.

(3.1) ∀t ∈ T, CDMt =
count(Gt,+1) + 1

count(Gt,−1) + 1

where T is the training document collection for citation
prediction, Gt is a |Pt|× |Pt| matrix which contains link
labels in the complete link space and count(G, label)
counts the number of element in G that equals to label.

After calculating CDM for each term, we can pick
up terms with CDM higher than a pre-defined thresh-
old and use these terms as discriminative bucket seeds.
And each seed term t defines a discriminative term
bucket Bt. One should notice that, CDM is calculated
on the training dataset, and utilizes label information
in order to pick up terms with sufficient citation infor-
mation. However, in order to reduce search space in
both model training and query answering processes, we
need to categorize all papers in both training and testing
datasets and put them into corresponding term buckets.
Training and testing datasets are independent so that
term distribution over these two sets might be different,
and it is possible that, discriminative terms generated in
the training set might not even exist in the testing set.
So if term buckets only contain terms in the training
dataset, categorizing testing papers will be difficult. In
order to propagate citation discriminative information
to the testing set, we use term expansion technique to
find more terms in D (from both training and testing

datasets) for each bucket.
Term expansion is used to expand the discrimina-

tive term bucket by introducing more terms which have
a high mutual information with the bucket seed into
each bucket. The mutual information of two terms
can be used to measure the mutual dependence. The
heuristic is, seed terms are terms with citation informa-
tion, if other terms are highly dependent on seed terms,
they should contain citation information as well. For a
specific discriminative term bucket Bt0 which contains
bucket seed t0, we iterate all terms in document set D,
and calculate mutual information between each term t

and t0 using Equation 3.2.

(3.2) ∀t ∈ D, I(t0, t) = Pr(t0, t)log(
Pr(t0, t)

Pr(t0)Pr(t)
)

where D is the entire document collection, Pr(t0, t) is
the probability of both t0 and t appear in one document,
and this probability can be estimated using the number
of documents which contains both t0 and t and also the
total number of documents in the collection. Similarly,
Pr(t0) and Pr(t) are the marginal probability density
functions of terms t0 and t respectively.

For each discriminative term bucket, we select terms
which have high mutual information score with the term
seed using a pre-defined thresholdMI. By adding these
terms into term buckets, now each term bucket has
multiple discriminative terms. And based on the term
distribution, we can categorize both training and testing
papers into different buckets by checking whether a
certain paper contains one or more terms in a bucket.
What’s more, using this categorization method, one
paper can be assigned to more than one term buckets
as well. Within each bucket, papers share terms as well
as topic information so that they have high document
similarity, and also papers have a higher probability
of been cited by other papers in the same bucket.
Term bucketing partitions the entire paper dataset into
different buckets, and our citation prediction framework
will only search within relevant buckets while learning
prediction model and answering citation queries, which
reduces search space, and based on our experiments,
this approach improves both accuracy and efficiency.

One should notice that, MI is a very important
parameter in citation prediction framework. If MI is
too low, the number of terms in each bucket will increase
severely, which will increase search time complexity. If
MI is too high, the number of terms in each bucket
will decrease exponentially, which means the ability of
capture potential citation relations will be decreased
dramatically and the overall prediction performance will
be effected. We will discussion this issue with one
experiment in Section 6.



4 Meta Path-Based Feature Space Building

After constructing discriminative term buckets and cat-
egorizing both training and testing papers into corre-
sponding buckets, we introduced both document sim-
ilarity as well as citation information into our frame-
work. Papers within the same bucket or share a num-
ber of buckets usually share similar research topics and
also have a higher probability to be cited by each other
compared with other paper pairs. Although term bucket
structure helps reduce search space, the number of cita-
tion relations within each bucket is still very limited, we
need structural features to capture more citation infor-
mation within term buckets as well as a robust statis-
tical model to improve the prediction accuracy. In this
section, we discuss how to define meta path-based fea-
tures and how to build a comprehensive feature space to
define structural similarity between papers in the DBLP
information network in order to predict citation rela-
tions, and we will introduce citation prediction model
learning in the next section.

4.1 Meta Path In a heterogeneous information net-
work schema, two entity types can be connected via
different paths 2, which usually carry different semantic
meanings. In order to distinguish from path instances
in a concrete network, we use meta path definition from
[13] in a network schema as follows.

Definition 4.1. (Meta Path) A meta path P =

A0
R1−−→ A1

R2−−→ ...
Rl−→ Al is a path defined on the

graph of network schema TG = (A,R), which defines
a new composite relation R1R2...Rl between type A0

and Al, where Ai ∈ A and Ri ∈ R for i = 0, . . . , l,
A0 = dom(R1), Al = range(Rl) and Ai = range(Ri) =
dom(Ri+1) for i = 1, . . . , l − 1.

Notice that a meta path represents a new composite
relation over A0 and Al, and we denote dom(P) = A0

and range(P) = Al.
Different meta paths can capture different seman-

tics in a heterogeneous information network. Consider
DBLP network schema in Figure 1, multiple meta paths
can be defined from paper type to paper type, and some
examples can be found as follows:

P1 : paper
PublishedIn
−−−−−−−−→ venue

PublishedIn−1

−−−−−−−−−−→ paper

P2 : paper
Contains
−−−−−−→ term

Contains−1

−−−−−−−−→ paper

Meta path P1 can capture the relationship of publishing
in the same venue for two papers. Intuitively, if two
papers have the relationship defined by P1, it means

2Similarly, one entity type can be connected via loops.

these two papers belong to the same research area. Very
similarly, P2 defines the term similarity between two
papers. One can notice that, different meta paths can
capture different relationship information hiding in the
network, which can be extremely helpful in order to
capture structural information between two papers. In
the rest of this paper, we omit the relation name and
use the abbreviation of node type to represent a meta
path. P1 will be represented as P − V − P , and P2 will
be written as P − T − P .

Consider a meta path P = A0
R1−−→ A1

R2−−→

...
Rl−→ Al, if path p = (a0a1...al) in the corresponding

information network follows meta path P , i.e., for each
node ai in path p, we have φ(ai) = Ai, we call p a
path instance of meta path P . Similarly, we define
dom(p) = a0 and range(p) = al. A path instance carries
relationship information follows the relation defined by
its meta path in the network.

4.2 Meta Path-Based Measures The other com-
ponent of a meta path-based feature is the measure as-
sociated with meta paths. Various measures can be de-
fined and implemented in order to measure the similar-
ity or proximity between the query entities and potential
result entities given the same meta path. Some of the
meta path-based measures can be found as follows.

• Count: the number of path instances between the
query entity q and potential result entity r:

count(q, r) = |p : dom(p) = q, range(p) = r, p ∈ P |

• Personalized PageRank score [2]. Personalized
PageRank can be viewed as converged random walk
with restart score which follows certain meta path.

• RandomWalk score [10]. RandomWalk score is the
random walk score along certain meta path with a
pre-defined step length.

• PathSim score [13]. PathSim is a newly proposed
similarity measure that captures the semantics of
similarity between peers, which is a normalized
version of count of path instances between entities
following the given meta path.

A comparison between these measures can be found
in Table 2. Notice that some measures are valid only on
a certain type of meta paths. For example, PathSim are
only valid for symmetric meta path, which guarantees
that the similarity between two entities is symmetric.

4.3 Meta Path-Based Feature Space With meta
path and meta path-based measure defined above, a



Table 2: Path-Based Measure Comparison
Name Symmetric? Range

Count Yes [0,∞)
Personalized PageRank No [0, 1]

SimRank Yes [0, 1]
PathSim Yes [0, 1]

meta path-based feature space F can be represented as
a Cartesian product of the two sets:

(4.3) F = P×M

where P is the set of possible meta paths and M is
the set of possible meta path-based measures. One one
hand, the meta path used in a feature represents the
relation we are interested in between the entities; on
the other hand, different measures can be defined on the
same meta path, showing different aspects of quantities
of the relations. A combination of the two represents a
unique angle of similarity measure between two entities.

In a small heterogeneous network with a simple
schema, in order to generate a comprehensive feature
space, one can enumerate all meta paths with a length
constraint but it is impossible to permute all meta paths
in general. And also, it is not necessary to generate all
meta paths since some paths does not carry sufficient
semantic meanings as others.

For instance, in order to measure the similarity
between two authors in the DBLP dataset, two possible
meta paths can be generated as follows:

P1 : A→ P → V → P → A

P2 : A→ P → V → P → T → P → A

By measuring similarity along P1, one can identify
authors who published in similar conferences, which can
be used to indicate authors who have similar research
interests or focus on the same research area. Although
P2 is more complicated than P1 and also can be used
to measure similarity between authors, the semantic
meaning of this meta path is not clear, so it is hard
to utilize this meta path in any concrete scenarios.

In this paper, rather than spending much time to
calculate meta path-based features along meaningless
meta paths, we select a subset of meta paths with clear
semantic meanings and use this subset to finally learn
our meta path-based ranking models for each intention.

5 Learning Citation Prediction Model

After building discriminative term buckets and meta
path-based feature space, we can now define and learn

citation prediction model within the scope of term buck-
ets using meta path-based features as representation
of structural information hiding in an information net-
work. With the learned probability and reduced search
space by applying term buckets on potential paper can-
didates, our framework can answer citation prediction
queries efficiently with a high accuracy.

5.1 Citation Probability As discussed in Section
1, citation probability should be a combination of both
document similarity and structural information in a
publication network. By utilizing discriminative term
buckets and meta path-based features, we can define
citation probability as follows.

(5.4) Pr(label = 1|p(1), p(2);θ) =
ez

ez + 1

where z = Σfi∈F ′θi · fi. Pr(label = 1|p(1), p(2);θ) is
the probability that paper p(1) cites paper p(2). In
the definition of citation probability, F ′ is the feature
space defined on the DBLP heterogeneous information
network in order to capture citation related information,
which is defined as F ′ = F ∪ F0, F is the meta path-
based feature space defined in equation 4.3 and F0 is a
set of numerical features for target paper candidates.
θi is a normalized weight value for feature fi which
indicates which feature is more important for citation
prediction. θ and F ′ form a linear citation prediction
model.

F0 contains numerical attributes for target paper
candidates only. In order to generate a more compre-
hensive feature space, we add non-meta path-based nu-
merical features including average H-Index [6] as well
as publication venue ranking [14] on target paper side.
These two numerical features help boost prediction
accuracy as supplements to meta path-based feature
space. H-Index measures both productivity and impact
of the published work of a scientist or scholar, and pub-
lication venue ranking measures the reputation and the
quality of the research paper indirectly. Both measures
should be positively correlated with citation relation-
ship. If the authors of one paper have a higher average
H-Index and this paper is published in a highly ranked
conference, the probability of this paper being cited by
the query paper would be high as well.

In order to learn the citation prediction model, we
generate training dataset which contains positive and
negative examples of citation relations. However, the
DBLP information network is extremely large and the
citation relations are very sparse and limited. So search
on the entire paper network can be time consuming
and ineffective. Randomly generated negative examples
can be arbitrary and contain very little representative



information. In order to collect high quality training
dataset, we use discriminative term buckets as a filter
to first reduce the size of information network, and
only generate positive and negative training examples
within term buckets. In this way, both positive and
negative paper pairs have high document similarity and
also high probability of citation relationship. Learning
models on such training dataset can help prediction
model capture trivial and detailed information hence
improve the performance of citation prediction model.

We define the training dataset as follows.

(5.5) T = {(p
(1)
i , p

(2)
i , label)|∃Bt, p

(1)
i ∈ Bt, p

(2)
i ∈ Bt}

where p(1) and p(2) are papers on information network,
and they should both belong to at least one discrimina-
tive term bucket.

In order to learn citation prediction model, we use
logistic regression with L2 regularization to estimate the
optimal θ given a training dataset T .
(5.6)

θ̂ = argminθΣ
n
i=1− logPr(label|p

(1)
i , p

(2)
i ;θ)+µΣd

j=0θ
2
j

With this objective function defined in Equation
5.6, weights in the citation probability can be easily
estimated with a number of optimization methods. We
use standard MLE (Maximum Likelihood Estimation)

in our experiments to derive θ̂ which maximizes the
likelihood of all the training pairs.

5.2 Citation Prediction Model After learning the
citation probability defined in Equation 5.4, we can now
define a citation prediction model, and use this model to
prediction possible citation relations or answer citation
queries. The citation prediction model is defined in
Equation 5.7.
(5.7)

cs = log(1 + cbn(p(1), p(2))) · Pr(label = 1|p(1), p(2); θ̂)

where cs is short for citation score, and cbn(p(1), p(2))
defines the number of common discriminative term
buckets shared by papers p(1) and p(2).

Given a citation query paper p∗, we first look up p∗

in discriminative term bucket set B, and find all buckets
containing paper p∗. We define this subset as Bp∗. And
then, we collection all papers belong to term bucket
subset Bp∗, and denote this paper subset as P (Bp∗).
For each paper p in P (Bp∗), we calculate cs(p∗, p), and
assign this score to each paper p. By ranking paper set
P (Bp∗), our citation prediction framework generates a
ranked list of papers as the answer to query p∗.

One should notice that, we only calculate cs be-
tween p∗ and papers which at least share one term
bucket with p∗, which is only a subset of the entire paper

dataset. In the next section, we conduct a set of exper-
iments and compare our citation prediction framework
with the state-of-the-art link prediction methods, which
shows that our approach can find citation relations ac-
curately and efficiently.

6 Experiments

In this section, we apply our citation prediction ap-
proach along with two state-of-the-art link prediction
methods on a DBLP citation dataset generated by Tang
et al. [15]. We compare our methods with link predic-
tion methods under different scenarios using a set of
experiments.

6.1 Dataset and Methods Setup The original
DBLP dataset does not contain citation relations. Tang
et al. extracted citation information from other sources
and generated a DBLP citation dataset. We use the
citation information in this dataset as training exam-
ples as well as ground truth to verify the output of
different methods. Instead of using the entire dataset,
we generated a subset which contains 464 publication
venues, 29,615 papers and 215,502 citation relations.
Papers in this subset focus on one of the four areas:
data mining, database, information retrieval and arti-
ficial intelligence. Due to the high coherence of these
research areas, citation relation distribution in this sub-
set is very scattered, which makes the task difficult and
challenging. We convert this subset into a heteroge-
neous information network. This information network
contains author, paper, publication venues, term as en-
tities (publication year as attribute), as well as paper
author relations, paper venue relations, paper term re-
lations as well as citation relations as links, all together
83,625 entities and 682,725 links.

In this study, in order to comprehensively describe
different relationships between paper entities in the
DBLP heterogeneous information network, we utilize
seven different meta paths between paper entities, which
are P −A−P , (P −A−P )2, (P −A−P )3, P −C−P ,
P − T − P , (P − T − P )2 and (P − T − P )3. We use
two meta path compatible measures, which are newly
proposed PathSim [13] measure and also random walk
measure. By combining seven meta paths and two meta
path-based measures together, we get total 14 different
meta path-based features. As mentioned in the previous
section, we also use two numerical features in our feature
space in order to have certain bias towards target
paper candidates, which are average author H-Index
and publication venue ranking score. In discriminative
term bucket building step, in order to capture most
term information, we use 0 as citation discriminative
measure threshold (Equation 3.1) and 0.0003 as mutual



information threshold during term expansion (Equation
3.2). With this setting, discriminative term buckets
can capture nearly 90% of citation relations, i.e., for
each citation relation in 90% total relations, the two
papers which defined this relation can be found in at
least one term bucket. What’s more, search space can
be reduced by 40% if our citation prediction framework
only searches within term buckets.

The state-of-the-art link prediction methods which
we compare with our framework in these experiments
are personalized PageRank (denoted as pp in figures and
tables) [2] [18], and path-constrained random walk [9]
(denoted as rw or refered as trained random walk in fig-
ures and tables). Personalized PageRank is a very pop-
ular similarity or proximity measuring method which
has been widely applied on different problems including
link prediction, friend recommendation, as well as net-
work clustering. As an unsupervised method, person-
alized PageRank simulates information passing along
links between entities, and estimates similarity by calcu-
lating reachability from query node to the other nodes in
the network. Similar to our approach, path-constrained
random walk method is a supervised method, which first
calculates random walk similarity along different paths,
and then assigns different weights to different paths by
learning using user-provided examples. We also use ran-
dom walk features along different paths as part of our
meta path-based feature space. In order to have a fair
competition, we use the same set of random walk fea-
tures in both our approach and path-constrained ran-
dom walk, and also we use the same training dataset
and learning method for both approaches as well.

6.2 Measure as Classification Problem We first
compare our method with path-constrained random
walk by modeling citation prediction as a classification
problem. Considering the sparseness of citation rela-
tions on the entire search space, we first generate a bi-
ased sample on 〈paper, paper〉 search space as defined
in the previous section. In the biased sampled data, we
have 45% positive labels, i.e., paper pairs which actually
define citation relations, and 55% negative labels, i.e.,
paper pairs which do not possess citation relation. In or-
der to measure the prediction accuracy, we use five fold
cross-validation to assess the quality of each method.
Since instances in sampled dataset are presented in link
format, and labels are also associated with links, fold
partition during cross-validation is performed in link
space as well. We use logistic regression with L2 regu-
larization for both methods, and the average precision
on training and testing can be found as follows.

Based on Table 3, our method outperforms path-
constrained random walk in both training set and test-

Table 3: Performance using Classification measures
Methods Precision Training Testing

Trained Random Walk 0.7168 0.6691

Our Method 0.7555 0.7533

ing set when both approaches are trained using the same
dataset with the same learning method. Compared with
path-constrained random walk approach, our method
has a larger and more comprehensive hybrid feature
space, which contains both meta path-based features as
well as numerical features on target paper candidates.
By generating features from a uniform meta path-based
feature space, our approach is capable of capturing more
information from the sampled dataset and improves the
average precision in training folds by 4% and increases
average precision in testing fold by 8.4% compared with
path-constrained random walk.

6.3 Measure as Query Problem Modeling cita-
tion prediction as classification problem in fact simpli-
fies the problem itself. The first step of learning classifi-
cation models using both methods, is to generate biased
samples on link space, which makes positive and nega-
tive examples comparable in both training and testing
processes. By doing so, we manually reduced search
space, and only searched a very limited number of pa-
per candidates to make judgment, hence we can achieve
such high precisions for both methods. However, if we
model citation prediction as query problem, i.e., given
a paper with author(s), target publication venue(s), ab-
stract as well as publication time stamp, one approach
should return a list of previous publications ranked by
the probability of being cited by the query paper, the
citation prediction problem becomes citation query pro-
cessing, which is a much more difficult problem than
classification, simply because now the search space for
possible citation paper candidates becomes all the pa-
pers in the DBLP information network. In this sub-
section, we test our approach along with the two link
prediction problems by experimenting citation predic-
tion as query processing problem.

Path-constrained random walk and our approach
are both supervised, so training datasets need to be
generated first before query processing. In order to
perform a fair competition with other methods, we use
a different strategy to sample training data compared
with the training dataset sampling method we used
in the previous subsection. Instead of partitioning
link space as we did for classification measurement,
we randomly partition paper node space in the DBLP
information network into five folds, use four folds as
training set, and the rest one as testing. The reason



Table 4: Performance as Query Processing on DBLP Network
Group 1 Group 2 Group 3

Methods
prec@10 prec@20 recall@50 prec@10 prec@20 recall@50 prec@10 prec@20 recall@50

trained rw 0.2000 0.1250 0.1483 0.0857 0.1000 0.1314 0.2167 0.1750 0.1467

pp 0.1833 0.1333 0.1567 0.1143 0.1071 0.1529 0.2000 0.1667 0.1567

w/o bucket 0.2333 0.1333 0.2000 0.1429 0.1143 0.1643 0.3000 0.2000 0.1717

bucket 0.2333 0.1417 0.2533 0.1714 0.1214 0.1771 0.2833 0.2000 0.1867

we partition paper nodes instead of citation relations
for query processing training is that we want to make
sure that, during query processing, all test query nodes
are new to all the ranking models, since we are testing
both supervised and unsupervised methods. Also, since
citation relations are directed, while we are searching
for citation relations for an unseen paper query during
testing, we should search the entire network instead of
only within test set, which means, if one approach can
find a paper in training dataset, which is cited by the
citation query paper, this counts as a hit.

In order to deal with the large search space, in
our approach, we first build discriminative term buckets
using training dataset, and then add test papers into the
buckets by applying term expansion technique. While
generating training dataset, we only focus on positive
links and negative links within the same term bucket,
since the search space for our approach is within term
buckets. While answering queries, very similarly, we
only search the term buckets which contain the query
paper instead of searching the entire DBLP information
network. We use the biased random sampling technique
to generate training dataset for the path-constrained
random walk approach, and during query answering,
the ranking model learned by path-constrained random
walk searches the entire network for possible citation
relations. Personalized PageRank does not require
training, so this approach simply calculate similarity
score between the query paper and all other papers
using the DBLP network structure, i.e., along paper-
venue links, paper-term links as well as paper-author
links only, and return papers with the highest similarity
as the query results. What’s more, to demonstrate the
power of discriminative term bucketing, we add another
competitor method, which uses the same feature space
as our method, but searches the entire paper set in
the DBLP information network. To distinguish these
two methods, we call our method meta path-based
citation prediction framework with discriminative term
bucketing (denoted as bucket in tables and figures), and
we refer the new competitor method as meta path-based
citation prediction framework without term bucketing
(denoted as w/o bucket in tables and figures).

We randomly pick 19 query papers from the test-

ing set, and divide them into three groups based on
the number of citation relations associated with them.
Group 1 contains 6 papers which cite less than 20 previ-
ous papers each, group 2 contains 7 papers whose refer-
ence size is between 20 to 30, and group 3 has 6 papers,
each of which cites more than 30 papers. The query
processing performance results can be found in Table 4
and Figures 2(a), 2(b) and 2(c).

We use three query processing measures to evalu-
ate the performance of each method, which are preci-
sion at top 10 query results, precision at top 20 query
results and recall at top 50 query results, denoted as
prec@10, prec@20 and recall@50, respectively. Based
on these measurements, one can notice that, our meth-
ods can find more citation relations than link prediction
methods in general. For example, our methods improve
recall@50 by 10% in query group 1 compared with link
prediction methods, and also increase prec@10 by 7−8%
in query group 3. Discriminative term bucketing tech-
nique helps our method reduce search space by around
40% on average, and as we can see in Figures 2(a), 2(b)
and 2(c), by eliminating irrelevant citation candidates,
meta path-based prediction model with bucketing out-
performs the one searches the entire publication net-
work. Another interesting observation is, personalized
PageRank gives a relatively better performance than
path-constrained random walk method. The reason is,
in path-constrained random walk training process, we
only use short meta paths (length up to 3), so path-
constrained random walk model is only able to reach its
neighbors which are three steps away from the queries
nodes, while personalized PageRank can reach all pos-
sible papers on the network since the calculation does
not stop until similarity vector converges. This actually
proves our observation in Section 1, which is citation
relations does not have high locality as other links, and
cited papers can be from anywhere on the DBLP infor-
mation network.

We also use precision-recall plot to demostrate a
more comprehensive comparison of these four different
methods in Figure 2(d). From which we can conclude
that, meta path-based prediction model with bucketing
gives a good performance overall, the precision of which
can achieve almost 70% when the recall is low (e.g.,



when we only need top-1 or 2 results). While at the
same recall level, link prediction methods can only
achieve precision level around 30%. However, the
meta path-based precision model without bucketing
outperforms our method when the recall is around
5%, which suggests that although our discriminative
term bucketing method is very effective in terms of
reducing search space, eliminating irrelevant papers and
maintaining potential citation relations in buckets, since
in this method, we only search citation paper candidates
within the same buckets as query paper, we lose the
chance of finding citation relations which do not have
high document similarity correlation with the query
paper (remind that bucketing can only capture 90%
citation relations). From precision recall plot, we can
also conclude that personalized PageRank is better than
path-constrained random walk when searching on the
entire paper network because personalized PageRank
can reach paper candidates that are far away from the
query paper.

6.4 Parameter Turning and Time Complexity

As discussed in Section 3, in meta path-based citation
prediction framework, the precision boundary is highly
determined by the quality of discriminative term bucket
building step. And mutual information threshold MI

is the parameter which controls the size of entire term
bucket set. The lower this threshold is, the more terms
and related papers can be introduced into bucket set,
and the more citation relations will be captured in
term buckets as well, i.e., most citation relations belong
to at least one term bucket. If this threshold is too
low, the effect of search space reduction will disappear,
which will increase query processing time since now our
method needs to search a large link space. On the
other hand, if the mutual information threshold MI is
too high, the number of potential citation relations and
citation information which are supposed to be captured
by term bucket techniques will disappear. This can
lead to a very low query precision. We here study
the relationship between mutual information threshold
MI and the number of citation relations which can be
captured in term bucket technique. From Figure 2(e),
we can see that, with the increase of mutual information
threshold, the number of citation relationship we can
capture in term buckets decreases exponentially, and
search space will be shrinking quickly as well. In our
experiment, by parameter tuning, we choose 0.0003 as
our mutual information threshold. Using this setting,
discriminative term buckets can capture around 90% of
citation relations and reduce search space by around
40%, which makes a good balance of precision upper
bound and search space reduction.

We also studied query processing time using four
different methods as well. In order to answer citation
queries efficiently, we need to first train ranking models
for supervised methods and calculate associated features
off-line. On-line query processing time is related to a
couple of factors, the first one is the number of features
in the prediction model and the second is the size
of the search space. We recorded the average query
processing time for all four methods, and the result can
be found in Figure 2(f). From the plot we can see that,
personalized PageRank is the most efficient method,
and it takes less than 10 seconds to search through
the entire network and generate top citation relations
given a citation query, the reason why this method is so
fast is because it only uses one feature, which is the
personalized PageRank score calculated in the entire
network. In both meta path-based prediction methods,
we have all together 16 features to process for each
citation candidate. However, with discriminative term
bucketing technique applying to our ranking model, we
do not need to go through the entire DBLP information
network anymore, so the query processing time is only
around 20 seconds compared with 28 seconds, which is
the query processing time of meta path-based prediction
model without bucketing, and also this approach is
faster than path-constrained random walk as well.

7 Related Work

Citation prediction has been rarely studied in the liter-
ature.

The pioneering work about citation prediction is
[11]. The authors studied the problem of citation num-
ber prediction, which estimates the number of citation
for each paper in each time epoch. They used time
series analysis technique for citation count prediction.
Recently, [17] studied similar problem using machine
learning technique. They trained a classifier based on
several features of fundamental characteristics for those
papers which are highly cited and predicted the popu-
larity degree of each paper. In contrast, the problem
we studied in this paper is much more challenging than
simple citation number prediction. Rather than simply
estimating the count of citations for each paper, we at-
tempted to predict citation relationship. In other words,
we aim at telling people which papers would cite which
papers, or which papers would be cited by which pa-
pers. In fact, citation number prediction can be seen as
a by-product of the proposed method in this paper, be-
cause as long as we predict the citation relationship, it
is very straightforward to count the number of citations
in each time epoch.

For search functions in networks, the ranking func-
tion defined on networks is the essential component to
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Figure 2: Performance: (a) Precision@10; (b) Precision@20; (c) Recall@50; (d) Precision Recall Curve; (e)
Parameter Tuning; and (f) Running time.

provide high quality answers. SimRank [7] is a well-
known similarity function defined on networks, by which
the most similar objects for the given object can be re-
turned. However, due to the fact that it is a global
graph measure, the high computational cost usually pre-
vents it from implementing in real search systems. P-
PageRank (personalized PageRank) [8, 16, 2] evaluates
the probability of a given object to all the objects in
the network, and is usually used as a ranking function
in network queries. Other extensions, such as Objec-
tRank [1], try to assign different weights to different
relation types in a heterogeneous network, to achieve
better results. However, these ranking functions are
fixed given a network, and users are not able to inter-
vene to the search by showing their preferences. Most
recently, [13] proposed a meta path-based framework
in defining the similarity measures between two objects
of the same type, which is proved to be more effective
than SimRank [7]. However, they have not addressed
the learning issue for different query tasks, not to men-
tion the intention understanding issue. In order to build
the intention model for queries, we have systematically
defined a meta path-based feature space following their

work. Each ranking function under each intention then
can be built as a linear combination of these different
features.

[12] studied coauthor prediction, which aims at pre-
dicting the coauthor relationship in the future. How-
ever, the problem setting of coauthor prediction is much
simple than citation prediction. Coauthor prediction is
a short term prediction problem. An author who pub-
lished paper in 2011 is unlikely to become a coauthor of
another author who published paper in 1960. In con-
trast, citation prediction is a long term prediction. It is
reasonable for a paper published in 2011 to cite another
paper which is published in 1960. On the other hand,
coauthor relationship has strong propagation property.
For example, if author A and author B are coauthors,
author B and author C are coauthors, then the prob-
ability of author A and author C being coauthors is
high. So when we do coauthor prediction, given two au-
thors, if there is no shared coauthor for these 2 authors,
the probability that they will become coauthor is low.
However, it is not true in citation prediction. If paper
A cited paper C, but paper B did not cite paper C, the
probability of paper B cite paper A is still very uncer-



tain. In a word, citation prediction is more challenging
than coauthor prediction.

8 Conclusions and Future Work

In this paper, we propose the problem of citation predic-
tion in the DBLP heterogeneous information network.
We proposed a novel two-step approach in order to an-
swer citation prediction queries effective and efficiently.
By building discriminative term buckets, our approach
first eliminates irrelevant paper candidates, and reduces
search space. Then we define a hybrid feature space in
order to fully capture citation sensitive structural infor-
mation, which includes both meta path-based features
as well as numerical paper attributes. By learning cita-
tion probability model using meta path-based features
within the reduced search space, we can define a citation
prediction model using both citation probability and the
number of common term buckets shared between query
paper and citation candidate.

After citation prediction model training process,
given a query paper as input, our framework first puts
query paper into one or more term buckets, and then
generates a set of citation paper candidates by merging
papers from related buckets. Citation score is calculated
and assigned to each citation candidate, and those
candidates with high citation scores will be returned
as citation query results.

Empirical study shows that our approach can find
citation relations with much higher accuracy compared
with traditional link prediction methods. Also, by com-
paring our method with a similar meta path-based cita-
tion prediction approach without bucketing technique,
we demonstrate the power of discriminative term buck-
eting technique, which can reduce search space and im-
prove prediction precision at the same time.

Interesting future work includes, citation prediction
study on different information networks, e.g., predicting
retweet relations on twitter, exploring new feature selec-
tion method [3] [4] instead of mutual information, and
also meta path-based feature space index technique in
order to further improve query processing efficiency.
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