
Semi-Supervised Truth Discovery
Xiaoxin Yin, Wenzhao Tan

Microsoft Research
One Microsoft Way

Redmond, WA 98052

{xyin, wentan}@microsoft.com

ABSTRACT

Accessing online information from various data sources has be-
come a necessary part of our everyday life. Unfortunately such
information is not always trustworthy, as different sources are of
very different qualities and often provide inaccurate and conflict-
ing information. Existing approaches attack this problem using
unsupervised learning methods, and try to infer the confidence of
the data value and trustworthiness of each source from each other
by assuming values provided by more sources are more accurate.
However, because false values can be widespread through copy-
ing among different sources and out-of-date data often overwhelm
up-to-date data, such bootstrapping methods are often ineffective.

In this paper we propose a semi-supervised approach that finds
true values with the help of ground truth data. Such ground truth
data, even in very small amount, can greatly help us identify
trustworthy data sources. Unlike existing studies that only provide
iterative algorithms, we derive the optimal solution to our problem
and provide an iterative algorithm that converges to it. Experi-
ments show our method achieves higher accuracy than existing
approaches, and it can be applied on very huge data sets when
implemented with MapReduce.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – search process.

General Terms
Algorithms, Measurement, Experimentation.

Keywords
Truth discovery, Semi-supervised, Data quality.

1. INTRODUCTION
The web has become the major information source for most of us.
However, is information on the web always trustworthy and accu-
rate? It is not surprising that many people will say “no”. Accord-
ing to a recent survey reported in [9], U.S. consumers have low
trust in online information sources. Even the most trusted online
source, company web sites, are only trusted by 22% of consumers.
The inaccuracy of online information also causes problems for
search engines that provide structured data as results. Figure 1
contains two examples of incorrect fact answers from Google as
in August 2010. Figure 1 (a) shows the answer for the query “ps3
release date”, which is obviously incorrect as PS3 has been on the
market since 2006. The answer in Figure 1 (b) provides a number
from various out-dated sources. The number from the recently
updated official site (Figure 1 (c)) is actually much larger. Many

good examples of erroneous information and their propagation on
the web can be found in [8].

It is a very important task to distinguish between true and false
information on the web. This task, which has been studied as the
truth discovery problem by different researchers [6][10][16], is
defined as follows. Given a set of data sources (e.g., web sites)
and a set of facts each provided by one or more data sources, how
do we predict the confidence of each fact (i.e., likelihood of being
true) and the trustworthiness of each data source. In our usage the
word “fact” is used to represent something claimed as true,
whether it is right or wrong. In the three approaches described in
[16], [6] and [10] the truth discovery problem is formulated as an
unsupervised learning problem. It is assumed that a fact provided
by more sources (especially more trustworthy and more indepen-
dent sources) is more likely to be correct. They all use iterative
approaches, which start by assigning the same trustworthiness to
all data sources, and iterate by computing the confidence of each
fact and propagating back to the data sources.

There are two major problems with the above approaches. First,
each step of the iterative procedure is performed using simple
weighted voting. Consequently the rich will get richer over itera-
tions. However, voting by the majority is not very trustworthy.
Information copying is extremely common on the web [5]. Erro-
neous information can often appear in many sites. The situation is
even worse for facts changing with time, since out-of-date infor-
mation often exists in more web sites than up-to-date information.

A good way to solve this problem is to introduce some level of
supervision, so that the truth discovery procedure can be guided
toward the right direction. It is usually easy to obtain a small set
of highly confident facts, either by manual labeling or from a
highly trusted source such as Wikipedia or government web sites.
We can treat this set of facts as ground truth, and use them to infer
the trustworthiness of data sources and confidence of facts.

The second problem with the existing approaches is that, al-
though they all use iterative algorithms, they provide no guarantee

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0632-4/11/03.

(a) Google’s direct answer for “ps3 release date”

(b) Google’s direct answer for “minot air force base population”

(c) Part of page www.minot.af.mil/library/factsheets/factsheet.asp?id=3787

Figure 1: Two incorrect fact answers from Google

of convergence, and no description of the objective function being
optimized. In this paper we formulate the truth discovery problem
as an optimization problem and prove that our iterative algorithm
converges to the optimal solution.

In this paper we study the problem of Semi-Supervised Truth

Discovery, which is a truth discovery problem where a small
number of ground truth facts that are known. The goal of semi-
supervised truth discovery is to assign a confidence score to each
fact, so that true facts have higher scores than false facts. We call
our approach Semi-Supervised Truth Finder, or SSTF, which con-
siders truth discovery as a graph learning problem by treating each
fact with a graph node and encoding the relationships between
facts into graph edges.

There are three types of relationships between facts that help us
infer the confidence scores of unlabeled facts from the labeled
facts (i.e., ground truth facts). Some facts, such as “Google has
21000 employees” and “Google has 21500 employees”, are mu-
tual supportive. If one of them is correct, the other is likely to be
correct as well. Thus they should have similar confidence scores.
Some facts, such as “Microsoft was founded in New Mexico” and
“Microsoft was founded in Washington”, are mutual exclusive. If
one of them has a positive score, the other should have a negative
score. The third type of relationship is among facts from same
data source. There should be some consistency among the scores
of facts from the same data source. If we know a data source pro-
vides many true facts and few false facts, then it is trustworthy.
Any other facts it provides are likely to be true as well. We
represent all these relationships with edge weights in the graph,
and convert the semi-supervised truth discovery problem into an
optimization problem that aims to assign scores to graph nodes
that are consistent with the relationships indicated by the graph
edges. We first provide an analytical solution to this optimization
problem, although it is very expensive to compute for large scale
problems. Then we provide an iterative procedure that can be
computed and prove it converges to the optimal solution.

Compared to existing approaches [6][10][16], we do not assign
higher score to facts provided by more data sources, because it is
very difficult to distinguish whether they are independently au-
thored or copied from each other. The data sources play a differ-
ent role in our approach: They help link different facts so that we
can infer the confidence scores of facts from the ground truth.

First, we test our approach on five real-world data sets collected
from the web, and find our approach achieves higher accuracy
than existing approaches. Then we test our approach on a very
large, diverse, and noisy data set containing attribute-values for all
kinds of entities extracted from HTML tables of the whole web,
with data from Wikipedia serving as ground truth. Our approach
can distinguish true and false facts with high accuracy and is more
accurate than previous approaches.

The remaining of this paper is organized as follows. Related
work is discussed in Section 2. We define our problem in Section
3 and describe the analytical solution in Section 4. Section 5
presents the iterative solution. Experiments are presented in Sec-
tion 6 and we conclude this study in Section 7.

2. RELATED WORK
There has been some research on the general problem of combin-
ing conflicting information, with a brief survey in [1]. Early work
in this area is more focused on how to integrate conflicting an-
swers from different sources, such as the approach in [15].

The truth discovery problem was first proposed in [16], which
provides a probabilistic approach based on the assumption that

different data sources are independent and thus false values ap-
pearing on different data sources should be different from each
other. The same assumption is used in [10], which applies a dif-
ferent model for estimating the confidence of facts. The authors in
[6] propose a method that considers the dependencies among data
sources, although such dependencies need to be inferred from the
confidence associated with each fact. Truth discovery on time-
variant facts is studied in [7].

The approaches in [16] and [10] assign confidence scores to
facts based on the principle that a fact provided by more (and
more trustworthy) data sources is more likely to be correct. A data
source providing mostly high-confidence facts is more trustwor-
thy. This assumption holds when different data sources are inde-
pendent. But this is generally not true as data copying is prevalent
on the web [5].

The problem caused by data copying is alleviated in [6], which
detects copying relationships during the iterative process of truth
discovery. However, the copying relationships can only be de-
tected by false facts, as two data sources sharing many true facts
do not indicate copying behavior. Therefore, it still finds true and
false facts according to the numbers of data sources providing
each fact at the beginning. The existence of a false or out-of-date
fact in many data sources will cause the fact to receive high confi-
dence in the first iteration, which poisons the remaining iterations.
Moreover, sometimes it is simply impossible to distinguish true
facts from false ones in the data itself, especially when large
amounts of out-of-date facts exist on more data sources than up-
to-date facts.

In this paper we study the problem of truth discovery with
semi-supervised graph learning, by using a small set of ground
truth data to help distinguishing true facts from false ones as well
as identifying trustworthy data sources. Semi-supervised graph
learning has been studied by Zhu et al. [11][19][20] and Zhou et
al. [18]. The main purpose of these approaches is to make predic-
tions consistent with both labeled data and the graph structure. We
adapt the approach in [19][20] to our problem and make it scale to
very large data sets.

3. PROBLEM FORMULATION
In this paper we study semi-supervised truth discovery, which
aims to distinguish true from false facts by utilizing a small set of
ground truth facts. It is semi-supervised because a large amount of
unlabeled facts also participate in the learning process.

The input to our problem is the same as traditional truth discov-
ery, except that there is a subset of facts which are labeled as cor-
rect (i.e., ground truth facts). The goal is to assign a confidence
score to each unlabeled fact, so that true facts have higher scores.
In this paper we define a confidence score to be a real value be-
tween −1 and 1. A score close to 1 indicates we are very confident
that a fact is true. A score close to −1 indicates the reverse. A
score close to 0 indicates that we do not know if a fact is true or
false. Each ground truth fact has a confidence score of 1.

Our approach is based on three basic principles. First, facts
provided by the same data source should have similar confidence
scores. This is also an important principle utilized in all existing
approaches [6][10][16], which assign a trustworthiness score to
each data source and estimate the confidence scores of facts using
the trustworthiness of their data sources.

Second, similar (and therefore mutual supportive) facts should
have similar confidence scores. For example, suppose one data
source says the population of Seattle is 560,000 and another says

it is 561,000. If one of these two facts has a high confidence score,
the other should have a high score as well.

Third, if two facts are conflicting, they cannot be both true. If
one of them has a high positive confidence score, the other should
have negative score. For example, if a ground truth fact says that
Tom Hanks was born on 1956/07/09, while another fact says he
was born on 1956/08/09, the second fact is likely to be wrong.

Here we provide a formal definition of the semi-supervised

truth discovery problem. There are � facts � = ���, … , �	
, each

provided by one or more of the � data sources � = �
�, … ,
�
.
A subset of facts �� = ���, … , ��
 are ground truth and thus labeled

as true, while the remaining facts �� = �����, … , �	
 are unlabeled.

Each fact 	� is on a subject ���� . For example, the fact “Tom
Hanks was born on 1956/07/09” is about the subject “Tom Hanks’
birth date”. Two facts �� and �� on the same subject may be con-

sistent or in conflict with each other. A function sim���, ��� is
provided to indicate the degree of consistency or conflict between

them �−1 ≤ sim���, ��� ≤ 1� . sim���, ��� will be used in our
optimization to indicate how important it is to assign similar (or
different) scores to �� and �� . As mentioned in other works on
truth discovery [6][16] and semi-supervised learning in graphs
[20], the definition of sim���, ��� is often domain-specific and
usually needs to be provided by people with proper domain know-
ledge. The similarity function should be symmetric, i.e., sim���, ��� = sim���, ���, and sim��, �� = 1 for any fact �. Each
data source can only provide one fact for each subject, although a
fact can be a set-value, such as the authors of a book.

We model this problem as a graph optimization problem. The
facts are modeled by a graph, with a node for each fact and an
edge between each pair of related facts. The above three prin-

ciples can be encoded into the graph using edge weights. ��� is

the weight of the edge between �� and �� , which indicates the rela-

tionship of their confidence scores. If �� and �� are provided by the

same data source, then ��� is set to a positive value (0< <1)

because if �� has a high (or low) confidence score, �� should prob-

ably have that as well. If �� and �� are on the same subject, then

we set ��� = sim!�� , ��". Otherwise ��� is set to zero.

In order to formulate the semi-supervised truth discovery as an
optimization problem, we choose the loss function based on stu-
dies on semi-supervised graph learning [18][19][20], which have
been widely used in many applications such as question answer-
ing [3] to image annotation [14].

Consider an assignment of confidence scores to facts # =�$�, … , $	�, where $� ∈ &−1, 1' is the score of ��. If ��� ≥ 0 for all

*, +, the loss function in [20] is suitable:

,′�#� = �
�∑ ����,� !$� − $�"�. (1)

By minimizing ,′�#� we minimize the weighted sum of differenc-
es between the confidence scores of related facts. Although this is
an option, it does not consider conflicting relationships between
facts, which causes much information to be lost. Furthermore, we

can easily minimize ,′�#� by assigning the score of 1 to each fact.

The second option is to use the same loss function, but allow ��� to be negative. If ��� < 0 (i.e., facts �� and �� in conflict), then

,′�#� is minimized when $� and $� are different from each other.

However, under this definition ,′�#� is not a convex function and
may have many local minimums. Thus it is extremely difficult to
optimize, especially for large-scale problems.

Finally we choose a loss function from [11], which is a variant
of Equation (1) but handles both similarity and dissimilarity:

,�#� = �
�∑ 0���0�,� !$� − ���$�"�, (2)

where ��� = 1 1,	if	��� ≥ 0	
−1,		if	��� < 03 .

In order to minimize ,�#�, �� and �� should have similar confi-

dence scores when ��� > 0 (i.e., �� and �� are mutual supportive).

When ��� < 0 (i.e., �� and �� are mutual exclusive), �� and ��
should have opposite scores or scores both close to zero. The
scores of labeled facts are fixed at 1 and cannot be changed. By
minimizing ,�#� we get an assignment of scores that are not long
consistent with the relationships among facts, but also consistent
with the scores given to the labeled facts.

An example graph of facts is shown in Figure 2. It contains

seven facts ��, … , �5 provided by three data sources ��, ��, �6. ��

is a ground truth fact. Because �5 is mutual exclusive from �� , sim���, �5� should be close to −1. Thus �5 will have a low confi-
dence score, which also leads to a low score for �7. �� and �6 have
high scores because they are provided by the same data source as ��. �8 is consistent with �6 and thus has high score as well. �9 also

has high score because of its connections to �� and �8.

4. ANALYTICAL SOLUTION
Although Equation (2) is proposed in [11], the authors of [11] did
not provide a solution to optimize it since the paper is focused on
multi-class SVMs with dissimilarity. In this section we provide an
analytical solution to minimize ,�#� and discuss when such a
solution exists.

,�#� is convex in # because each !$� − ���$�"� is convex.

Therefore, to minimize ,�#� we only need to find #∗ such that

3;<;#=#>#∗ = 0, (3)

under the constraint that $�, … , $� are fixed to their initial values.

We split # into the labeled set #� = �$�, … , $�� and the unlabeled

set #� = �$���, … , $	�. With simple derivations, we can show that
Equation (3) is equivalent to

∀* ∈ �@ + 1,… , �
,		 ∑ 0���0� ∙ $� − ∑ ���� $� = 0. (4)

We define the weight matrix C = D���E, diagonal matrix � such

that ��� = ∑ 0���0� , and matrix F = �G�C . We split the weight

matrix C into four blocks as C = HC�� C��C�� C��I, where CJK is an

L × N matrix. � and F are split similarly. Thus we can rewrite
Equation (4) as

���� −C���#� −C��#� = 0. (5)

Therefore, we can solve

Figure 2: An example graph of facts

2

Britney Spears
born on 1981/12/02

3

Tom Hanks net
worth $150M

1

4

Madonna’s spouse
is Guy Ritchie

5

Tom Hanks net
worth $140M

7

Tom Hanks born
on 1958/08/09

6

Tom Hanks
height 6’1”

D2 D1 D3

Tom Hanks born

on 1956/07/09

#� = ���� −C���G�C��#� = �O − F���G�F��#� , (6)

if �O − F��� is invertible.

In [20] the authors provide the optimal solution to Equation (1),
which shares some similarity with our solution, although it does
not consider dissimilarity relationships among nodes. A major

drawback of the approach in [20] is that it requires ��� > 0 for all

*, + , in order to guarantee that �O − F��� is invertible. This re-
quirement is impractical for most real-world data sets. A data set
with only a hundred thousand facts will have a matrix C with ten
billion entries, which is too big to fit in memory. In this paper we
work on a Web-scale data set with hundreds of millions of facts,
and we have to find a scalable method that can handle sparse ma-
trices and converge to the optimal solution.

We first analyze an example in which �O − F��� is not inverti-

ble. If for an unlabeled fact �P (Q ∈ �@, �'), ��P = �P� = 0 for any * ≠ Q, then the kth row and kth column of the matrix �O − F��� are

0, resulting in a non-invertible �O − F���. This is not surprising

because �P is not related to any labeled facts either directly or
indirectly, and its confidence score will remain undefined. In such

cases there is no unique solution that minimizes ,�#�. Any confi-

dence score of �P yields the same ,�#�, and therefore �P may get
an arbitrary confidence score.

We solve this problem by introducing a “neutral fact” to the set
of labeled facts. It has a confidence score of 0 and is connected to

every unlabeled fact. Suppose �� is the neutral fact and has score $� = 0. The weight of the edge between �� and an unlabeled fact �� must be above zero, i.e., ��� = ��� > 0.

The neutral fact has two important roles. First, it guarantees the
existence of a unique solution that minimizes ,�#� , which is
proved in Theorem 1 below. If an unlabeled fact is not connected
to any labeled facts either directly or indirectly, it will have a
confidence score of 0 since it is connected to the neutral fact.
Second, the neural fact lowers the confidence scores of unlabeled
facts that are only remotely connected to the labeled facts. This is
desirable because there are noises in the connections among facts.
Thus a long sequence of connections introduces more uncertainty,
which should lower our confidence about a fact being true or not.
This property will be studied in details in Section 5.3.

The weight on edges from/to the neutral fact can be defined in
many ways. We discuss two simple definitions in this paper. The
first definition is to use a constant weight:

��� = ��� = S, * = @ + 1,… , �, (7)

where S > 0. The second definition is to assign a weight propor-
tional to the total weight of edges from each node:

 ��� = ��� = T ∙ ∑ 0���0�U� , * = @ + 1,… , �, (8)

where T is a small constant. The first definition is suitable for
problems in which the distribution of edges is fairly uniform, i.e.,
the degrees of the nodes do not differ too much. The second defi-
nition is suitable for problems where different nodes have very
different degrees, such as web-scale problems where some nodes
have millions of edges while many others have only a few edges.

Theorem 1: There exists a unique solution to minimizing ,�#�.
Proof: We first show that �O − F��� is positive-definite. Because

F = �G�C and ��� = ∑ 0���0� , we know ∑ 0F��0 = 1� for * =
1,… , � . Because ��� > 0, we know F�� > 0 for * = @ + 1,… , � .

Since F�� is a sub-matrix of F, we know that ∑ 0&F��'��0 < 1� for

* = 1,… , � − @. Let V = O − F��. ∀L ∈ ℝ	G�/�Y
,

LZVL = LZL − LZF��L =[L��
�

−[&F��'��
��

L�L�
>[0&F��'��0

��
L�� −[&F��'��

��
L�L�

≥ 1
2[0&F��'��0!L�� − 2L�L� + L��"

��
≥ 0

Therefore, �O − F��� is positive-definite and is thus invertible. As

shown in Equation (5), #� = �O − F���G�F��#� is the unique solu-
tion to minimizing ,�#�.	∎

5. ITERATIVE COMPUTATION
Although Equation (6) provides an analytical solution to minimiz-
ing	,�#�, it is very expensive or impractical to compute. In a real-
world truth discovery problem, the number of facts is usually at
least tens of thousands, and can even reach hundreds of millions
in some problems. It is very expensive or impossible to compute
the inverse of a matrix of such size. Sometimes it is even impossi-
ble to fully materialize the matrix C. In this section we will dis-

cuss how to use an iterative procedure to compute #� efficiently.

5.1 Iterative Algorithm and Its Convergence
The goal of the iterative procedure is to compute #� =�O − F���G�F��#� without involving matrix inversion or other
expensive operations. We use an iterative procedure similar to that
in [19]. The confidence score vector # after ^ iterations is denoted

by #_. We initialize the confidence scores by setting $� to the la-
beled data for * = 1,… , @, and $� = 0 for * = @ + 1,… , �. In this

way the initial confidence score vector is #` = �$�, … , $� , 0, … ,0�.
Then we repeat the following steps until # converges.

Step 1: #_ = F#_G�
Step 2: Restore the confidence scores for the labeled facts,

i.e., set $_� = $� for * = 1, … , @.
It can be shown that the above steps are equivalent to computing

#�_ = F��#�_G� + F��#�. (9)

In order to prove this procedure converges, we need to first
provide a bound to the sum of each column in F��, as shown in
Lemma 1.

Lemma 1: ∃b < 1, such that	∀* = 1,… , c, ∑ 0&F��'��0� ≤ b.

Proof: Please recall that F = �G�C, and thus

∑ 0&F��'��0� = ∑ 0def0gfhijk
∑ 0def0gfhk

≤ 1 − |dek|
∑ 0def0gfhk

 ,

where ���is the weight of the edge from �� to the neutral fact ��.
According to our definitions in Equations (7) and (8), ��� = S or

��� = T ∙ ∑ 0���0�U� . If ��� = S, let nmax = max�q�q	!∑ 0���0	�>� "
and b = 1 − r

smax. If ��� = T ∙ ∑ 0���0�U� , then 1 − |dek|
∑ 0def0gfhk

= �
��t,

and we let b = �
��t. In both cases b < 1 and ∑ 0&F��'��0� ≤ b. ∎

With Lemma 1 we can prove the convergence of our algorithm
using the conclusions from [19], which we briefly describe here. It
can be easily shown that

lim_→w #�_ = lim_→wF��_ #�` + D∑ F���G�_�>� EF��#�. (10)

We first study the sum of each column in matrix F��_ .

∑ &F��_ '��� = ∑ &F��_G�'�P ∑ &F��'P� ≤ ∑ &F��_G�'�Pb ≤ b_P�P . (11)

Because b < 1, lim_→wF��_ #�` = 0, which means the initial point of

#� is inconsequential. It can be easily derived that #� =�O − F���G�F��#� is a fixed point for function 	��x� = F��x +F��#�, which is our iterative procedure in Equation (8). It is the

unique fixed point because the initial point of #� is inconsequen-
tial. Thus it is the solution to the iterative algorithm.

5.2 Efficient Computation
The iterative procedure presented above converges to the optimal
solution and avoids computing matrix inverse. However, in a real-
world truth discovery problem there are often millions of facts
(e.g., those provided by Wikipedia or IMDB), and thus there are
often millions times millions edges in the graph, which makes it
impossible to materialize and store the matrices C and F. In this
subsection we describe a way to decompose these matrices so that
computation can be done in an affordable way.

Let us go over the definition of a truth discovery problem to see
how the computation can be simplified. There are � facts � =���, … , �	
 provided by � data sources � = �
�, … ,
�
, and let
��� denote the set of data sources providing fact �. Each fact	�

is about a subject ����, and two facts �� and �� on the same sub-
ject may be consistent or in conflict with each other as indicated

by sim��� , ���. The graph of facts is usually built as follows:

1. Facts on the same subject are connected to each other:

For any �� and �� that ����� = �!��", ��� = sim!�� , ��".
2. Facts from the same data source are connected to each

other: If a data source
P provides both �� and �� , it will

contribute a certain weight to the edge weight between ��
and �� . Therefore, for any �� and �� 	that
���� ∩
!��" ≠ ∅,

��� = ∙ 0
���� ∩
!��"0, where ∈ �0,1�.
Since in each iteration we need to compute

#_ = F#_G� = �G�C#_G�, (12)

we will decompose both � and C for efficient computation.

As mentioned before, a data source cannot provide multiple

facts on same subject, i.e., if
���� ∩
!��" ≠ ∅	 , then ����� ≠�!��". Thus matrix C can be decomposed into two sparse matric-

es without overlapping entries: C =C{ +C| , where &C{'�� =sim!�� , ��" if ����� = �!��" and &C|'�� = 	 ∙ 0
���� ∩
!��"0 if

���� ∩
!��" ≠ ∅. We also decompose � as � = �{ +�|, where

&�{'�� = ∑ 0&C{'��0� and &�|'�� = ∑ 0&C|'��0� .

The number of non-zero entries in C{ is usually small because
the number of unique values for each subject is usually small.
Therefore, we can store C{ as a sparse matrix and compute �{
from it. In contrast, C| may contain billions or trillions of non-
zero entries because some data sources may provide millions of

facts. Thus we have to further decompose C|. Let } be a � ×�

matrix and }�P = ~1,		if	
P ∈
����;0,	otherwise. 3 It can be shown that 0
���� ∩

!��"0 = ∑ }�P}�P�P>� , and thus C| = }}�. Therefore,

C#_G� = C{#_G� + }}�#_G�, (13)

which can be easily computed because C{ is of manageable size, } is part of the input, and }}�#_G� can be computed by two oper-
ations of multiplying a vector by a matrix.

The diagonal matrix � can also be computed efficiently. �{ can

be computed from C{, and �| can be computed as:

&�|'�� = ∑ ∑ }�P}�P�P>�� = ∑ }�P!∑ }�P� "�P>� . (14)

Let |
P| be the number of facts provided by
P . Obviously |
P| = ∑ }�P� , and thus &�|'�� = ∑ }�P|
P|�P>� . In this way �{
and �| can be pre-computed, and we can easily compute #_ =�G�C#_G�. Since the only operation involved in each iteration is
multiplying a vector by a sparse matrix, we easily implement this
algorithm with MapReduce and run it in a distributed framework.

5.3 Complexity Analysis
Here we analyze the complexity of the algorithm presented in
Section 5.2. Suppose there are � facts and � data sources. Let @ be
the total number of cases of a data source providing a fact, i.e.,
there are @ non-zero entries in matrix }. Suppose for each fact �,

on average there are � facts on the same subject as �.

We discuss the complexity of computing Equations (13) and
(14). C{ is a � × � matrix and there are ����� non-zero entries in

it. It takes ����� time to compute C{ and C{#_G� . It takes ��@�
time to compute }}�#_G�. Therefore, it takes	���� + @� time to

compute C#_G� in each iteration. We also need to compute matrix � which has two parts: �{ and �| . �{ can be directly computed

from C{ in �����	time. To compute �| as in Equation (14), we

first compute ∑ }�P� for Q = 1,… ,�, and then iterate through the

@ non-zero entries in } to compute �|, which takes ��@� time in
total. In summary, the time complexity of our algorithm is

�!��� + @�^" for ^ iterations.

5.4 Decay of Confidences in Propagation
It is mentioned before that the neutral fact is important to our
algorithm as it guarantees the existence of a unique solution. In
Section 5.1 we can see it is also important to the convergence of
our iterative algorithm. In this subsection we further study how
the neutral fact influences our algorithm, and show that it is
equivalent to introducing a small decay to the confidence scores
of facts in each iteration.

First let us compare two versions of algorithms, one without the
neutral fact and one with it. We start from a simple example. Sup-
pose there is one labeled fact �� with confidence score 1, and three

unlabeled facts �6 , �9 , �8 . We created two graphs as shown in

Figure 3: Graph �̅ without the neutral fact and � with the neutral
fact ��. The weights of edges to and from the neutral fact is de-

fined by Equation (8) with T = 0.1. The weights of edges and
confidence scores are shown in the figure.

 In order to minimize ,�#�, in �̅ the confidence scores of �6, �9, and �8 should all be set to 1. In fact, in any graph where all
labeled facts have confidence scores of 1 and there is no negative
edge, any unlabeled fact connected to any labeled facts will have
score of 1, no matter how far away it is from the labeled facts.
Such assignment of scores is not reasonable because we have
different confidences in the correctness of these facts. For exam-
ple, �8 may be provided by the same data source as �9, which is

somewhat similar to �6 , which is provided by the same data

 Figure 3: Graphs without and with the neutral fact

f2 f3 f4 f5

1
0.5 0.5 0.5

1 1 1
f2

f1

f3 f4 f5

0

0.5 0.5 0.5

0.1 0.1 0.05

1 0.7 0.54 0.49

(a) �̅, without neutral fact (b) �, with neutral fact

source as �� . Since we know �� is true, we are pretty confident

that �6 is true, somewhat confident for �9, but not that confident

with �8, because each hop introduces uncertainty.

In order to model such uncertainty and the resulting decrease in
confidence, we introduce the concept of propagation decay, and
we will show such decay has exactly the same effect as adding the
neutral fact. In the discussion below we will compare the compu-

tation in �̅ and �, using ��, �̅, C� , F� and #� to represent the matrices

and vectors in �̅.

Let us consider the computation in �̅ which has no neutral fact.
As shown in Section 5.1, in each iteration we are propagating the

confidence scores with equation #�_ = F�#�_G�, i.e., propagating the
confidence score from each node to its neighbors using the matrix F� . Now we introduce some decay in each iteration, defined as
follows.

Definition 1. (Propagation Decay) In Step 1 of each iteration,

when propagating confidence scores from a labeled fact �� to an

unlabeled fact �� , we add the score �F���$̅_G�� to $̅_� , instead of

F���$̅_G��, where � ∈ �0,1� is they decay factor. This can also be

written as #�_ = �F�#�_G�. ∎

Here we will show that adding a propagation decay is equiva-
lent to adding a neutral fact in the graph.

Theorem 2: Let #��_ be the confidence score vector of unlabeled

facts in the graph �̅ without a neutral fact after ^ iterations with

propagation decay. Let #�_ be the confidence score vector in
graph � with a neutral fact but without propagation decay (weight
of edges to/from the neutral fact is set as in Equation (8)). Then

 #�_ = �#��_ if � = �
���t�. (14)

Proof: We first look at the computation in �. In each iteration we

compute #_ = F#_G� , which can be rewritten as H#�_#�_I =
HF�� F��F�� F��I H

#�_G�#�_G�I . Because we restore #� to its original value

after each iteration, the computation in each iteration is actually #�_ = F��#�_G� + F��#�. With induction we can easily prove that

#�_ = F��_ #�` + D∑ F���G�_�>� EF��#� . Because we set #�` = Y , we

have

#�_ = D∑ F���G�_�>� EF��#�. (15)

Now we analyze how the neutral fact influences F�� and F��. Re-

member that F = �G�C . Since ��� = ∑ 0���0� , ���� = ∑ 0���0�U� ,

and ��� = ��� = T ∙ ∑ 0���0�U� , we know that ��� = �1 + T�����
and thus ��� = �1 + T�����. From the definition of F�� we know

F��#� = ���G�C��#�
Because C�� only differs with C��� in the first column, and #� = #�� and #�� = #��� = 0, we have

C��#� = C���#��
⇒ F��#� = !�1 + T�����"G�C���#�� = 1

�1 + T�F���#��
Because C�� = C���, we have F�� = �

���t�F���. Therefore,

#�_ = �
���t� H∑ � k

�kj��F�����G�_�>� I F���#��. (16)

When iterating with propagation decay in �̅, in each iteration we

are computing #��_ = �F���#��_G� + F���#��. Similar to Equation (9)

we can prove that #��_ = D∑ ��F�����G�_�>� EF���#��, which is similar

to Equation (16). If we let � = �
���t�, then #�_ = �#��_. ∎

Theorem 2 shows that adding a neutral fact achieves the same
effect as performing propagation decay in each iteration. Thus it is
unnecessary to perform such decay when using the neutral fact.
This is the second role of neutral fact (the first role is to guarantee
the existence of a unique solution and convergence of the iterative
algorithm), which is also very important to our approach.

6. EXPERIMENT RESULTS
We test our approach SSTF on six real-world data sets, including
the data set containing book authors used in [16] and [6], four data
sets from HTML tables on the web for entities of certain types,
and a huge data set containing hundreds of millions of entity-
attribute-value triples extracted from HTML tables all over the
web. Small-scale experiments are performed on a PC with Intel
Quad-Core 2.66GHz CPU, 32GB memory. Web-scale experi-
ments are performed on a PC cluster based on Dryad [12] that
supports MapReduce. We also test the scalability of our approach
on synthetic data sets at different scales.

6.1 Book Authors Data Set
The first experiment is based on a real-world data set containing
authors of computer science books, which is the only real-world
data set used in [16] and [6]. This data set is extracted from Ab-
eBooks.com. Each book is listed on a set of online bookstores,
each providing the authors of the book. The goal is to find the
correct list of authors for each book. There is a ground truth set
containing the authors of 100 randomly selected books, created by
manually looking at the images of the book covers. This data set
contains 1263 books and 24364 listings from 877 bookstores.

Both [16] and [6] provide detailed experiment results on this
data set, although using different evaluation criteria. We adopt the
criteria of [6] so we can directly compare with its results. For each
book, the author names are normalized into a list of names, where
duplicate names are removed and middle names are ignored. The
author names of a book are considered to be correct if and only if
they exactly match with the ground truth after normalization. Cas-
es such as additional, missing, mis-ordered and misspelled names
are all considered incorrect.

We use the definition of similarity between two sets of authors
from [16] 1 . The parameters of SSTF are set as follows. The
weight of an edge between two facts from same data source is set
to = 0.01. The weight of an edge from the neutral fact to each
fact is 1. After each iteration, we compute the relative change of

the confidence score vector as ‖#_ − #_G�‖/‖#_G�‖, and the itera-
tive procedure stops if the relative change is less than 0.01 after
any iteration.

We first test how fast SSTF converges and how its accuracy
changes over iterations. Figure 4 shows the accuracy of our ap-
proach SSTF (Semi-supervised Truth Finder), as we vary the
amount of training data from 12.5% to 87.5% of the 100 labeled
examples. n-fold validation is used in each experiment. For exam-
ple, 8-fold validation is used when using 12.5% of labeled exam-
ples as training data, which means 12 training examples are used
in four folds and 13 used in the other four folds. We can see the
accuracy improves over iterations most of the time. The final

1 The similarity definition from [16] is asymmetric and is in the

range [0, 1]. To use it in our approach, we take the average of
the similarities in both directions and scale it to [–1, 1].

accuracy w.r.t. the training set size is shown in Table 1. SSTF
achieves accuracy of 91% with only 75 training examples.

Table 1: Accuracy of SSTF w.r.t. Size of the Training Set

Avg. #Training examples 12.5 25 50 75 87.5

#Fold 8 4 2 4 8

Accuracy .816 .857 .880 .910 .910

 Figure 5 shows the relative change in the confidence score vec-
tor after each iteration. We can see that SSTF converges with a
steady and reasonably fast pace. Figure 6 shows the sensitivity of
SSTF to different parameter values, where we vary the weight of
an edge to/from the neutral fact from 0.1 to 5 and from 0.001 to
0.05. We can see that SSTF is not sensitive to changes in its pa-
rameters.

We compare our approach (with 75 training examples) to the
following algorithms: (1) Voting, which considers the fact pro-
vided by most data sources as the true fact (a fact is randomly
chosen in case of a tie); (2) TruthFinder as described in [16]; (3)
Accu as described in [6]; (4) AccuWithSim as described in [6];
(5) 2-Estimates, which is described in [10] and has the highest
accuracy among the methods in [10]. Because we use the same
data set and evaluation criteria as in [6], we simply report their
results of Accu and AccuWithSim. The other methods are imple-
mented according to their papers. Table 2 shows the accuracy,
number of iterations used, and total running time for each ap-
proach. (The running time of Accu and AccuWithSim are from
[6], which may be using a less powerful computer, as the reported
running time of TruthFinder in [6] is four times of that in our
experiment.) Our approach, SSTF, achieves higher accuracy than
existing approaches, especially when compared to TruthFinder,
which does not detect data copying behaviors (and neither does
SSTF). This experiment shows that SSTF can significantly im-
prove accuracy with a small training set. It is also significantly

faster than many existing approaches.

Table 2: Accuracy on the Book Authors data set

Approach Accuracy #Iteration Time (s)

Voting 0.71 1 1.3

TruthFinder 0.83 5 2.9

Accu 0.87 22 185.8 ([6])

AccuWithSim 0.89 18 197.5 ([6])

2-Estimates 0.73 29 21.2

SSTF 0.91 23 7.9

6.2 Web Data Sets

6.2.1 Data Collection
It has been observed that HTML tables on the web provide a huge
number of facts, though they contain much noise [4]. We extract
facts from tables and use our approach to distinguish true facts
from false ones. As in [4], we focus on attribute-value tables, each
of which contains one column of attribute names and another
column of values, with two examples shown in Figure 7. Such
tables widely exist on the web and usually provide popular facts
for each entity, making them the best subjects for truth discovery.

The following method is used to extract facts from HTML
tables. We build a table classifier using the approach from [2], and
train it with a manually labeled set of attribute-value tables. With
this classifier, we extract 744M attribute-value tables from 20B
web pages in Bing’s index on 2010/06/22.

However, as these attribute-value tables are not associated with
any entity, we use the following method to find the main entity
that each web page talks about. The main entity of a web page can
often be found by matching user queries leading to a click on this
page with the page content. For example, a user may search for
“Britney Spears music” and click on
http://www.last.fm/music/Britney+Spears, whose title is “Britney
Spears – Discover music, videos, concerts, & pictures at Last.fm”.
We find the longest common substring between the query and the
title, which is “Britney Spears”, the subject of this page. In addi-
tion, for each query and clicked web page, we try to match the
query with the text in each <h1> element. If no match is found, it
tries to match with each <h2> element, and so on, until it finds a
match or has tried each element in the page. The matched part is
considered as a candidate of the main entity of the page. For each
candidate we build a wrapper based on HTML tag-paths [13]. For
example, the wrapper for the above page from Last.fm is
“<html><head><title>(*) – Discover music, videos, concerts, &
pictures at Last.fm”.

In order to select good wrappers and use them to extract entity
names, we utilize the fact that many websites contain large num-

Figure 4: Accuracy of SSTF with different training set sizes

Figure 5: Changes after each iteration of SSTF

Figure 6: Parameter sensitivity of SSTF

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25

A
cc

u
ra

cy

Iteration

87.5%

75%

50%

25%

12.5%

0

0.02

0.04

0.06

0.08

0.1

0.12

1 3 5 7 9 11 13 15 17 19 21 23 25

C
h

a
n

g
e

Iteration

87.5%

75%

50%

25%

12.5%

0.5

0.6

0.7

0.8

0.9

1

0.1 1

A
cc

u
ra

cy

neutral fact weight

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01

A
cc

u
ra

cy

α

bers of web pages in the same format (e.g., all movie pages on
IMDB). If we can build a wrapper for extracting the main entity
from some pages, we can extract entities from other pages of same
format. We use the approach in [17] to find sets of web pages in
the same format. For each such set of pages, we choose the wrap-
per that extracts entities from the most pages that match the user
queries. This wrapper will be used to extract the main entity from
every page in that set.

We use all query-click logs from the U.S. market between
2008/08/01 and 2009/05/31, which contains each search query
and all URLs clicked for it. Based on these queries and the 20B
web pages in Bing’s index on 2010/06/22, we extract the main
entities from 93.3M pages with attribute-value tables, which have
164M tables in total. These entities are joined with the attribute-
values extracted from the tables on these pages. 749M entity-
attribute-value triples are created, which will be used in our expe-
riment.

We extract the data from Wikipedia page titles and infobox
tables (e.g., the table in Figure 7 (a)) and use them as ground truth
data. We want to remove all web sites getting majority of their
data from Wikipedia, in order to perform a fair comparison be-
tween our approach and unsupervised approaches. For any web
site with at least half of its data identical to some Wikipedia data,
we consider it as a “Wikipedia copier” and remove it from our
data set. Although this may falsely remove some websites, we can
be sure that the remaining web sites are getting the majority of
their data from sources other than Wikipedia.

6.2.2 Domain-Specific Experiments
We first test our approach on four data sets in special domains and
compare it with existing approaches. The four data sets are direc-
tors of American films, developers (i.e., studios) of video games,
governors of U.S. states, and presidents of universities. We collect
the four sets of entities from special Wikipedia categories, as
shown in Table 3, where all entities with disambiguation pages are
removed (except U.S. states). Then we collect the values on the
specified attribute from the HTML table data set, and create four
fact sets as described in Table 4. Please note entities without the
specific attributes provided by any site are ignored.

SSTF uses the same parameters as in the book authors data set,
and all other approaches are implemented according to their pa-
pers. The similarity function for directors of films is the same as
that in the book authors data set. In the other three data sets the
similarity function between two string values is defined as their
edit-distance divided by the sum of their textual lengths (the simi-
larity is scaled to [–1, 1] for SSTF). We ignore all ground truth
facts that are not provided by any other web sites. 4-fold experi-
ments are used for SSTF, with 75% of ground truth facts allocated

as training data and 25% for testing in each fold. All other ap-
proaches use all ground truth facts for testing.

SSTF is compared to Voting, TruthFinder, AccuWithSim and
2-Estimates. Accuracy of an approach is defined as the percentage
of entities for which the correct fact is selected. All algorithms
converge on all data sets, except AccuWithSim which oscillates
on three of the four data sets. When it oscillates among multiple
states, we use the average accuracy of these states as its accuracy.
Figure 8 shows the accuracies of each approach on these data sets.
SSTF achieves accuracies between 78% to 96%, and it is signifi-
cantly more accurate than the other approaches on all data sets
except directors of films. On governors of U.S. states and presi-
dents of universities it beats all other approaches by at least 10%.
On directors of films the accuracies of different approaches are
very close, with Vote and 2-Estimates being the most accurate and
SSTF 0.4% behind. Figure 9 shows the running time of the five
approaches on the four data sets.

6.2.3 Web-scale Truth Discovery
In this subsection we present an experiment that involves all
749M facts extracted from HTML tables as described in Section
6.2.1. A web site often provides facts about many attributes for
many entities. If a web site provides correct values for an attribute
on some entities (e.g., date of birth of some people), we can ex-
pect it to provide correct values on this attribute for other entities.
Therefore, we treat each web site and each attribute as a data
source. Similarly we also treat each web site and each entity as a
data source. We do not consider two facts with different entities
and attributes to be from the same data source, because a web site
may have very different trustworthiness on different attributes or
different entities.

There are 65.7M entities, 749M facts (591M distinct facts)
from 33K websites. According to our definition above, there are
89M data sources, where 15.5M of them are website-attribute
pairs and 73.5M are website-entity pairs. Some data sources pro-
vide very large numbers of facts (as many as 5.2M), while on
average each data source only provides 8.42 facts. The numbers of
edges from different facts vary greatly. Thus we define the weight
of an edge to/from the neutral fact according to Equation (7):

��� = ��� = T ∙ ∑ 0���0�U� , where T = 0.1. The edge weight be-

tween two facts from the same data source is set to 0.5, since facts
from each data source are highly homogenous: They are either
about the same entity or the same attribute.

Again the facts from Wikipedia infobox tables are used as
ground truth. There are three runs of our approach: One uses all

Figure 7: Two examples of attribute-value tables

Table 3: Data sources for four classes of entities

Class of entity Num. Entity Wikipedia categories

American films 8772 *_ american_films

video games 5110 *_video_games

U.S. states 50 states_of_the_united_states

universities 7191 universities_and_colleges_*

Table 4: Four data sets from HTML tables

Data set #entity #provider #facts
#distinct

facts

#ground

truth fact
directors of films 4893 370 31154 7132 4105

developer of video
games

3418 181 16961 8187 1911

governors of states 50 70 1195 312 49

presidents of uni-
versities

543 64 1890 756 254

(b) A table in http://www.cele-
brina.com/tom-hanks.html

(a) A table in http://en.wiki-
pedia.org/wiki/Tom_Hanks

ground truth facts for training (30.7M facts), one uses 10% of
them, and the last uses 1% of them.

Instead of continuing using Wikipedia to measure the accuracy
of our approach, we measure that based on whether such data is
useful in answering queries containing an entity and an attribute,
which better reflects the usefulness of such data for web search.
For example, if the user searches for {Barack Obama date of
birth} and our data set contains some values for the entity “Barack
Obama” and attribute “date of birth”, we will measure if the cor-
responding values are correct.

First we need to create a test set such that facts appearing more
often in user queries have a larger chance to be selected. Our fact
set is tail-heavy where most facts, such as price of a product or
version of some software, are uninteresting. In order to avoid
selecting many trivial facts for evaluation, we only consider facts
that appear in the Bing web search queries between 2008/08/01
and 2009/05/31. A fact is consider to be in the query set if there is
a query consisting of the entity name and attribute name. Each
fact is weighted by the frequency of the corresponding query (i.e.,
number of times the query is submitted to Bing). We randomly
select 1000 facts with the probability each fact is selected propor-

tional to its weight. We exclude 20 facts that appear in the ground
truth set. We also exclude 120 facts whose values are long textual
contents such as the biography of people and symptoms of diseas-
es, because it is hard to judge if such facts are correct or not.

 We manually label each fact as true or false according to the
semantic meaning of the corresponding query using the following
method. Given a fact which is an entity-attribute-value triple, we
need to first decide the identity of its entity, as the entity name for
some facts can be very ambiguous (e.g., “system” as the entity).
We consider the entity with the specified name in the first result
page of Bing as the true entity. Let us consider the fact “Brazil:
Time zone = UTC -2 to -5” (i.e., entity is “Brazil”, attribute is
“Time zone” and value is “UTC -2 to -5”). We consider the entity
to be the country of Brazil which is the main entity in the first
result page of Bing for query “Brazil time zone”, and thus this fact
is true. The fact “System: Security = Basic” is false because the
first result page of the query “system security” is not about the
entity “system”. The second requirement for a fact to be true is
that there exists an entity with the specified attribute and value, as
some facts are simply wrong, such as “Sony: Camera = Canon
300D”. Among the 860 labeled facts, 68 are true and 792 are
false. Please note that most of the false facts are simply not facts,
such as “baby: games = 32”, “Comcast: email = enter missing
info” and “myspace: comments = add”. They are extracted be-
cause the HTML table classifier has limited accuracy.

We compare SSTF with TruthFinder [16]. We implement SSTF
with MapReduce according to Section 5.2, and implement Truth-
Finder with MapReduce as well. The approach in [6] is not Ma-
pReduceable as it involves sorting. Therefore we do not include it
in our evaluation.

Each approach assigns a confidence score to each fact. The ac-
curacy is defined as the probability of a true fact having a higher
score than a false fact. Let @���� and $� be the label and confidence

score of fact ��, respectively. The accuracy of a confidence score
assignment is defined as follows.

Accuracy�#�
= ∑ O!$� > $�"���e�>Z,�!�f">� + 0.5 ∙ ∑ O!$� = $�"���e�>Z,�!�f">�

0�!�� , ��"|@���� = �, @!��" = ��0

In the rare case of $� = $� we consider it to be half-correct.

Figure 10 compares the accuracy of TruthFinder and SSTF with
varying amounts of training data. We can see SSTF achieves an
accuracy of 83%, which is much higher than TruthFinder. The
accuracy of SSTF is not significantly affected by training data
size. It achieves an accuracy of 81% when only 1% of Wikipedia
infobox facts are used as training data.

Figure 11 shows the relative changes in the confidence score

Figure 8: Accuracies of five approaches on four data sets

Figure 9: Running time (s) of five approaches on four data sets

Figure 10: Accuracy of SSTF and TruthFinder on Attribute-

value Table data

Figure 11: Changes after each iteration of SSTF with differ-

ent amounts of training data and TruthFinder

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Directors of

films

Developers of

video games

Governors of

U.S. states

Presidents of

universities

Vote

TruthFinder

AccuWithSim

2-Estimates

SSTF

0.1

1

10

100

1000

Directors of

films

Developers of

video games

Governors of

U.S. states

Presidents of

universities

Vote

TruthFinder

AccuWithSim

2-Estimates

SSTF

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13

A
cc

u
ra

cy

Iteration

100%

10%

1%

TruthFinder
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13

C
h

a
n

g
e

Iteration

100%

10%

1%

TruthFinder

vector after each iteration. Because of the high computation cost
in processing hundreds of millions of facts, we stop iterating after
the change falls below 0.05, and SSTF stops after 10 to 13 itera-
tions. The precision/recall curve of SSTF and TruthFinder are
shown in Figure 12. Considering only 7.9% of the facts are cor-
rect, SSTF achieves reasonably high accuracy, and is much more
accurate than TruthFinder. Table 5 shows the running time,
#CPUs used and bytes read/write of SSTF with all training data.

Table 5: Runtime of SSTF with MapReduce

 Time (min) #CPU #bytes read/write

Initialization 125 152 3.36T

Each iteration 56.3 184 4.80T

6.3 Scalability on Synthetic Data Sets
We test the scalability of our approach on synthetic data sets.
Each data set contains 1000 websites that provide n facts in total
on n/5 subjects. The trustworthiness of each website is uniformly
sampled from [0, 1], with the true value of each subject uniformly
sampled from [1000, 10000]. The probability that a fact is set to
the true value is given by the trustworthiness of the website. If a
fact is false, it is a random number that deviates at most by 50%
from the true value. We perform a 5-fold experiment on each data
set, using 80% of data for training and 20% for testing. The run-
ning time and memory usage of SSTF are shown in Figure 13.
Running time grows by 150 times when number of facts grows by
100 times, while memory usage grows by 42 times. The accuracy
is always above 95%.

7. CONCLUSIONS
As online sources often provide inaccurate and conflicting infor-
mation, truth discovery has become an important research prob-
lem. Existing studies all employ unsupervised approaches, which
are often ineffective as it is sometimes very difficult to distinguish
between true and false facts using only the data itself. In this pa-
per we propose a semi-supervised approach that finds true values
with the help of a small amount of ground truth data. Unlike exist-
ing studies that only provide iterative algorithms, we derive the
optimal solution and provide an efficient iterative algorithm that
converges to it. Experiments show our method achieves higher
accuracy than existing approaches and can be applied on very
large data sets.

8. REFERENCES
[1] J. Bleiholder and F. Naumann. Conflict handling strategies in

an integrated information system. WWW’06.

[2] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu and Y.
Zhang. WebTables: Exploring the Power of Tables on the

Web. VLDB’08.

[3] A. Celikyilmaz, M. Thint, Z. Huang. A graph-based semi-
supervised learning for question answering. IJCNLP’09.

[4] E. Crestan and P. Pantel. Web-scale knowledge extraction
from semi-structured tables. WWW’10.

[5] X. L. Dong, L. Berti-Equille, Y. Hu and D. Srivastava. Glob-
al detection of complex copying relationships between
sources. In VLDB’10.

[6] X. L. Dong, L. Berti-Equille and D. Srivastava. Integrating
conflicting data: The role of source dependence. VLDB’09.

[7] X. L. Dong, L. Berti-Equille and D. Srivastava. Truth dis-
covery and copying detection in a dynamic world. VLDB’09.

[8] X. L. Dong. Presentation for [6].
http://www2.research.att.com/~lunadong/talks/depenDetection.pptx

[9] A. Enright. Consumers trust information found online less
than offline messages. Internet Retailer, Aug 25, 2010.

[10] A. Galland, S. Abiteboul, A. Marian and P. Senellart. Corro-
borating information from disagreeing views. WSDM’10.

[11] A. B. Goldberg, X. Zhu and S. Wright. Dissimilarity in
graph-based semi-supervised classification. AISTATS’07.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly.
Dryad: distributed data-parallel programs from sequential
building blocks. Operating Systems Review, 41(3), 2007.

[13] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires and L. E.
Moser. Extracting data records from the web using tag path
clustering. WWW’09.

[14] J. Tang, H. Li, Q.-J. Qi and T.-S. Chua. Integrated graph-
based semi-supervised multiple/single instance learning
framework for image annotation. ACM Multimedia’08.

[15] M. Wu and A. Marian. Corroborating answers from multiple
web sources. WebDB’07.

[16] X. Yin, J. Han and P. S. Yu. Truth discovery with multiple
conflicting information providers on the web. KDD’07.

[17] X. Yin, W. Tan, X. Li and Y.-C. Tu. Automatic Extraction of
Clickable Structured Web Contents for Name Entity Queries.
WWW’10.

[18] D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Schölkopf.
Learning with local and global consistency. NIPS’04.

[19] X. Zhu and Z. Ghahramani. Learning from labeled and unla-
beled data with label propagation. CMU Technical Report
CMU-CALD-02-107, 2002.

[20] X. Zhu, Z. Ghahramani and J. Lafferty. Semi-supervised
learning using Gaussian fields and harmonic functions.
ICML’03.

Figure 12: Precision and recall of SSTF and TruthFinder

Figure 13: Runtime and accuracy of SSTF on synthetic data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

100%

10%

1%

TruthFinder

0.1

1

10

100

1000

T
im

e
 p

e
r

fo
ld

 (
se

c)

Number of facts

10

100

1000

10000

M
e

m
o

ry
 (

M
B

)

Number of facts

