2: Data Pre-Processing

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

September 14, 2015
2: Data Pre-Processing

• Getting to know your data
 • Basic Statistical Descriptions of Data
 • Data Visualization

• Data Pre-Processing
 • Data Cleaning
 • Data Integration
 • Data Reduction
 • Data Transformation and Data Discretization
Basic Statistical Descriptions of Data

• Central Tendency
• Dispersion of the Data
• Graphic Displays
Measuring the Central Tendency

- Mean (algebraic measure) (sample vs. population):

 Note: n is sample size and N is population size.

 - Weighted arithmetic mean:
 - Trimmed mean: chopping extreme values

- Median:

 - Middle value if odd number of values, or average of the middle two values otherwise

- Estimated by interpolation (for grouped data):

\[
\text{median} = L_1 + \left(\frac{n/2 - \left(\sum \text{freq} \right)}{\text{freq}_{\text{median}}} \right) \text{width}
\]

- Mode

 - Value that occurs most frequently in the data

 - Unimodal, bimodal, trimodal

- Empirical formula: \(\text{mean} - \text{mode} = 3 \times (\text{mean} - \text{median}) \)

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \mu = \frac{\sum x}{N}
\]

\[
\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}
\]
Symmetric vs. Skewed Data

- Median, mean and mode of symmetric, positively and negatively skewed data

![Diagram showing median, mean, and mode in symmetric, positively skewed, and negatively skewed distributions](image-url)
Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - **Quartiles**: Q_1 (25th percentile), Q_3 (75th percentile)
 - **Inter-quartile range**: $IQR = Q_3 - Q_1$
 - **Five number summary**: min, Q_1, median, Q_3, max
 - **Outlier**: usually, a value higher/lower than $1.5 \times IQR$

- Variance and standard deviation (*sample: s, population: σ*)
 - **Variance**: (algebraic, scalable computation)

 $$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i)^2 \right]$$

 $$\sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^{n} x_i^2 - \mu^2$$

 - **Standard deviation** s (*or σ*) is the square root of variance s^2 (*or σ^2*)
Graphic Displays of Basic Statistical Descriptions

- **Boxplot**: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis represent frequencies
- **Scatter plot**: each pair of values is a pair of coordinates and plotted as points in the plane
Boxplot Analysis

- **Five-number summary** of a distribution
 - Minimum, Q1, Median, Q3, Maximum

- **Boxplot**
 - Data is represented with a box
 - The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
 - The median is marked by a line within the box
 - Whiskers: two lines outside the box extended to Minimum and Maximum
 - Outliers: points beyond a specified outlier threshold, plotted individually
Visualization of Data Dispersion: 3-D Boxplots
Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent
Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions
Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane
Positively and Negatively Correlated Data

- The left half fragment is positively correlated.
- The right half is negatively correlated.
Uncorrelated Data
2: Data Pre-Processing

• Getting to know your data
 • Basic Statistical Descriptions of Data
 • Data Visualization

• Data Pre-Processing
 • Data Cleaning
 • Data Integration
 • Data Reduction
 • Data Transformation and Data Discretization
3D Scatter Plot
Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k²/2-k) scatterplots]
Landscapes

- Visualization of the data as perspective landscape
- The data needs to be transformed into a (possibly artificial) 2D spatial representation which preserves the characteristics of the data
Parallel Coordinates

- n equidistant axes which are parallel to one of the screen axes and correspond to the attributes
- The axes are scaled to the [minimum, maximum]: range of the corresponding attribute
- Every data item corresponds to a polygonal line which intersects each of the axes at the point which corresponds to the value for the attribute
Parallel Coordinates of a Data Set
Visualizing Text Data

- Tag cloud: visualizing user-generated tags

- The importance of tag is represented by font size/color
Visualizing Social/Information Networks

Computer Science Conference Network
2: Data Pre-Processing

- Getting to know your data
 - Basic Statistical Descriptions of Data
 - Data Visualization

- Data Pre-Processing
 - Data Cleaning
 - Data Integration
 - Data Reduction
 - Data Transformation and Data Discretization
Major Tasks in Data Preprocessing

- **Data cleaning**
 - Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

- **Data integration**
 - Integration of multiple databases or files

- **Data reduction**
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression

- **Data transformation and data discretization**
 - Normalization
2: Data Pre-Processing

- Getting to know your data
 - Basic Statistical Descriptions of Data
 - Data Visualization

- Data Pre-Processing
 - Data Cleaning
 - Data Integration
 - Data Reduction
 - Data Transformation and Data Discretization
Data Cleaning

• Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 • **incomplete**: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 • e.g., *Occupation=* “” (missing data)
 • **noisy**: containing noise, errors, or outliers
 • e.g., *Salary=* “–10” (an error)
 • **inconsistent**: containing discrepancies in codes or names, e.g.,
 • *Age=* “42”, *Birthday=* “03/07/2010”
 • Was rating “1, 2, 3”, now rating “A, B, C”
 • discrepancy between duplicate records
 • **Intentional** (e.g., *disguised missing* data)
 • Jan. 1 as everyone’s birthday?
How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant: e.g., “unknown”, a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree
How to Handle Noisy Data?

- Binning
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

- Regression
 - smooth by fitting the data into regression functions

- Clustering
 - detect and remove outliers

- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)
2: Data Pre-Processing

- Getting to know your data
 - Basic Statistical Descriptions of Data
 - Data Visualization

- Data Pre-Processing
 - Data Cleaning
 - Data Integration
 - Data Reduction
 - Data Transformation and Data Discretization
Data Integration

- **Data integration**: Combines data from multiple sources into a coherent store
- **Schema integration**: e.g., $A.cust-id \equiv B.cust#$
 - Integrate metadata from different sources
- **Entity identification problem**:
 - Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- **Detecting and resolving data value conflicts**
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units
2: Data Pre-Processing

- Getting to know your data
 - Basic Statistical Descriptions of Data
 - Data Visualization

- Data Pre-Processing
 - Data Cleaning
 - Data Integration
 - Data Reduction
 - Data Transformation and Data Discretization
Data Reduction Strategies

- **Data reduction**: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results.
- **Why data reduction?** — A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.
- **Data reduction strategies**
 - **Dimensionality reduction**, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - **Numerosity reduction** (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression
2: Data Pre-Processing

- Getting to know your data
 - Basic Statistical Descriptions of Data
 - Data Visualization

- Data Pre-Processing
 - Data Cleaning
 - Data Integration
 - Data Reduction
 - Data Transformation and Data Discretization
Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values

- Methods

 - **Smoothing**: Remove noise from data

 - **Attribute/feature construction**

 - New attributes constructed from the given ones

 - **Normalization**: Scaled to fall within a smaller, specified range

 - min-max normalization

 - z-score normalization

 - normalization by decimal scaling

 - **Discretization**
Normalization

- **Min-max normalization**: to \([\text{new_min}_A, \text{new_max}_A]\)

 \[
v' = \frac{v - \text{min}_A}{\text{max}_A - \text{min}_A} (\text{new_max}_A - \text{new_min}_A) + \text{new_min}_A
 \]

 - Ex. Let income range $12,000 to $98,000 normalized to \([0.0, 1.0]\). Then $73,000 is mapped to \(\frac{73,600 - 12,000}{98,000 - 12,000} (1.0 - 0) + 0 = 0.716\)

- **Z-score normalization** (\(\mu\): mean, \(\sigma\): standard deviation):

 \[
v' = \frac{v - \mu_A}{\sigma_A}
 \]

 - Ex. Let \(\mu = 54,000\), \(\sigma = 16,000\). Then \(\frac{73,600 - 54,000}{16,000} = 1.225\)

- **Normalization by decimal scaling**

 \[
v' = \frac{v}{10^j} \quad \text{Where } j \text{ is the smallest integer such that } \text{Max}(|v'|) < 1
 \]
Discretization

- Three types of attributes
 - Nominal—values from an unordered set, e.g., color, profession
 - Ordinal—values from an ordered set, e.g., military or academic rank
 - Numeric—real numbers, e.g., integer or real numbers

- Discretization: Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - Discretization can be performed recursively on an attribute
 - Prepare for further analysis, e.g., classification
Simple Discretization: Binning

- **Equal-width** (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: $W = (B - A)/N$.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well

- **Equal-depth** (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky
Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

* Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34

* Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29

* Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34
Data cleaning

Data integration

Data reduction

attributes

<table>
<thead>
<tr>
<th>transactions</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>...</th>
<th>A126</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

attributes

<table>
<thead>
<tr>
<th>transactions</th>
<th>A1</th>
<th>A3</th>
<th>...</th>
<th>A115</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1456</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data transformation

\[-2, 32, 100, 59, 48 \rightarrow -0.02, 0.32, 1.00, 0.59, 0.48\]
References

• T. Dasu, T. Johnson, S. Muthukrishnan, V. Shkapenyuk. Mining Database Structure; Or, How to Build a Data Quality Browser. SIGMOD’02
• D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
• E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. IEEE Bulletin of the Technical Committee on Data Engineering. Vol.23, No.4