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Announcements

•TA Monisha’s office hour has changed to 
Thursdays 10-12pm, 462WVH (the same 
location)

•Team formation due this Sunday

•Homework 1 out by tomorrow.
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Today’s Schedule

•Course Project Introduction

•Linear Regression Model

•Decision Tree
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Methods to Learn
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How to learn these algorithms?

•Three levels

•When it is applicable?

• Input, output, strengths, weaknesses, time 
complexity 

•How it works?

• Pseudo-code, work flows, major steps

• Can work out a toy problem by pen and paper

•Why it works?

• Intuition, philosophy, objective, derivation, proof
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Matrix Data: Prediction

•Matrix Data

•Linear Regression Model

•Model Evaluation and Selection

•Summary
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Example
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xA matrix of n × 𝑝: 

• n data objects / points
• p attributes / dimensions



Attribute Type

•Numerical

•E.g., height, income

•Categorical / discrete

•E.g.,  Sex, Race
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Categorical Attribute Types
• Nominal: categories, states, or “names of things”

• Hair_color = {auburn, black, blond, brown, grey, red, white}

• marital status, occupation, ID numbers, zip codes

• Binary

• Nominal attribute with only 2 states (0 and 1)

• Symmetric binary: both outcomes equally important

• e.g., gender

• Asymmetric binary: outcomes not equally important.  

• e.g., medical test (positive vs. negative)

• Convention: assign 1 to most important outcome (e.g., HIV positive)

• Ordinal

• Values have a meaningful order (ranking) but magnitude between 
successive values is not known.

• Size = {small, medium, large}, grades, army rankings
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Matrix Data: Prediction

•Matrix Data

•Linear Regression Model

•Model Evaluation and Selection

•Summary
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Linear Regression

•Ordinary Least Square Regression

•Closed form solution

•Online updating

•Linear Regression with Probabilistic 
Interpretation
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The Linear Regression Problem

•Any Attributes to Continuous Value: x ⇒ y

• {age; major ; gender; race} ⇒ GPA

• {income; credit score; profession} ⇒ loan

• {college; major ; GPA} ⇒ future income

• ...
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Illustration
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Formalization

•Data: n independent data objects
• 𝑦𝑖 , i = 1, … , 𝑛

• 𝒙𝑖 = 𝑥𝑖0, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝
T
, i = 1, … , 𝑛

• Usually a constant factor is considered, say, 𝑥𝑖0 = 1

•Model:

• 𝑦: dependent variable

• 𝒙: explanatory variables

•𝜷 = 𝛽0, 𝛽1, … , 𝛽𝑝
𝑇
: 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

• 𝑦 = 𝒙𝑇𝜷 = 𝛽0 + 𝑥1𝛽1 + 𝑥2𝛽2 + ⋯ + 𝑥𝑝𝛽𝑝
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A 2-step Process

•Model Construction

•Use training data to find the best parameter 𝜷, 

denoted as  𝜷

•Model Usage

•Model Evaluation

• Use test data to select the best model
• Feature selection

•Apply the model to the unseen data:  𝑦 = 𝒙𝑇 𝜷
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Least Square Estimation

•Cost function (Total Square Error): 

• 𝐽 𝜷 =  𝑖 𝒙𝑖
𝑇𝜷 − 𝑦𝑖

2

•Matrix form: 

• 𝐽 𝜷 = X𝜷 − 𝒚 𝑇(𝑋𝜷 − 𝒚)

or X𝜷 − 𝒚
2
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𝑿: 𝒏 × 𝒑 + 𝟏 matrix
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Ordinary Least Squares (OLS)

•Goal: find  𝜷 that minimizes 𝐽 𝜷
• 𝐽 𝜷 = X𝜷 − 𝑦 𝑇 𝑋𝜷 − 𝑦

= 𝜷𝑇𝑋𝑇𝑋𝜷 − 𝑦𝑇𝑋𝜷 − 𝜷𝑇𝑋𝑇𝑦 + 𝑦𝑇𝑦

•Ordinary least squares

•Set first derivative of 𝐽 𝜷 as 0 

•
𝜕𝐽

𝜕𝜷
= 2𝜷𝑇XTX − 2𝑦𝑇𝑋 = 0

• ⇒  𝜷 = 𝑋𝑇𝑋
−1

𝑋𝑇𝑦
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Gradient Descent

•Minimize the cost function by moving 
down in the steepest direction
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Online Updating

•Gradient Descent

•Move in the direction of steepest descend

•When a new observation, i, comes in, only need to 

update: 𝜷(𝑡+1):=𝜷(t) + 2𝜂(𝑦𝑖 − 𝒙𝑖
𝑇𝜷(𝑡))𝒙𝑖
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𝜷(𝑡+1):=𝜷(t) − 𝜂
𝜕𝐽

𝜕𝜷
 
𝜷=𝜷(t) ,

Where 𝐽 𝜷 =  𝑖 𝒙𝑖
𝑇𝜷 − 𝑦𝑖

2
=  𝑖 𝐽𝑖(𝜷)

𝜕𝐽

𝜕𝜷
=  

𝑖

𝜕𝐽𝑖
𝜕𝜷

=  

𝑖

2𝒙𝑖 (𝒙𝑖
𝑇𝜷 − 𝑦𝑖)

If the prediction for object i is smaller than the real value, 

𝜷 should move forward to the direction of 𝒙𝑖

𝜂 = 0.1 𝑖𝑛 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒



Other Practical Issues

•What if 𝑋𝑇𝑋 is not invertible?
•Add a small portion of identity matrix, λ𝐼, to it 
(ridge regression* )

•What if some attributes are categorical?
•Set dummy variables

• E.g., 𝑥 = 1, 𝑖𝑓 𝑠𝑒𝑥 = 𝐹; 𝑥 = 0, 𝑖𝑓 𝑠𝑒𝑥 = 𝑀

• Nominal variable with multiple values? 
• Create more dummy variables for one variable

•What if non-linear correlation exists?
•Transform features, say, 𝑥 to 𝑥2
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Probabilistic Interpretation 

•Review of normal distribution 

•X~𝑁 𝜇, 𝜎2 ⇒ 𝑓 𝑋 = 𝑥 =
1

2𝜋𝜎2 𝑒
−

𝑥−𝜇 2

2𝜎2
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Probabilistic Interpretation

•Model: 𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + ε𝑖

• ε𝑖~𝑁(0, 𝜎2)

• 𝑦𝑖 𝑥𝑖 , 𝛽~𝑁(𝑥𝑖
𝑇𝛽, 𝜎2)

• 𝐸 𝑦𝑖 𝑥𝑖 = 𝑥𝑖
𝑇𝛽

• Likelihood:

• 𝐿 𝜷 =  𝑖 𝑝 𝑦𝑖 𝑥𝑖 , 𝛽)

=  𝑖
1

2𝜋𝜎2
exp{−

𝑦𝑖−𝒙𝑖
𝑇𝜷

2

2𝜎2 }

•Maximum Likelihood Estimation

• find  𝜷 that maximizes L 𝜷

• arg max 𝐿 = arg min 𝐽, Equivalent to OLS!
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Matrix Data: Prediction

•Matrix Data

•Linear Regression Model

•Model Evaluation and Selection

•Summary
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Model Selection Problem

• Basic problem: 
• how to choose between competing linear regression 

models 

•Model too simple: 
• “underfit” the data; poor predictions; high bias; low 

variance 

•Model too complex: 
• “overfit” the data; poor predictions; low bias; high 

variance 

•Model just right: 
• balance bias and variance to get good predictions 
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Bias and Variance

• Bias: 𝐸(  𝑓 𝑥 ) − 𝑓(𝑥)
• How far away is the expectation of the estimator to the true 

value? The smaller the better. 

•Variance: 𝑉𝑎𝑟  𝑓 𝑥 = 𝐸[  𝑓 𝑥 − 𝐸  𝑓 𝑥
2

]

• How variant is the estimator? The smaller the better. 

• Reconsider the cost function

• 𝐽  𝜷 =  𝑖 𝒙𝑖
𝑇  𝜷 − 𝑦𝑖

2

• Can be considered as

• 𝐸[  𝑓 𝑥 − 𝑓(𝑥) − 𝜀
2
] = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒
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Note 𝐸 𝜀 = 0, 𝑉𝑎𝑟 𝜀 = 𝜎2

True predictor 𝑓 𝑥 : 𝑥𝑇𝜷

Estimated predictor  𝑓 𝑥 : 𝑥𝑇 𝜷



Bias-Variance Trade-off
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Cross-Validation

•Partition the data into K folds

•Use K-1 fold as training, and 1 fold as testing

•Calculate the average accuracy best on K 

training-testing pairs

• Accuracy on validation/test dataset!

• Mean square error can again be used:  𝑖 𝒙𝑖
𝑇 𝜷 − 𝑦𝑖

2
/𝑛
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AIC & BIC*

•AIC and BIC can be used to test the quality 
of statistical models

•AIC (Akaike information criterion)

• 𝐴𝐼𝐶 = 2𝑘 − 2ln( 𝐿), 

• where k is the number of parameters in the model 
and  𝐿 is the likelihood under the estimated 
parameter

•BIC (Bayesian Information criterion)

• B𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2ln( 𝐿), 

• Where n is the number of objects
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Stepwise Feature Selection

•Avoid brute-force selection

• 2𝑝

• Forward selection
• Starting with the best single feature

• Always add the feature that improves the performance 
best

• Stop if no feature will further improve the performance

• Backward elimination
• Start with the full model

• Always remove the feature that results in the best 
performance enhancement

• Stop if removing any feature will get worse performance
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Matrix Data: Prediction

•Matrix Data

•Linear Regression Model

•Model Evaluation and Selection

•Summary
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Summary

•What is matrix data?
• Attribute types

• Linear regression
• OLS

• Probabilistic interpretation

•Model Evaluation and Selection
• Bias-Variance Trade-off 

• Mean square error

• Cross-validation, AIC, BIC, step-wise feature 
selection
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