CS6220: DATA MINING TECHNIQUES

Matrix Data: Prediction

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

September 21, 2015

Announcements

- TA Monisha's office hour has changed to Thursdays 10-12pm, 462WVH (the same location)
- Team formation due this Sunday
- Homework 1 out by tomorrow.

Today's Schedule

- Course Project Introduction
- Linear Regression Model
- Decision Tree

Methods to Learn

	Matrix Data	Text Data	Set Data	Sequence Data	Time Series	Graph & Network	Images
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN			HMM		Label Propagation*	Neural Network
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k- means*	PLSA				SCAN*; Spectral Clustering*	
Frequent Pattern Mining			Apriori; FP-growth	GSP; PrefixSpan			
Prediction	Linear Regression				Autoregression		
Similarity Search					DTW	P-PageRank	
Ranking						PageRank	

How to learn these algorithms?

Three levels

- When it is applicable?
 - Input, output, strengths, weaknesses, time complexity
- How it works?
 - Pseudo-code, work flows, major steps
 - Can work out a toy problem by pen and paper
- Why it works?
 - Intuition, philosophy, objective, derivation, proof

Matrix Data: Prediction

- Linear Regression Model
- Model Evaluation and Selection
- Summary

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	М	1	70	50	1	12	1.73
R1002	М	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	М	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	М	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	М	1	69	67	1	12	3.25

A matrix of $n \times p$:

- n data objects / points
- p attributes / dimensions

 $\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$

Attribute Type

Numerical

- E.g., height, income
- Categorical / discrete
 - E.g., Sex, Race

Categorical Attribute Types

- Nominal: categories, states, or "names of things"
 - *Hair_color = {auburn, black, blond, brown, grey, red, white}*
 - marital status, occupation, ID numbers, zip codes
- Binary
 - Nominal attribute with only 2 states (0 and 1)
 - <u>Symmetric binary</u>: both outcomes equally important
 - e.g., gender
 - <u>Asymmetric binary</u>: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)
- Ordinal
 - Values have a meaningful order (ranking) but magnitude between successive values is not known.
 - *Size = {small, medium, large},* grades, army rankings

Matrix Data: Prediction

- Matrix Data
- Linear Regression Model
- Model Evaluation and Selection
- Summary

Linear Regression

- Ordinary Least Square Regression
 - Closed form solution
 - Online updating
- Linear Regression with Probabilistic
 Interpretation

The Linear Regression Problem

- Any Attributes to Continuous Value: $\mathbf{x} \Rightarrow \mathbf{y}$
 - {age; major ; gender; race} \Rightarrow GPA

- {income; credit score; profession} ⇒ loan
- {college; major ; GPA} ⇒ future income

Illustration

13

Formalization

- Data: n independent data objects
 - y_i , i = 1, ..., n

•
$$\boldsymbol{x}_{i} = (x_{i0}, x_{i1}, x_{i2}, \dots, x_{ip})^{\mathrm{T}}$$
, $\mathrm{i} = 1, \dots, n$

- Usually a constant factor is considered, say, $x_{i0} = 1$
- Model:
 - y: *dependent variable*
 - **x**: explanatory variables
 - $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^T$: weight vector
 - $y = \mathbf{x}^T \boldsymbol{\beta} = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + \dots + x_p \beta_p$

A 2-step Process

- Model Construction
 - Use training data to find the best parameter $\boldsymbol{\beta}$, denoted as $\widehat{\boldsymbol{\beta}}$
- Model Usage
 - Model Evaluation
 - Use test data to select the best model
 - Feature selection
 - Apply the model to the unseen data: $\hat{y} = x^T \hat{\beta}$

Least Square Estimation

Cost function (Total Square Error):

•
$$J(\boldsymbol{\beta}) = \sum_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i})^{2}$$

Matrix form:

•
$$J(\boldsymbol{\beta}) = (X\boldsymbol{\beta} - \boldsymbol{y})^T (X\boldsymbol{\beta} - \boldsymbol{y})$$

 $Or ||X\boldsymbol{\beta} - \boldsymbol{y}||^2$
 $\begin{bmatrix} 1, x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ 1, x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$
 $\begin{pmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix}$

X: n imes (p+1) matrix

y: $n \times 1$ vector

Ordinary Least Squares (OLS)

- Goal: find $\widehat{\beta}$ that minimizes $J(\beta)$ • $J(\beta) = (X\beta - y)^T (X\beta - y)$ $= \beta^T X^T X \beta - y^T X \beta - \beta^T X^T y + y^T y$ • Ordinary least squares
 - Set first derivative of $J(\beta)$ as 0

•
$$\frac{\partial J}{\partial \boldsymbol{\beta}} = 2\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} - 2y^T X = 0$$

• $\Rightarrow \hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T y$

Gradient Descent

 Minimize the cost function by moving down in the steepest direction

direction towards the minimum

Online Updating

Gradient Descent

• Move in the direction of steepest descend

$$\boldsymbol{\beta}^{(t+1)} := \boldsymbol{\beta}^{(t)} - \eta \frac{\partial J}{\partial \boldsymbol{\beta}} |_{\boldsymbol{\beta} = \boldsymbol{\beta}^{(t)}},$$

$$\eta = 0.1 \text{ in practice} \qquad \text{Where } J(\boldsymbol{\beta}) = \sum_{i} \left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i} \right)^{2} = \sum_{i} J_{i}(\boldsymbol{\beta})$$

$$\frac{\partial J}{\partial \boldsymbol{\beta}} = \sum_{i} \frac{\partial J_{i}}{\partial \boldsymbol{\beta}} = \sum_{i} 2\boldsymbol{x}_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i})$$

• When a new observation, *i*, comes in, only need to update: $\boldsymbol{\beta}^{(t+1)} := \boldsymbol{\beta}^{(t)} + 2\eta(y_i - \boldsymbol{x}_i^T \boldsymbol{\beta}^{(t)}) \boldsymbol{x}_i$

If the prediction for object *i* is smaller than the real value, meta should move forward to the direction of x_i

Other Practical Issues

- What if $X^T X$ is not invertible?
 - Add a small portion of identity matrix, λI , to it (ridge regression*) $\sum_{i} (y_i \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{i=1}^p \beta_j^2$
- What if some attributes are categorical?
 - Set dummy variables
 - E.g., x = 1, if sex = F; x = 0, if sex = M
 - Nominal variable with multiple values?
 - Create more dummy variables for one variable
- What if non-linear correlation exists?
 - Transform features, say, x to x^2

Probabilistic Interpretation

Review of normal distribution

Probabilistic Interpretation

• Model:
$$y_i = x_i^T \beta + \varepsilon_i$$

- $\varepsilon_i \sim N(0, \sigma^2)$
- $y_i | x_i, \beta \sim N(x_i^T \beta, \sigma^2)$
 - $E(y_i|x_i) = x_i^T \beta$
- Likelihood:
 - $L(\boldsymbol{\beta}) = \prod_i p(y_i | x_i, \beta)$

$$= \prod_{i} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(y_i - x_i^T \boldsymbol{\beta})^2}{2\sigma^2}\}$$

- Maximum Likelihood Estimation
 - find $\widehat{\boldsymbol{\beta}}$ that maximizes $L(\boldsymbol{\beta})$
 - $\arg \max L = \arg \min J$, Equivalent to OLS!

Matrix Data: Prediction

- Matrix Data
- Linear Regression Model
- Model Evaluation and Selection
- Summary

Model Selection Problem

• Basic problem:

- how to choose between competing linear regression models
- Model too simple:
 - "underfit" the data; poor predictions; high bias; low variance
- Model too complex:
 - "overfit" the data; poor predictions; low bias; high variance
- Model just right:
 - balance bias and variance to get good predictions

Bias and Variance

• Bias: $E(\hat{f}(x)) - f(x)$ Estimated predictor $\hat{f}(x): x^T \hat{\beta}$ • How far away is the expectation of the estimator to the true value? The smaller the better.

• Variance:
$$Var\left(\hat{f}(x)\right) = E\left[\left(\hat{f}(x) - E\left(\hat{f}(x)\right)\right)^2\right]$$

- How variant is the estimator? The smaller the better.
- Reconsider the cost function

•
$$J(\widehat{\boldsymbol{\beta}}) = \sum_{i} (\boldsymbol{x}_{i}^{T} \widehat{\boldsymbol{\beta}} - y_{i})^{2}$$

• Can be considered as

•
$$E[(\hat{f}(x) - f(x) - \varepsilon)^2] = bias^2 + variance + noise$$

Note $E(\varepsilon) = 0, Var(\varepsilon) = \sigma^2$

Bias-Variance Trade-off

Cross-Validation

- Partition the data into K folds
 - Use K-1 fold as training, and 1 fold as testing
 - Calculate the average accuracy best on K training-testing pairs
 - Accuracy on validation/test dataset!
 - Mean square error can again be used: $\sum_{i} (\mathbf{x}_{i}^{T} \widehat{\boldsymbol{\beta}} y_{i})^{2} / n$

AIC & BIC*

- AIC and BIC can be used to test the quality of statistical models
 - AIC (Akaike information criterion)
 - $AIC = 2k 2\ln(\hat{L}),$
 - where k is the number of parameters in the model and \hat{L} is the likelihood under the estimated parameter
 - BIC (Bayesian Information criterion)
 - BIC = $kln(n) 2ln(\hat{L})$,
 - Where n is the number of objects

Stepwise Feature Selection

Avoid brute-force selection

• 2^{*p*}

- Forward selection
 - Starting with the best single feature
 - Always add the feature that improves the performance best
 - Stop if no feature will further improve the performance

Backward elimination

- Start with the full model
- Always remove the feature that results in the best performance enhancement
- Stop if removing any feature will get worse performance

Matrix Data: Prediction

- Matrix Data
- Linear Regression Model
- Model Evaluation and Selection
- Summary 🦊

Summary

- What is matrix data?
 - Attribute types
- Linear regression
 - OLS
 - Probabilistic interpretation
- Model Evaluation and Selection
 - Bias-Variance Trade-off
 - Mean square error
 - Cross-validation, AIC, BIC, step-wise feature selection