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Basic Probability Review

• Have two dices h1 and h2

• The probability of rolling an i given die h1 is denoted 
P(i|h1). This is a conditional probability

• Pick a die at random with probability P(hj), j=1 or 2. The 
probability for picking die hj and rolling an i with it is called 
joint probability and is P(i, hj)=P(hj)P(i| hj). 

• If we know P(i| hj), then the so-called marginal probability
P(i) can be computed as: 𝑃 𝑖 =  𝑗 𝑃(𝑖, ℎ𝑗)

• For any X and Y, P(X,Y)=P(X|Y)P(Y)
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Bayes’ Theorem: Basics

• Bayes’ Theorem:

• Let X be a data sample (“evidence”)

• Let h be a hypothesis that X belongs to class C 

• P(h) (prior probability): the initial probability

• E.g., X will buy computer, regardless of age, income, …

• P(X|h) (likelihood): the probability of observing the 
sample X, given that the hypothesis holds

• E.g., Given that X will buy computer, the prob. that X is 31..40, 
medium income

• P(X): marginal probability that sample data is observed 

• 𝑃 𝑋 =  ℎ𝑃 𝑋 ℎ 𝑃(ℎ)

• P(h|X), (i.e., posterior probability): the probability that 
the hypothesis holds given the observed data sample X
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Classification: Choosing Hypotheses
• Maximum Likelihood (maximize the likelihood):

• Maximum a posteriori (maximize the posterior):
• Useful observation: it does not depend on the denominator P(X)
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Classification by Maximum A Posteriori

• Let D be a training set of tuples and their associated class labels, 
and each tuple is represented by an p-D attribute vector X = (x1, 
x2, …, xp)

• Suppose there are m classes Y∈{C1, C2, …, Cm}

• Classification is to derive the maximum posteriori, i.e., the 
maximal P(Y=Cj|X)

• This can be derived from Bayes’ theorem

• Since P(X) is constant for all classes, only                                        
needs to be maximized
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Example: Cancer Diagnosis
•A patient takes a lab test with two possible 
results (+ve, -ve), and the result comes back 
positive. It is known that the test returns 
• a correct positive result in only 98% of the cases; 
• a correct negative result in only 97% of the cases. 
• Furthermore, only 0.008 of the entire population 
has this disease.

1. What is the probability that this patient has 
cancer?

2. What is the probability that he does not have 
cancer?

3. What is the diagnosis?
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Solution
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P(cancer) = .008 P( cancer) = .992

P(+ve|cancer) = .98 P(-ve|cancer) = .02

P(+ve|  cancer) = .03 P(-ve|  cancer) = .97

Using Bayes Formula:

P(cancer|+ve) = P(+ve|cancer)xP(cancer) / P(+ve)

= 0.98 x 0.008/ P(+ve) = .00784 / P(+ve)

P( cancer|+ve) = P(+ve|  cancer)xP( cancer) / P(+ve)

= 0.03 x 0.992/P(+ve) = .0298 / P(+ve)

So, the patient most likely does not have cancer.
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Naïve Bayes Classifier 

• Let D be a training set of tuples and their 
associated class labels, and each tuple is 
represented by an p-D attribute vector X = (x1, 
x2, …, xp)

• Suppose there are m classes Y∈{C1, C2, …, Cm}

•Goal: Find Y max𝑃 𝑌 𝑿 = 𝑃(𝑌, 𝑿)/𝑃(𝑿) ∝ 𝑃 𝑿 𝑌 𝑃(𝑌)

•A simplified assumption: attributes are 
conditionally independent given the class
(class conditional independency):
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Estimate Parameters by MLE
• Given a dataset 𝐷 = {(𝐗i, Yi)}, the goal is to 
• Find the best estimators 𝑃(𝐶𝑗) and 𝑃(𝑋𝑘 = 𝑥𝑘|𝐶𝑗), for 

every 𝑗 = 1,… ,𝑚 𝑎𝑛𝑑 𝑘 = 1,… , 𝑝
• that maximizes the likelihood of observing D: 

𝐿 = 

𝑖

𝑃 𝐗i, Yi = 

𝑖

𝑃 𝐗i|Yi 𝑃(𝑌𝑖)

= 

𝑖

( 

𝑘

𝑃 𝑋𝑖𝑘|𝑌𝑖 )𝑃(𝑌𝑖)

• Estimators of Parameters:
• 𝑃 𝐶𝑗 = 𝐶𝑗,𝐷 / 𝐷 (|𝐶𝑗,𝐷|= # of tuples of Cj in D) (why?)

• 𝑃 𝑋𝑘 = 𝑥𝑘 𝐶𝑗 : 𝑋𝑘 can be either discrete or numerical
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Discrete and Continuous Attributes

• If 𝑋𝑘 is discrete, with 𝑉 possible values 
• P(xk|Cj) is the # of tuples in Cj having value xk for 
Xk divided by |Cj, D|

• If 𝑋𝑘 is continuous, with observations of real 
values
• P(xk|Cj) is usually computed based on Gaussian 
distribution with a mean μ and standard deviation 
σ
•Estimate (μ, 𝜎2) according to the observed X in 
the category of Cj

• Sample mean and sample variance

• P(xk|Cj) is then 
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Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = ‘yes’

C2:buys_computer = ‘no’

Data to be classified: 

X = (age <=30, 

Income = medium,

Student = yes

Credit_rating = Fair)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
14



Naïve Bayes Classifier: An Example

• P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357

• Compute P(X|Ci) for each class
P(age = “<=30” | buys_computer = “yes”)  = 2/9 = 0.222

P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6

P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444

P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4

P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667

P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2

P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667

P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

• X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007
Therefore,  X belongs to class (“buys_computer = yes”)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Avoiding the Zero-Probability Problem

• Naïve Bayesian prediction requires each conditional prob. be non-zero.  
Otherwise, the predicted prob. will be zero

• Use Laplacian correction (or Laplacian smoothing)
• Adding 1 to each case

• 𝑃 𝑥𝑘 = 𝑣 𝐶𝑗 =
𝑛𝑗𝑘,𝑣+1

𝐶𝑗,𝐷 +𝑉
where 𝑛𝑗𝑘,𝑣 is # of tuples in Cj having value 

𝑥𝑘 = v, V is the total number of values that can be taken 
• Ex. Suppose a training dataset with 1000 tuples, for category 

“buys_computer = yes”, income=low (0), income= medium 
(990), and income = high (10)
Prob(income = low|buys_computer = “yes”) = 1/1003
Prob(income = medium|buys_computer = “yes”) = 991/1003
Prob(income = high|buys_computer = “yes”) = 11/1003

• The “corrected” prob. estimates are close to their “uncorrected” 
counterparts
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*Smoothing and Prior on Attribute 
Distribution

• 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 𝑋𝑘|𝐶𝑗~ 𝜽

• 𝑃 𝑋𝑘 = 𝑣 𝐶𝑗 , 𝜽 = 𝜃𝑣
• Put prior to 𝜽
• In discrete case, the prior can be chosen as symmetric Dirichlet 

distribution: 𝜽~𝐷𝑖𝑟 𝛼 , 𝑖. 𝑒. , 𝑃 𝜽 ∝  𝑣 𝜃𝑣
𝛼−1

• 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛:
• 𝑃 𝜃 𝑋1𝑘 , … , 𝑋𝑛𝑘 , 𝐶𝑗 ∝ 𝑃 𝑋1𝑘, … , 𝑋𝑛𝑘 𝐶𝑗 , 𝜽 𝑃 𝜽 , another Dirichlet 

distribution, with new parameter (𝛼 + 𝑐1, … , 𝛼 + 𝑐𝑣, … , 𝛼 + 𝑐𝑉)
• 𝑐𝑣 is the number of observations taking value v

• Inference: 𝑃 𝑋𝑘 = 𝑣 𝑋1𝑘 , … , 𝑋𝑛𝑘 , 𝐶𝑗 = ∫ 𝑃(𝑋𝑘 =
𝑣|𝜽)𝑃 𝜽 𝑋1𝑘 , … , 𝑋𝑛𝑘 , 𝐶𝑗 d𝜽

=
𝒄𝒗 + 𝜶

 𝒄𝒗 + 𝑽𝜶
• Equivalent to adding 𝛼 to each observation value 𝑣
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*Notes on Parameter Learning

•Why the probability of 𝑃 𝑋𝑘 𝐶𝑗 is 

estimated in this way?

•http://www.cs.columbia.edu/~mcollins/em.pdf

•http://www.cs.ubc.ca/~murphyk/Teaching/CS3

40-Fall06/reading/NB.pdf
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Naïve Bayes Classifier: Comments

• Advantages 
• Easy to implement 

• Good results obtained in most of the cases

• Disadvantages
• Assumption: class conditional independence, therefore loss of 

accuracy

• Practically, dependencies exist among variables 

• E.g., hospitals: patients: Profile: age, family history, 
etc. 
Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc. 

• Dependencies among these cannot be modeled by 
Naïve Bayes Classifier

• How to deal with these dependencies? Bayesian Belief Networks
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Bayesian Belief Networks (BNs)

• Bayesian belief network (also known as Bayesian network, probabilistic 
network): allows class conditional independencies between subsets of variables

• Two components: (1) A directed acyclic graph (called a structure)  and (2) a set 
of conditional probability tables (CPTs)

• A (directed acyclic) graphical model of causal influence relationships

• Represents dependency among the variables 

• Gives a specification of joint probability distribution 

X Y

Z
P

 Nodes: random variables

 Links: dependency

 X and Y are the parents of Z, and Y is the 
parent of P

 No dependency between Z and P conditional 
on Y

 Has no cycles 21
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A Bayesian Network and Some of Its CPTs

Fire (F)

Smoke (S)

Leaving (L)

Tampering (T)

Alarm (A)

Report (R)

CPT: Conditional Probability Tables





n
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CPT shows the conditional probability for 
each possible combination of its parents

Derivation of the probability of a 
particular combination of values of 
X, from CPT (joint probability):

F ¬F

S .90 .01

¬S .10 .99

F, T 𝑭,¬𝑻 ¬𝑭, T ¬𝑭,¬𝑻

A .5 .99 .85 .0001

¬A .95 .01 .15 .9999



Inference in Bayesian Networks

• Infer the probability of values of some 
variable given the observations of other 
variables

•E.g., P(Fire = True|Report = True, Smoke = 

True)?

•Computation

•Exact computation by enumeration

• In general, the problem is NP hard

• *Approximation algorithms are needed
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Inference by enumeration

•To compute posterior marginal P(Xi | E=e)

•Add all of the terms (atomic event 

probabilities) from the full joint distribution

• If E are the evidence (observed) variables and 

Y are the other (unobserved) variables, then:

P(X|e) = α P(X, E) = α ∑ P(X, E, Y)

•Each P(X, E, Y) term can be computed using 

the chain rule

•Computationally expensive!
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Example: Enumeration

• P (d|e) =  ΣABCP(a, b, c, d, e)
=  ΣABCP(a) P(b|a) P(c|a) P(d|b,c) P(e|c)

•With simple iteration to compute this 
expression, there’s going to be a lot of 
repetition (e.g., P(e|c) has to be recomputed 
every time we iterate over C=true)
• *A solution: variable elimination

a

b                    c

d                 e 

25



26

*How Are Bayesian Networks Constructed?

• Subjective construction: Identification of (direct) causal structure

• People are quite good at identifying direct causes from a given set of variables & 

whether the set contains all relevant direct causes

• Markovian assumption: Each variable becomes independent of its non-effects 

once its direct causes are known

• E.g., S ‹— F —› A ‹— T, path S—›A is blocked once we know F—›A 

• Synthesis from other specifications

• E.g., from a formal system design: block diagrams & info flow

• Learning from data

• E.g., from medical records or student admission record

• Learn parameters give its structure or learn both structure and parms

• Maximum likelihood principle: favors Bayesian networks that maximize the 

probability of observing the given data set
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*Learning Bayesian Networks: Several 
Scenarios

• Scenario 1:  Given both the network structure and all variables observable: 
compute only the CPT entries (Easiest case!)

• Scenario 2: Network structure known, some variables hidden: gradient descent
(greedy hill-climbing) method, i.e., search for a solution along the steepest 
descent of a criterion function 

• Weights are initialized to random probability values

• At each iteration, it moves towards what appears to be the best solution at the 

moment, w.o. backtracking

• Weights are updated at each iteration & converge to local optimum

• Scenario 3: Network structure unknown, all variables observable: search 
through the model space to reconstruct network topology 

• Scenario 4: Unknown structure, all hidden variables: No good algorithms 
known for this purpose

• D. Heckerman.  A Tutorial on Learning with Bayesian Networks.  In Learning in 
Graphical Models, M. Jordan, ed. MIT Press, 1999.

http://research.microsoft.com/en-us/um/people/heckerman/tutorial.pdf
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Linear Regression VS. Logistic Regression

•Linear Regression

•Y: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑣𝑎𝑙𝑢𝑒 −∞,+∞

• Y = 𝒙𝑇𝜷 = 𝛽0 + 𝑥1𝛽1 + 𝑥2𝛽2 +⋯+ 𝑥𝑝𝛽𝑝

• Y|𝒙, 𝛽~𝑁(𝒙𝑇𝛽, 𝜎2)

•Logistic Regression

•Y: 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑚 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

•𝑝 𝑌 = 𝐶𝑗 ∈ (0,1) 𝑎𝑛𝑑  𝑗 𝑝 𝑌 = 𝐶𝑗 = 1
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Logistic Function

•Logistic Function / sigmoid function: 

𝜎 𝑥 =
1

1+𝑒−𝑥
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Modeling Probabilities of Two Classes

• 𝑃 𝑌 = 1 𝑋, 𝛽 = 𝜎 𝑋𝑇𝛽 =
1

1+exp{−𝑋𝑇𝛽}
=
exp{𝑋𝑇𝛽}

1+exp{𝑋𝑇𝛽}

• 𝑃 𝑌 = 0 𝑋, 𝛽 = 1 − 𝜎 𝑋𝑇𝛽 =
exp{−𝑋𝑇𝛽}

1+exp{−𝑋𝑇𝛽}
=

1

1+exp{𝑋𝑇𝛽}

𝛽 =

𝛽0
𝛽1
⋮
𝛽𝑝

• In other words

• 𝑌|X, 𝛽~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜎 𝑋𝑇𝛽 )
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The 1-d Situation

•𝑃 𝑌 = 1 𝑥, 𝛽0, 𝛽1 = 𝜎 𝛽1𝑥 + 𝛽0
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Parameter Estimation

•MLE estimation

• Given a dataset 𝐷,𝑤𝑖𝑡ℎ 𝑛 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

• For a single data object with attributes 𝒙𝑖 , class label 
𝑦𝑖
• Let 𝑝 𝒙𝑖; 𝛽 = 𝑝𝑖 = 𝑌 = 1 𝒙𝑖 , 𝛽 , 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏. 𝑜𝑓 𝑖 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 1

• The probability of observing 𝑦𝑖 would be
• If 𝑦𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑝𝑖
• If 𝑦𝑖 = 0, 𝑡ℎ𝑒𝑛 1 − 𝑝𝑖

• Combing the two cases: 𝑝𝑖
𝑦𝑖 1 − 𝑝𝑖

1−𝑦𝑖

𝐿 =  𝑖 𝑝𝑖
𝑦𝑖 1 − 𝑝𝑖

1−𝑦𝑖 =  𝑖
exp 𝑋𝑇𝛽

1+exp 𝑋𝑇𝛽

𝑦𝑖 1

1+exp 𝑋𝑇𝛽

1−𝑦𝑖
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Optimization

•Equivalent to maximize log likelihood

•𝐿 =  𝑖 𝑦𝑖𝒙𝑖
𝑇𝛽 − log 1 + exp 𝒙𝑖

𝑇𝛽

•Gradient ascent update:

• 𝛽𝑛𝑒𝑤= 𝛽𝑜𝑙𝑑 + 𝜂
𝜕𝐿(𝛽)

𝜕𝛽

•Newton-Raphson update
•

•where derivatives at evaluated at 𝛽old

34

Step size, usually set as 0.1



First Derivative
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j = 0, 1, …, p 

𝑝(𝑥𝑖; 𝛽)



Second Derivative

• It is a (p+1) by (p+1) matrix, Hessian 
Matrix, with jth row and nth column as
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What about Multiclass Classification? 

• It is easy to handle under logistic 
regression, say M classes

•𝑃 𝑌 = 𝑗 𝑋 =
exp{𝑋𝑇𝛽𝑗}

1+ 𝑚=1
𝑀−1 exp{𝑋𝑇𝛽𝑚}

, for j =

1,… ,𝑀 − 1

•𝑃 𝑌 = 𝑀 𝑋 =
1

1+ 𝑚=1
𝑀−1 exp{𝑋𝑇𝛽𝑚}
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Summary

• Bayesian Learning

• Bayes theorem

• Naïve Bayes, class conditional independence 

• Bayesian Belief Network, DAG, conditional probability 

table

• Logistic Regression

• Logistic function, two-class logistic regression, MLE 

estimation, Gradient ascent updte, Newton-Raphson 

update, multiclass classification under logistic regression
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