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Announcement

- TRACE faculty survey
-myNEU->sell service tab

-Homeworks
- HW ) will be the last homework

*Midterm Exam
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Sequence Data

*What is sequence data? «
-Sequential pattern mining
-Hidden Markov Model

*Summary



Sequence Database

A sequence database consists of
sequences of ordered elements or events,
recorded with or without a concrete
notion of time.

SID sequence

10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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Sequence Databases & Sequential
Patterns

- Transaction databases vs. sequence databases
- Frequent patterns vs. (frequent) sequential patterns
- Applications of sequential pattern mining

- Customer shopping sequences:

* First buy computer, then CD-ROM, and then digital
camera, within 3 months.

» Medical treatments, natural disasters (e.g.,
earthquakes), science & eng. processes, stocks and
markets, etc.

* Telephone calling patterns, Weblog click streams
- Program execution sequence data sets

- DNA sequences and gene structures



What Is Sequential Pattern Mining?

- Given a set of sequences, find the complete
set of frequent subsequences

A sequence database

A sequence : <[ (ef)|(ab)|[(df} d b >

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

An element may contain a set of items.
ltems within an element are unordered
and we list them alphabetically.

<a(bc)dc> is a subsequence of
<a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a sequential
pattern




Sequence

-Event / element

- An non-empty set of items, e.g., e=(ab)
-Sequence

- An ordered list of events, e.g., s =< eqe, ...e; >

- Length of a sequence

- 'The number of instances of items 1n a sequence

The length of < (ef) (ab) (df) ¢ b>1s 8 (Not H!)
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Subsequence

-Subsequence

- For two sequences ¢ =< aqa, ...a,, > and
f =< b{b, ...b,; >, a 1s called a subsequence
of p 1f there exists integers 1 < j; < j, <+ <

Jn < m, such thatay € by, ...,a, € b;

*Supersequence

I a 1s a subsequence of 5, [ 1s a
supersequence of a

<a(bc)dc> is a subsequence of
<a(abc)(ac)d(cf)>

11



Sequential Pattern

-Support of a sequence

- Number of sequences 1n the database that are
supersequence of a

- Supports(a)
-« is frequent if Supports(a) =
min _support
- A frequent sequence is called sequential
pattern
- l-pattern 1f the length of the sequence 1s 1

12



Example

A sequence database

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

Given support threshold min_sup =2, <(ab)c> is a sequential
pattern




Challenges on Sequential Pattern

- A huge number of possible sequential patterns are hidden in
databases

« A mining algorithm should

- find the complete set ol patterns, when
possible, satisfying the mimimum support
(frequency) threshold

» be highly etficient, scalable, nvolving only a
small number of database scans

- be able to mncorporate various kinds of user-
specitic constraints

14



Sequential Pattern Mining Algorithms

Concept introduction and an initial Apriori-like algorithm
« Agrawal & Srikant. Mining sequential patterns, ICDE’95

Apriori-based method: GSP (Generalized Sequential Patterns: Srikant &
Agrawal @ EDBT’96)

Pattern-growth methods: FreeSpan & PrefixSpan (Han et al. @KDD’00; Pei, et
al.@ICDE’01)

Vertical format-based mining: SPADE (Zaki@Machine Leanining’00)

Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi,
Shim@VLDB’99; Pei, Han, Wang @ CIKM’02)

Mining closed sequential patterns: CloSpan (Yan, Han & Afshar @SDM’03)

15



The Apriori Property of Sequential Patterns

- A basic property: Apriori (Agrawal & Sirkant’94)

- It a sequence S 1s not frequent

- Then none of the super-sequences of S 1s frequent

- E.g, <hb> 1s infrequent =2 so do <hab> and <(ah)b>

Seq. ID Sequence
10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

November 22, 2015

Given support threshold
min_sup =2

Data Mining: Concepts and Techniques 16



GSP—Generalized Sequential Pattern Mining

- GSP (Generalized Sequential Pattern) mining algorithm

- proposed by Agrawal and Srikant, EDBT°96

* Outline of the method
- Initially, every item m DB 1s a candidate of length-1

- for each level (1.e., sequences of length-k) do

* scan database to collect support count for each candidate
seguence

- generate candidate length-(k+1) sequences from length-k
frequent sequences using Apriori

- repeat until no frequent sequence or no candidate can
be found

« Major strength: Candidate pruning by Apriori

November 22, 2015 Data Mining: Concepts and Techniques 17



Finding Length-1 Sequential Patterns

- Examine GSP using an example
- Initial candidates: all singleton sequences

- <a>, <b>, <>, <d>, <e>, <>, <g>,
<h>

- Scan database once, count support for
candidates

Cand

<a>

<b>

<Cc>

<d>

<e>

<f>

wn
HHnwwhmw%

min_sup =2
Seq. ID Sequence
10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

November 22, 2015 Data Mining: Concepts and Techniques
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GSP: Generating Length-2 Candidates

November 22, 2015

Data Mining: Concepts and Techniques

<a> <b> <c> <d> <e> <f>
<a> <aa> | <ab> <ac> <ad> | <ae> <af>
<b> | <ba> | <bb> | <bc> | <bd> | <be> <bf>
51 Iength_z <c> | <ca> | <cb> | <ce> | <cd> | <ce> | <cf>
- <d> | <da> | <db> | <dc> | <dd> | <de> <df>
Candldates <e> <ea> | <eb> | <ec> | <ed> | <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>
<a> <b> <c> <d> <e> <f> . L
<a> <(ab)> | <(ac)> <(ad)> <(ae)> | <(af)> Without Aprlo“
<b> o> | <mds | <bes | <mhs | Property,
<c> <(cd)> | <(ce)> | <(cf)> 8*8+8*7/2=92
<d> <(de)> | <(dh>| candidates
<e> <(ef)> - -
— Apriori prunes

44.57% candidates

19




How to Generate Candidates in
General?

*From Lj_4 to Gy,
-Step 1: join
51 and s, can join, 1f dropping first item 1n 4
1s the same as dropping the last item 1n s,
- Examples:
*<(12)3> join <(2)34> =<(12)34>
*<(12)3>join <(2)(34)> =<(12)(34)>
*Step 2: pruning

 Check whether all length k-1 subsequences of a
candidate 1s contained 1 Lj_4

20



The GSP Mining Process

5t scan: 1 cand. 1 length-5 seq.  <(bd)cba> Cand. cannot pass
pat. sup. threshold

4th scan: 8 cand. 7 length-4 seq.  <abba> <(bd)bc> ... \

pat. ’V\

3" scan: 46 cand. 20 length-3 seq. «5pp> <aab> <aba> <bab> _

pat. 20 cand. not in DB at all

nd : -
2nd scan: 51 cand. 19 length-2 seq. <aa> <ab> . <af> <ba> <bb> .. <ff>

pat. 10 cand. not in DB at all s 7 TAC
st . -
éatscan. 8 cand. 6 length-1 seq. <a> <b> <c> <d> <e> <f> <g> <h>
Seq. ID Sequence
10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
min_sup =2 30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

November 22, 2015 Data Mining: Concepts and Techniques



Candidate Generate-and-test: Drawbacks

- A huge set of candidate sequences generated.

- Eispecially 2-item candidate sequence.
- Multiple Scans of database needed.
* The length of each candidate grows by one at each
database scan.

- Inefficient for mining long sequential patterns.

- A long pattern grow up from short patterns

- The number of short patterns 1s exponential to
the length of mined patterns.

November 22, 2015 Data Mining: Concepts and Techniques 22



*The SPADE Algorithm

- SPADE (Sequential PAttern Discovery using Equivalent Class)
developed by Zaki 2001

- A vertical format sequential pattern mining method

- A sequence database is mapped to a large set of

- [tem: <SID, EID>

- Sequential pattern mining is performed by

- srowing the subsequences (patterns) one item

at a time by Aprior candidate generation

November 22, 2015 Data Mining: Concepts and Techniques 23



SID | EID | Items
1 1 a
1 2 abc
1 3 ac
1 4 d
1 5 cf
2 1 ad
2 2 C
2 3 be
2 4 ae
3 1 ef
3 2 ab
3 3 df
3 4 C
3 5) b
4 1 e
4 2 g
4 3 af
4 4 C
4 5) b
4 6 C

November 22, 2015

The SPADE Algorithm

a

STD EID  SID EID
T 1 L 2
1 2 R
. 3 5 2
5 1 3 b
5 1 i 5
5 9
t Join two tables
ab ba
SID TID (a) EID(b)  SID EID (b) EID(a)
I 1 3 ; 5 3
5 1 3 5 3 A
3 5 5
A 3 5
aba
SID EID (a) EID({b) LID(a)
1 1 > 3
> 1 3 1

Data Mining: Concepts and Techniques
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Bottlenecks of GSP and SPADE

-+ A huge set of candidates could be generated

+ 1,000 frequent length-1 sequences generate s huge number of length-2

candidates! 1000x 1000 + 10002X 999 =1,499,500

- Multiple scans of database in mining
- Breadth-first search

- Mining long sequential patterns

« Needs an exponential number of short candidates

+ A length-100 sequential pattern needs 103" 1200: 100 g 1
candidate sequences! =\

November 22, 2015 Data Mining: Concepts and Techniques 75



Prefix and Suffix (Projection)

Assume a pre-specified order on items, e.g., alphabetical order

- <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of

sequence <a(abc)(ac)d(cf)>

 Note <a(ac)> 1s not a prefix of <a(abc)(ac)d(cf)>

- Given sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>
<a(ab)> <(_c)(ac)d(cf)>

November 22, 2015 Data Mining: Concepts and Techniques



Mining Sequential Patterns by Prefix Projections

- Step 1: find length-1 sequential patterns
- <a>, <b>, <c>, <d>, <e>, <>

- Step 2: divide search space. The complete set of seq. pat. can be
partitioned into 6 subsets:

*'The ones having prefix <a>;

, . SID sequence
 The ones having prefix <b>; 10 | <a(abc)(ac)d(ch)>
20 <(ad)c(bc)(ae)>
EELE 30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

 The ones having prefix <t>

November 22, 2015 Data Mining: Concepts and Techniques



Finding Seq. Patterns with Prefix <a>

- Only need to consider projections w.r.t. <a>

- <a>-projected database:
+ <(abc)(ac)d(cf)>
« <(_d)c(bc)(ae)>
« <(_b)(df)cb>
« <(_f)cbc>

SID sequence

10 | <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

- Find all the length-2 seq. pat. Having prefix <a>: <aa>, <ab>,

<(ab)>, <ac>, <ad>, <af>

- Further partiion mnto 6 subsets

» Having prefix <aa>;

* Having prefix <af>

November 22, 2015

Data Mining: Concepts and Techniques

28



Why are those 6 subsets?

- By scanning the <a>-projected database
once, its locally frequent items are
identified as

ca:2,b:4, b:2,c:4,d:2,and f: 2.
-Thus all the length-2 sequential patterns
prefixed with <a> are found, and they are:

« <aa> : 2, <ab>: 4, <(ab)>:2,<ac> : 4, <ad>: 2,
and <a > : 2.

29



Completeness of PrefixSpan

SDB

SID

sequence

10

<a(abc)(ac)d(cf)>

20

<(ad)c(bc)(ae)>

30

<(ef)(ab)(df)cb>

40

<eg(af)cbc>

Length-1 sequential patterns
<a>, <b>, <c>, <d>, <e>, <f>

Having pW Having prefix <c>, ..., <f>
Having prefix <b>

<a>-projected database

<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

S

patterns

Length-2 sequential

<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Havingﬁ <aa> Hawing prefix <af>

<aa>-proj. db

November 22, 2015

<af>-proj. db

<b>-projected database

/ \

Data Mining: Concepts and Techniques

30



Efficiency of PrefixSpan

-No candidate sequence needs to be

generated
- Projected databases keep shrinking

- Major cost of PrefixSpan: Constructing

projected databases

- Can be improved by pseudo-projections

November 22, 2015 Data Mining: Concepts and Techniques 31



Speed-up by Pseudo-projection

- Major cost of PrefixSpan: projection

- Postlixes of sequences often appear
repeatedly 1n recursive projected

databases

- When (projected) database can be held in main

memory, use pointers to form projections  s=<a(abc)(ac)d(cf)>

: l <a>
- Pointer to the sequence
s|<a>: (7, 2) <(abc)(ac)d(cf)>

- Olfset of the postlix | <ab>
s|<ab>: (/, 4) <(_c)(ac)d(cf)>

November 22, 2015 Data Mining: Concepts and Techniques 32



Pseudo-Projection vs. Physical Projection

- Pseudo-projection avoids physically copying postfixes

- Efficient in running time and space when
database can be held in main memory

- However, it is not efficient when database cannot fit in main
memory

- Disk-based random accessing 1s very costly
- Suggested Approach:

- Integration of physical and pseudo-projection

- Swapping to pseudo-projection when the data
set fits In memory

November 22, 2015 Data Mining: Concepts and Techniques
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Performance on Data Set C10T8S8I8

Nove

Runtime (in seconds)

1000

100 E

F
-

I
PrefixSpan —+—
SPADE ---%---
FreeSpan ---%---

1.5 2 2.5
Support threshold (in %)
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Performance on Data Set Gazelle
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N¢

Effect of Pseudo-Projection

Runtime (in seconds)

512

256

128

o
B

i T
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Sequence Data

-What is sequence data?
-Sequential pattern mining

-Hidden Markov Model «

*Summary

37



A Markov Chain Model

- Markov property: Given the present state,
future states are independent of the past
I8 states

F 9

TG 4 G - At each step the system may change its state
T i1 i from the current state to another state, or
. / remain in the same state, according to a certain
begin (X 12 orobability distribution
- The changes of state are called transitions, and
= — the probabilities associated with various state-
C 1 changes are called transition probabilities
state (; O - Transition probabilities
* Pr(x=a|x_,=g)=0.16
* Pr(x=c|x,,=g)=0.34

* Pr(x=g|x,_,=g)=0.38
* Pr(x=t|x,_,=g)=0.12

transition
Zpr(xi | %5 =9)=1
11/22/2015 Data Mining: Principles and 38
Alesorithms



Definition of Markov Chain Model

) . ] Each event of a sequence here is
- A Markov chain model is defined by Considered containing only one state

« A set of states

- Some states emit symbols

- Other states (e.g., the begin state) are silent

A set of transitions with associated probabilities
* The transitions emanating from a given state define

a distribution over the possible next states

11/22/2015 Data Mining: Principles and
Alesorithms
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Markov Chain Models: Properties

- Given some sequence x of length L, we can ask how probable
the sequence is given our model

- For any probabilistic model of sequences, we can write this
probability as

Pr(x) =Pr(X,, X4, X,)
— Pr(XL | XL—l""’ Xl) Pr(XL_l | XL_Z)"'! X]_) Pr(xl)

- key property of a (1st order) Markov chain: the probability of
each x; depends only on the value of x. ,

Pr(x) = Pr(x_ | X__;) Pr(X._y | X_5)...Pr(X; [ %) Pr(x,)
= Pro)[ Prix 1)

11/22/2015 Data Mining: Principles and

40



The Probability of a Sequence for a Markov Chain Model

;

‘ begin [/ ’

\ 0

Pr(cggt)=Pr(c)Pr(g|c)Pr(glg)Pr(tig)

11/22/2015 Data Mining: Principles and
Alesorithms

41



*Example Application

- CpGislands

« CG dinucleotides are rarer in eukaryotic genomes than

expected given the margimal probabilities of C and G

* but the regions upstream of genes are richer m CG

dinucleotides than elsewhere - CpG 1slands
- useful evidence for finding genes
- Application: Predict CpG islands with Markov chains
- one to represent CpG i1slands

- one to represent the rest of the genome

11/22/2015 Data Mining: Principles and
Alesorithms

42



*Markov Chains for Discrimination

- Suppose we want to distinguish CpG islands from other
seguence regions

- Given sequences from CpG islands, and sequences from other
regions, we can construct

- a model to represent CpG islands
- a null model to represent the other regions

- can then score a test sequence by:

Pr(x | CpGModel)

score(x) =1lo
(X =108 nuliModen

11/22/2015 Data Mining: Principles and
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*Markov Chains for Discrimination

- Why use
Pr(x| CpGModel)

score(x) =1lo
(x)=log 5 & InuliModel)

- According to Bayes’ rule

Pr(x|CpG) Pr(CpG)

Pr(CpG | x) = =
Pr(null | x) = X ”g'r'()XF)’r(null)

- |If we are not taking into account of prior probabilities of two
classes, we just need to compare Pr(x|CpG) and Pr(x]|null)

11/22/2015 Data Mining: Principles and
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*Higher Order Markov Chains

- The Markov property specifies that the probability of a state
depends only on the probability of the previous state

- But we can build more “memory” into our states by using a
higher order Markov model

- In an n-th order Markov model

Pr(xi ‘Xi—l’ 1—2 1) Pr(X ‘X | n)

11/22/2015 Data Mining: Principles and
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*Higher Order Markov Chains

- An n-th order Markov chain over some alphabet A is

equivalent to a first order Markov chain over the alphabet of
n-tuples: A"

- Example: A 2nd order Markov model for DNA can be treated as
a 1st order Markov model over alphabet
AA, AC, AG, AT
CA, CC, CG, CT
GA, GC, GG, GT
TA, TC, TG, TT

11/22/2015 Data Mining: Principles and 46



*A Fifth Order Markov Chain

11/22/2015

AAAAA

CTACA

CTACC Pr(A | GCTAC)
begin CTACG

CTACT Pr(C | GCTAC)
Pr(GCTAC)

GCTAC

TTTTT

Pr(gctaca)=Pr(gctac)Pr(algctac)

Data Mining: Principles and
Alesorithms
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Hidden Markov Model

- A hidden Markov model (HMM): A statistical model in which
the system being modeled is assumed to be a Markov process
with unknown parameters

« The state 1s not directly visible, but variables influenced by the state are visible

 Each state has a probability distribution over the possible output tokens. Therefore
the sequence of tokens generated by an HMM gives some information about the

sequence of states.

- The challenge is to determine the hidden parameters from the
observable data. The extracted model parameters can then be
used to perform further analysis

- An HMM can be considered as the simplest dynamic Bayesian
network

Data Mining: Principles and

Alesorithms 48



Learning and Prediction Tasks

» Learning
« Given a model, a set of traimning sequences

 Iind model parameters that explain the training sequences with relatively
high probability (goal 1s to find a model that generalizes well to sequences
we haven’t seen before)
- Classification

- Given a set of models representing different sequence classes, a test
sequence

« Determine which model/class best explains the sequence
- Segmentation

« Given a model representing different sequence classes, a test sequence

« Segment the sequence nto subsequences, predicting the class of each
subsequence

11/22/2015 Data Mining: Principles and
Alesorithms
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The Parameters of an HMM

- Transition Probabilities

- Probability of transition from state k to state |
- Emission Probabilities

e, () =Pr(x =b |z, =k)

- Probability of emitting character b in state k

11/22/2015 Data Mining: Principles and

50



An HMM Example

e 40N

il Dr"j:_ll-..zh 0.2
c 0.1| 98 o 0.3
G 0.2 G 0.3
T 0.3 T 0.2
3

N

e I'Id
.EEL D “ -'1 e ..E!L 'j 1
c p.1]| 0.2 C 0.4
G 0.1 =z 0.4
0.81017 0.4 T 0.1
0.1
ll/éé/AUJ.b pData wviining: rrinciplies and

Alesorithms



Three Important Questions

-How likely is a given sequence?
* The Forward algorithm

*What is the most probable “path” for
generating a given sequence?

« The Viterbi1 algorithm

How can we learn the HMM parameters
given a set of sequences?

* The Forward-Backward (Baum-Welch)

algorithm

11/22/2015 Data Mining: Principles and

Alesorithms 52



How Likely is a Given Sequence?

-The probability that the path is taken and
the sequence is generated: |

Pr(x XL’7Z-O ﬂ-N) aOﬂ1He7z, (X )aﬂ' T

0.2 0.4 1=1
A u,ql — Q 0.2
B Pr(AAC, 7)
0.5 0.3 T 0.2[%0-6
‘mmi H =6101><61(A)><a11><el(A)
0.5 Y[R 0.4 g | B 01/.; . Xa13Xe3(C)Xa35
a. 0.2 c .
5 0 S = 5x4x.2x.4x.8%x.3%.6
T 0.4 T 0.1
8 0.1 n

11/22/2015 Data Mining: Principles and 53



How Likely is a Given Sequence?

- The probability over all paths is

Pr(x,...x; )= Z Pr(x,...x, ,7,...7T )

e

T
- But the number of paths can be exponential in the length of

the sequence...

- The Forward algorithm enables us to compute this efficiently

- Define f,(i) to be the probability of being in state k having
observed the first i characters of sequence x

- To compute Pr(x), the probability of being in the end state having
observed all of sequence x

- Can define this recursively
* use dynamic programming

11/22/2015 Data Mining: Principles and 54



The Forward Algorithm

* Initialization

- f,(0) = 1 for start state; iz
- f(0) = O for other state
- Recursion

- For emitting state (i=1, ... L)

fl (1) = & (Xi)z fk (1 _1)akl

- Termination
Pr(x) =Pr(x,...x, ) = Z fi (L)ayy
k

N: ending state;
denoted as 0 in textbook

11/22/2015 Data Mining: Principles and
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Forward Algorithm Example

mz@ 'i‘r‘lC\_

el
0.8

19

S

e
G 2 M

G2

H g

-

—
el

Bl Lol Lol B

o

bad 2

0.5

hegin

end \

0.5 A 0. 4 — | 2 El.l]" 0.9
¢ 0.1 %2 |o 0.4
G 0.1 G 0.4
T 0.4 1

p

0.8 H 0.1

Given the sequence x=TAGA

11/22/2015 Data Mining: Principles and
Alesorithms
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Forward Algorithm Example

- Initialization O _.0 ¥
£,(0)=1, £,(0)=0...£:(0)=0 T>

- Computing other values o
- £, (1)=e,(T) * (£,(0)ay,+f,(0)a, ) V2 ol
=0.3*(170.5+070.2)=0.15
 £(1)=e, (1) * (£,(0)agy i, (0)a)=0.4* (1*0.5+0*0.8)
1, (2)=e, (A) " (ty(Day, +,(1)a, )
=0.4*(070.5+0.1570.2)

A ! .| L
- 1 0.2 .
G

: PrTAGA)= £, ()= (Da, .+, (4)a,;

11/23/2015 Data Mining: Principles and

Alesorithms 57



Three Important Questions

-How likely is a given sequence?

*What is the most probable “path” for
generating a given sequence?

How can we learn the HMM parameters
given a set of sequences?

11/22/2015 Data Mining: Principles and
Alesorithms

58



Find the most probable “path” for

-Decoding

*TT* = argmax,;|

generating a given sequence

P (17| x)

- Given a length
possible underl

“Q‘/\L

| sequence, how many
ving paths?

- Where | Q]| 1s the number of possible state
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Finding the Most Probable Path: The Viterbi Algorithm

- Define v, (i) to be the probability of the most
probable path accounting for the first |
characters of x and ending in state k

- We want to compute v, (L), the probability of
the most probable path accounting for all of
the sequence and ending in the end state

- Can define recursively

- Can use DP to find v,(L) efficiently
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(1) Initialization (i =0):  vo(0) =1, v (0) =0fork >0
(2) Recursion (i =1...L): v;(i) = e;(x;)maxi(vi (i —1)ay)
prri(l) = argmaxy (vi (i — 1)ay)
(3) Termination: P(x, ") = maxg(vi (L) axn
i, = argmaxy (v (L) ax)

Total munber of paths: 4°6=4026; Number of candidate paths in Viterbi=4
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Three Important Questions

-How likely is a given sequence?

*What is the most probable “path” for

generating a given sequence?

How can we learn the HMM parameters

given a set of sequences?
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Learning Without Hidden State

- Learning is simple if we know the correct path for each
sequence in our training set

———

- estimate parameters by counting the number of times each
parameter is used across the training set
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Learning With Hidden State

- If we don’t know the correct path for each sequence in our
training set, consider all possible paths for the sequence

end

- Estimate parameters through a procedure that counts the
expected number of times each parameter is used across
the training set
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*Learning Parameters: The Baum-Welch Algorithm

- Also known as the Forward-Backward
algorithm

- An Expectation Maximization (EM) algorithm

- EM 15 a family of algorithms for learning
probabilistic models 1n problems that involve
hidden state

- In this context, the hidden state is the path
that best explains each training sequence
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*Learning Parameters: The Baum-Welch Algorithm

- Algorithm sketch:
- mitialize parameters of model

- 1terate until convergence

» calculate the expected number of times each
transition or emission is used

» adjust the parameters to maximize the likelihood
of these expected values
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Computational Complexity of HMM Algorithms

- Given an HMM with S states and a sequence of length L, the
complexity of the Forward, Backward and Viterbi algorithms is

2
O(S2L)
- This assumes that the states are densely interconnected

- Given M sequences of length L, the complexity of Baum Welch
on each iteration is O(I\/ISZL)
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Sequence Data

-What is sequence data?
-Sequential pattern mining

Hidden Markov Model

*Summary «
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Summary

-Sequential Pattern Mining
- GSP, SPADL, PrelixSpan

-Hidden Markov Model
» Markov chain, HMM
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