
CS6220: DATA MINING TECHNIQUES

Instructor: Yizhou Sun
yzsun@ccs.neu.edu

November 16, 2015

Mining Graph/Network Data

mailto:sun22@illinois.edu


Methods to Learn

2

Matrix Data Text 
Data

Set Data Sequence 
Data

Time Series Graph & 
Network

Images

Classification Decision Tree; 
Naïve Bayes; 
Logistic Regression
SVM; kNN

HMM Label 
Propagation*

Neural 
Network

Clustering K-means; 
hierarchical
clustering; DBSCAN; 
Mixture Models; 
kernel k-means*

PLSA SCAN*; 
Spectral 
Clustering*

Frequent
Pattern 
Mining

Apriori; 
FP-growth

GSP; 
PrefixSpan

Prediction Linear Regression Autoregression

Similarity 
Search

DTW P-PageRank

Ranking PageRank



Mining Graph/Network Data

• Introduction to Graph/Network Data

•PageRank

•Personalized PageRank

•Summary

3



4

Graph, Graph, Everywhere

Aspirin Yeast protein interaction network

fr
o
m

 H
. 
Je

o
n
g
 e

t 
a
l 
N

a
tu

re
 4

1
1
, 
4
1
 (

2
0
0
1
)

Internet
Co-author network



5

Why Graph Mining?

• Graphs are ubiquitous

• Chemical compounds (Cheminformatics)

• Protein structures, biological pathways/networks (Bioinformactics)

• Program control flow, traffic flow, and workflow analysis 

• XML databases, Web, and social network analysis

• Graph is a general model

• Trees, lattices, sequences, and items are degenerated graphs

• Diversity of graphs

• Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted, 

with angles & geometry (topological vs. 2-D/3-D) 

• Complexity of algorithms: many problems are of high complexity



Representation of a Graph

• 𝐺 =< 𝑉, 𝐸 >
• 𝑉 = {𝑢1, … , 𝑢𝑛}: node set

• 𝐸 ⊆ 𝑉 × 𝑉: edge set

• Adjacency matrix

• 𝐴 = 𝑎𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛

• 𝑎𝑖𝑗 = 1, 𝑖𝑓 < 𝑢𝑖 , 𝑢𝑗 >∈ 𝐸

• 𝑎𝑖𝑗 = 0, 𝑖𝑓 < 𝑢𝑖 , 𝑢𝑗 >∉ 𝐸

• Undirected graph vs. Directed graph

• 𝐴 = 𝐴T 𝑣𝑠. 𝐴 ≠ 𝐴T

• Weighted graph

• Use W instead of A, where 𝑤𝑖𝑗 represents the weight of edge
< 𝑢𝑖 , 𝑢𝑗 >

6



Mining Graph/Network Data

• Introduction to Graph/Network Data

•PageRank

•Personalized PageRank

•Summary

7



The History of PageRank

• PageRank was developed by Larry Page (hence the name
Page-Rank) and Sergey Brin.

• It is first as part of a research project about a new kind of
search engine. That project started in 1995 and led to a
functional prototype in 1998.

• Shortly after, Page and Brin founded Google.



Ranking web pages

•Web pages are not equally “important”

•www.cnn.com vs. a personal webpage

• Inlinks as votes

•The more inlinks, the more important

•Are all inlinks equal?

•Recursive question! 

9

http://www.cnn.com/


Simple recursive formulation

•Each link’s vote is proportional to the 
importance of its source page

• If page P with importance x has n outlinks, 
each link gets x/n votes

•Page P’s own importance is the sum of the 
votes on its inlinks

10



Matrix formulation

• Matrix M has one row and one column for each web 
page

• Suppose page j has n outlinks

• If j -> i, then Mij=1/n

• Else Mij=0

• M is a column stochastic matrix

• Columns sum to 1

• Suppose r is a vector with one entry per web page

• ri is the importance score of page i

• Call it the rank vector

• |r| = 1

11



Eigenvector formulation

•The flow equations can be written 

r = Mr

•So the rank vector is an eigenvector of the 
stochastic web matrix

• In fact, its first or principal eigenvector, with 

corresponding eigenvalue 1

12



Example

Yahoo

M’softAmazon

y   1/2 1/2   0

a    1/2  0    1

m    0  1/2   0

y    a     m

y = y /2 + a /2

a = y /2 + m

m = a /2

r = Mr

y       1/2 1/2   0     y

a   =  1/2   0    1     a

m       0  1/2   0     m

13



Power Iteration method

•Simple iterative scheme (aka relaxation)

•Suppose there are N web pages

• Initialize: r0 = [1/N,….,1/N]T

• Iterate: rk+1 = Mrk

•Stop when |rk+1 - rk|1 < 

• |x|1 = 1≤i≤N|xi| is the L1 norm 

•Can use any other vector norm e.g., Euclidean

14



Power Iteration Example

Yahoo

M’softAmazon

y   1/2 1/2   0

a    1/2  0    1

m    0  1/2   0

y    a     m

y

a    =

m

1/3

1/3

1/3

1/3

1/2

1/6

5/12

1/3

1/4

3/8

11/24

1/6

2/5

2/5

1/5

. . .

𝒓0 𝒓1 𝒓2 𝒓3 … 𝒓∗



Random Walk Interpretation

• Imagine a random web surfer
•At any time t, surfer is on some page P

•At time t+1, the surfer follows an outlink from 
P uniformly at random

•Ends up on some page Q linked from P

•Process repeats indefinitely

•Let p(t) be a vector whose ith component 
is the probability that the surfer is at page 
i at time t
•p(t) is a probability distribution on pages

16



The stationary distribution

•Where is the surfer at time t+1?
•Follows a link uniformly at random

•p(t+1) = Mp(t)

•Suppose the random walk reaches a state 
such that p(t+1) = Mp(t) = p(t)
•Then p(t) is called a stationary distribution for 
the random walk

•Our rank vector r satisfies r = Mr
•So it is a stationary distribution for the random 
surfer

17



Existence and Uniqueness

A central result from the theory of random walks (aka Markov 

processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 
eventually will be reached no matter what 
the initial probability distribution at time t 
= 0.

18



Spider traps

•A group of pages is a spider trap if there 
are no links from within the group to 
outside the group

•Random surfer gets trapped

•Spider traps violate the conditions needed 
for the random walk theorem

19



Microsoft becomes a spider trap

Yahoo

M’softAmazon

y   1/2 1/2   0

a    1/2  0    0

m    0  1/2   1

y    a     m

y

a    =

m

1/3

1/3

1/3

1/3

1/6

1/2

1/4

1/6

7/12

5/24

1/8

2/3

0

0

1

. . .

20



Random teleports

•The Google solution for spider traps

•At each time step, the random surfer has 
two options:
•With probability , follow a link at random

•With probability 1-, jump to some page 
uniformly at random

•Common values for  are in the range 0.8 to 
0.9

•Surfer will teleport out of spider trap 
within a few time steps

21



Random teleports ( = 0.8)

Yahoo

M’softAmazon

1/2

1/2

0.8*1/2

0.8*1/2

0.2*1/3

0.2*1/3

0.2*1/3

y   1/2

a    1/2

m    0

y

1/2

1/2

0

y

0.8*

1/3

1/3

1/3

y

+ 0.2*

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

22



Random teleports ( = 0.8)

Yahoo

M’softAmazon

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

y

a    =

m

23



Matrix formulation

•Suppose there are N pages
•Consider a page j, with set of outlinks O(j)

•We have Mij = 1/|O(j)| when j->i and Mij = 0 
otherwise

•The random teleport is equivalent to

• adding a teleport link from j to every other page 
with probability (1-)/N

• reducing the probability of following each outlink
from 1/|O(j)| to /|O(j)|

• Equivalent: tax each page a fraction (1-) of its 
score and redistribute evenly 

24



PageRank

•Construct the N-by-N matrix A as follows
•Aij = Mij + (1-)/N

•Verify that A is a stochastic matrix

•The page rank vector r is the principal 
eigenvector of this matrix
• satisfying r = Ar

•Equivalently, r is the stationary 
distribution of the random walk with 
teleports

25



Dead ends

•Pages with no outlinks are “dead ends” for 
the random surfer

•Nowhere to go on next step

26



Microsoft becomes a dead end

Yahoo

M’softAmazon

y

a    =

m

1/3

1/3

1/3

1/3

0.2

0.2

0

0

0

. . .

1/2 1/2   0

1/2   0    0

0   1/2   0

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15   1/15

0.8 + 0.2

Non-
stochastic!

27



Dealing with dead-ends

•Teleport
•Follow random teleport links with probability 
1.0 from dead-ends

•Adjust matrix accordingly

•Prune and propagate
•Preprocess the graph to eliminate dead-ends 

•Might require multiple passes

•Compute page rank on reduced graph

•Approximate values for deadends by 
propagating values from reduced graph

28



Computing PageRank

•Key step is matrix-vector multiplication
• rnew = Arold

•Easy if we have enough main memory to 
hold A, rold, rnew

• Say N = 1 billion pages
• We need 4 bytes for each entry (say)

• 2 billion entries for vectors, approx 8GB

• Matrix A has N2 entries

• 1018 is a large number!

29



Rearranging the equation

r = Ar, where

Aij = Mij + (1-)/N

ri = 1≤j≤N Aij rj

ri = 1≤j≤N [Mij + (1-)/N] rj

=  1≤j≤N Mij rj + (1-)/N 1≤j≤N rj

=  1≤j≤N Mij rj + (1-)/N, since |r| = 1

r = Mr + [(1-)/N]N
where [x]N is an N-vector with all entries x

30



Sparse matrix formulation

• We can rearrange the page rank equation:
• r = Mr + [(1-)/N]N

• [(1-)/N]N is an N-vector with all entries (1-)/N

• M is a sparse matrix!
• 10 links per node, approx 10N entries

• So in each iteration, we need to:
• Compute rnew = Mrold

• Add a constant value (1-)/N to each entry in rnew

31



Sparse matrix encoding

•Encode sparse matrix using only nonzero 
entries

•Space proportional roughly to number of links

• say 10N, or 4*10*1 billion = 40GB

• still won’t fit in memory, but will fit on disk

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source
node

degree destination nodes

32



Basic Algorithm 

• Assume we have enough RAM to fit rnew, plus some 
working memory
• Store rold and matrix M on disk

Basic Algorithm:

• Initialize: rold = [1/N]N

• Iterate:
• Update: Perform a sequential scan of M and rold to update rnew

• Write out rnew to disk as rold for next iteration

• Every few iterations, compute |rnew-rold| and stop if it is below 
threshold

• Need to read in both vectors into memory

33



Mining Graph/Network Data

• Introduction to Graph/Network Data

•PageRank

•Personalized PageRank

•Summary

34



Personalized PageRank

•Query-dependent Ranking

•For a query webpage q, which webpages are 

most important to q?

•The relative important webpages to different 

queries would be different

35



Calculation of P-PageRank
• Recall PageRank calculation:

• r = Mr + [(1-)/N]N or

• r = Mr + (1-) 𝑟0, where 𝑟0 =

1/𝑁
1/𝑁
…
1/𝑁

• For P-PageRank

• Replace 𝑟0 with 𝑟0 =

0
0
…
1
…
0

36

qth webpage 



Mining Graph/Network Data

• Introduction to Graph/Network Data

•PageRank

•Personalized PageRank

•Summary

37



Summary

•Ranking on Graph / Network

•PageRank

•Personalized PageRank

38


