CS6220: DATA MINING TECHNIQUES

Mining Graph/Network Data

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

November 16, 2015

Methods to Learn

	Matrix Data	Text Data	Set Data	Sequence Data	Time Series	 Network	Images
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN			HMM		Label Propagation*	
Neural Network							
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means*	PLSA					
Frequent			Apriori;				
Pattern							
Mining							

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Personalized PageRank
-Summary

Graph, Graph, Everywhere

Aspirin

Yeast protein interaction network

Mhy Gramh Mining?

- Graphs are ubiquitous
- Chemical compounds (Cheminformatics)
- Protein structures, biological pathways/networks (Bioinformactics)
- Program control flow, traffic flow, and workflow analysis
- XML databases, Web, and social network analysis
- Graph is a general model
- Trees, lattices, sequences, and items are degenerated graphs
- Diversity of graphs
- Directed vs. undirected, labeled vs. unlabeled (edges \& vertices), weighted, with angles \& geometry (topological vs. 2-D/3-D)
- Complexity of algorithms: many problems are of high complexity

Representation of a Graph

- $G=<V, E>$
- $V=\left\{u_{1}, \ldots, u_{n}\right\}$: node set
- $E \subseteq V \times V$: edge set
- Adjacency matrix
- $A=\left\{a_{i j}\right\}, i, j=1, \ldots, n$
- $a_{i j}=1, i f<u_{i}, u_{j}>\in E$
- $a_{i j}=0, i f<u_{i}, u_{j}>\notin E$
- Undirected graph vs. Directed graph
- $A=A^{\mathrm{T}}$ vs. $A \neq A^{\mathrm{T}}$
- Weighted graph
- Use W instead of A, where $w_{i j}$ represents the weight of edge $<u_{i}, u_{j}>$

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Personalized PageRank
-Summary

The History of PageRank

- PageRank was developed by Larry Page (hence the name Page-Rank) and Sergey Brin.
- It is first as part of a research project about a new kind of search engine. That project started in 1995 and led to a functional prototype in 1998.
- Shortly after, Page and Brin founded Google.

Ranking web pages

-Web pages are not equally "important"

- Www.cnn.com vs. a personal webpage
- Inlinks as votes
- The more inlinks, the more important - Are all inlinks equal?
- Recursive question!

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- If page P with importance x has n outlinks, each link gets x / n votes
- Page P's own importance is the sum of the votes on its inlinks

Matrix formulation

- Matrix \mathbf{M} has one row and one column for each web page
- Suppose page j has n outlinks
- If $\mathrm{j}->\mathrm{i}$, then $\mathrm{M}_{\mathrm{ij}}=1 / \mathrm{n}$
- Else $\mathrm{M}_{\mathrm{ij}}=0$
- \mathbf{M} is a column stochastic matrix
- Columns sum to 1
- Suppose \mathbf{r} is a vector with one entry per web page
- r_{i} is the importance score of page i
- Call it the rank vector
- $|\mathbf{r}|=1$

Eigenvector formulation

-The flow equations can be written

$$
\mathbf{r}=\mathbf{M r}
$$

- So the rank vector is an eigenvector of the stochastic web matrix
- In fact, its first or principal eigenvector, with corresponding eigenvalue 1

Example

$$
y=y / 2+a / 2
$$

$$
a=y / 2+m
$$

$$
m=a / 2
$$

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\mathbf{r}=\mathbf{M r}
$$

Power Iteration method

- Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- Initialize: $\mathbf{r}^{0}=[1 / \mathrm{N}, \ldots ., 1 / \mathrm{N}]^{\top}$
- Iterate: $\mathbf{r}^{\mathbf{k}+1}=\mathbf{M r}{ }^{\mathbf{k}}$
- Stop when $\left|\mathbf{r}^{k+1}-\mathbf{r}^{k}\right|_{1}<\varepsilon$
$\cdot|\mathbf{x}|_{1}=\sum_{1 \leq i \leq \mathrm{N}}\left|\mathrm{x}_{\mathrm{i}}\right|$ is the L_{1} norm
- Can use any other vector norm e.g., Euclidean

Power Iteration Example

| y | | | | | | |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- | ---: |
| a | | | | | | |
| m | $1 / 3$ | $1 / 3$ | $5 / 12$ | $3 / 8$ | | $2 / 5$ |
| | $1 / 3$ | $1 / 2$ | $1 / 3$ | $11 / 24$ | \ldots | $2 / 5$ |
| $1 / 3$ | $1 / 6$ | $1 / 4$ | $1 / 6$ | | $1 / 5$ | |
| r_{0} | r_{1} | r_{2} | r_{3} | \ldots | r^{*} | |

Random Walk Interpretation

- Imagine a random web surfer
- At any time t, surfer is on some page P
- At time $\mathrm{t}+1$, the surfer follows an outlink from P uniformly at random
- Ends up on some page Q linked from P
- Process repeats indefinitely
- Let $\mathbf{p}(\mathrm{t})$ be a vector whose $\mathrm{i}^{\text {th }}$ component is the probability that the surfer is at page i at time t
$\cdot \mathbf{p}(\mathrm{t})$ is a probability distribution on pages

The stationary distribution

-Where is the surfer at time $t+1$?

- Follows a link uniformly at random
- $\mathbf{p}(\mathrm{t}+1)=\mathbf{M p}(\mathrm{t})$
- Suppose the random walk reaches a state such that $\mathbf{p}(\mathrm{t}+1)=\mathbf{M p}(\mathrm{t})=\mathbf{p}(\mathrm{t})$
- Then $\mathbf{p}(t)$ is called a stationary distribution for the random walk
- Our rank vector \mathbf{r} satisfies $\mathbf{r}=\mathbf{M r}$
- So it is a stationary distribution for the random surfer

Existence and Uniqueness

A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t
$=0$.

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
- Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

Microsoft becomes a spider trap

Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
- With probability β, follow a link at random
- With probability $1-\beta$, jump to some page uniformly at random
- Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta=0.8$)

	y	y
y	$1 / 2$	
a	$1 / 2$	
m	0	$0.8 *$$1 / 2$ $1 / 2$ 0
		$+0.2 *$$1 / 3$ $1 / 3$ $1 / 3$

0.8 \begin{tabular}{|ccc|}
\hline $1 / 2$ \& $1 / 2$ \& 0

$1 / 2$ \& 0 \& 0

0 \& $1 / 2$ \& 1

 \left\lvert\,$\quad+0.2$

\hline $1 / 3$ \& $1 / 3$ \& $1 / 3$

$1 / 3$ \& $1 / 3$ \& $1 / 3$

$1 / 3$ \& $1 / 3$ \& $1 / 3$

\hline
\end{tabular}\right.

	$7 / 15$	$7 / 15$	$1 / 15$
a	$7 / 15$	$1 / 15$	$1 / 15$
m	$1 / 15$	$7 / 15$	$13 / 15$

Random teleports ($\beta=0.8$)

Matrix formulation

- Suppose there are N pages
- Consider a page j , with set of outlinks $\mathrm{O}(\mathrm{j})$
- We have $\mathrm{M}_{\mathrm{ij}}=1 /|\mathrm{O}(\mathrm{j})|$ when j ->i and $\mathrm{M}_{\mathrm{ij}}=0$ otherwise
- The random teleport is equivalent to
- adding a teleport link from j to every other page with probability (1- β)/N
- reducing the probability of following each outlink from $1 /|O(j)|$ to $\beta /|O(j)|$
- Equivalent: tax each page a fraction (1- β) of its score and redistribute evenly

PageRank

- Construct the N -by- N matrix A as follows
- $\mathrm{A}_{\mathrm{ij}}=\beta \mathrm{M}_{\mathrm{ij}}+(1-\beta) / \mathrm{N}$
- Verify that \mathbf{A} is a stochastic matrix
-The page rank vector \mathbf{r} is the principal eigenvector of this matrix
- satisfying $\mathrm{r}=\mathrm{Ar}$
- Equivalently, \mathbf{r} is the stationary distribution of the random walk with teleports

Dead ends

- Pages with no outlinks are "dead ends" for the random surfer
- Nowhere to go on next step

Microsoft becomes a dead end

$$
\left.0.8 \begin{array}{|ccc|}
\hline 1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0
\end{array}\right] \quad+0.2 \left\lvert\, \begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right.
$$

Dealing with dead-ends

- Teleport

- Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly
- Prune and propagate
- Preprocess the graph to eliminate dead-ends
- Might require multiple passes
- Compute page rank on reduced graph
- Approximate values for deadends by propagating values from reduced graph

Computing PageRank

- Key step is matrix-vector multiplication
- $\mathbf{r}^{\text {new }}=A r^{\text {old }}$
- Easy if we have enough main memory to hold A, rold, $\mathbf{r}^{\text {new }}$
- Say N = 1 billion pages
- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has \mathbf{N}^{2} entries
- 10^{18} is a large number!

Rearranging the equation

$r=A r$, where
$A_{i j}=\beta M_{i j}+(1-\beta) / N$
$r_{i}=\sum_{1 \leq j \leq N} A_{i j} r_{j}$
$r_{i}=\sum_{1 \leq j \leq N}\left[\beta M_{i j}+(1-\beta) / N\right] r_{j}$
$=\beta \sum_{1 \leq j \leq N} M_{i j} r_{j}+(1-\beta) / N \sum_{1 \leq j \leq N} r_{j}$
$=\beta \sum_{1 \leq j \leq N} M_{i j} r_{j}+(1-\beta) / N$, since $|r|=1$
$\mathbf{r}=\beta \mathbf{M r}+[(1-\beta) / \mathrm{N}]_{N}$
where $[\mathrm{x}]_{\mathrm{N}}$ is an N -vector with all entries x

Sparse matrix formulation

- We can rearrange the page rank equation:
- $\mathbf{r}=\beta \mathbf{M r}+[(1-\beta) / \mathbf{N}]_{N}$
- $[(1-\beta) / \mathrm{N}]_{\mathrm{N}}$ is an N -vector with all entries $(1-\beta) / \mathrm{N}$
- \mathbf{M} is a sparse matrix!
- 10 links per node, approx 10 N entries
- So in each iteration, we need to:
- Compute $\mathbf{r}^{\text {new }}=\beta \mathbf{M r}^{\text {old }}$
- Add a constant value ($1-\beta$)/N to each entry in $\mathbf{r}^{\text {new }}$

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
- Space proportional roughly to number of links
- say 10 N , or $4 * 10 * 1$ billion $=40 \mathrm{~GB}$
- still won’t fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	$1,5,7$
1	5	$17,64,113,117,245$
2	2	13,23

Basic Algorithm

- Assume we have enough RAM to fit $\mathbf{r}^{\text {new }}$, plus some working memory
- Store $\mathbf{r}^{\text {old }}$ and matrix \mathbf{M} on disk

Basic Algorithm:

- \quad Initialize: $r^{\text {old }}=[1 / \mathrm{N}]_{N}$
- Iterate:
- Update: Perform a sequential scan of \mathbf{M} and $\mathbf{r}^{\text {old }}$ to update $\mathbf{r}^{\text {new }}$
- Write out $\mathbf{r}^{\text {new }}$ to disk as $\mathbf{r}^{\text {old }}$ for next iteration
- Every few iterations, compute $\left|\mathrm{r}^{\text {new }-r^{\text {old }}}\right|$ and stop if it is below threshold
- Need to read in both vectors into memory

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Personalized PageRank
-Summary

Personalized PageRank

- Query-dependent Ranking
- For a query webpage q, which webpages are most important to q?
- The relative important webpages to different queries would be different

Calculation of P-PageRank

- Recall PageRank calculation:
- $\mathbf{r}=\beta \mathbf{M r}+[(1-\beta) / \mathrm{N}]_{\mathrm{N}}$ or
$\cdot \mathrm{r}=\beta \mathbf{M r}+(1-\beta) r_{0}$, where $r_{0}=\left(\begin{array}{c}1 / N \\ 1 / N \\ \ldots \\ 1 / N\end{array}\right)$
- For P-PageRank
- Replace r_{0} with $r_{0}=\left(\begin{array}{c}0 \\ 0 \\ \ldots \\ 1 \\ \ldots \\ 0\end{array}\right) \quad$ qth webpage

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Personalized PageRank
-Summary \triangleleft

Summary

- Ranking on Graph / Network
- PageRank
- Personalized PageRank

