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Graph, Graph, Everywhere

Internet

from H. Jeong et al Nature 411, 41 (2001)
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Why Graph Mining?

- Graphs are ubiquitous
« Chemical compounds (Cheminformatics)
- Protein structures, biological pathways/networks (Biomformactics)
« Program control flow, trathc flow, and workflow analysis

- XML databases, Web, and social network analysis

- Graph is a general model

« Trees, lattices, sequences, and items are degenerated graphs
- Diversity of graphs

« Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted,

with angles & geometry (topological vs. 2-1)/3-D)

- Complexity of algorithms: many problems are of high complexity



Representation of a Graph

G =<V,E >
-V ={uy, ..., u, }: node set
«E €V XV:edge set
- Adjacency matrix
A = {aij}, ,j=1,..,n
ca; = Lif <u,u >€EE
ca; =0,if <uju >¢E
- Undirected graph vs. Directed graph
- A=ATvs. A+ AT
« Weighted graph

* Use Winstead of A, where w;; represents the weight of edge
< ui,uj >
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The History of PageRank

- PageRank was developed by Larry Page (hence the name
Page-Rank) and Sergey Brin.

- It is first as part of a research project about a new kind of
search engine. That project started in 1995 and led to a
functional prototype in 1998.

- Shortly after, Page and Brin founded Google.



Ranking web pages

-Web pages are not equally “important”

« Www.cnn.com vs. a personal webpage

*Inlinks as votes

"The more 1mlinks, the more important

- Are all inlinks equal?

 Recursive question!


http://www.cnn.com/

Simple recursive formulation

Each link’s vote is proportional to the
Importance of its source page

- If page P with importance x has n outlinks,

each
- Page

ink gets x/n votes

P’s own importance is the sum of the

votes on its inlinks
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Matrix formulation

- Matrix M has one row and one column for each web
page
- Suppose page j has n outlinks
- Ifj ->1, then M;=1/n
* Else M;=0
*Misa
e Columns sum to 1
- Suppose r is a vector with one entry per web page
* 1; 15 the Importance score of page 1

 Call 1t the
- r| =1
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Eigenvector formulation

-The flow equations can be written

-So the rank vector is an eigenvector of the
stochastic web matrix

- In fact, 1ts first or principal eigenvector, with
corresponding eigenvalue 1
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Example

y =yl2+a/2
a=y/2+m
m=a/2

QD

y a m

1/21/2 0
1/2 0 1
012 0

1/21/2 0
1/2 0 1
m 01/2 0

S

D <
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Power Iteration method

-Simple iterative scheme (aka )
-Suppose there are N web pages

- Initialize: r° = [1/N,....,1/N]"
- |terate: r**1 = Mk

-Stop when |r**1-rk|. <&

X|, = 2i<en x| 1s the Li norm

 Can use any other vector norm e.g., Fuchidean
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Power lteration Example

y a m
y 1/21/2 0
a (1/72 0 1
m|012 0
y 1/3 1/3 5/12 3/8 2/5
a = 1/3  1/2 1/3 11/24 ... 2/5
m

1/3 16 1/4 1/6 1/5



Random Walk Interpretation

*lmagine a
- At any time t, surfer 1s on some page P

- At time t+1, the surfer tollows an outlink from
P uniformly at random

- Ends up on some page Q linked from P
* Process repeats indefinitely

-Let p(t) be a vector whose ith component

is the probability that the surfer is at page
| at time t

- p(t) 1s a probability distribution on pages

16



The stationary distribution

Where is the surfer at time t+17?
* Follows a link uniformly at random
-p(t+1) = Mp(t)

-Suppose the random walk reaches a state
such that p(t+1) = Mp(t) = p(t)

* Then p(t) 1s called a for
the random walk

»Our rank vector r satisfies r = Mr

*So 1t 18 a stationary distribution for the random
surfer

17



Existence and Uniqueness

A central result from the theory of random walks (aka Markov
processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and
eventually will be reached no matter what

the initial probability distribution at time t
= 0.

18



Spider traps

A group of pages is a if there
are no links from within the group to
outside the group

- Random surfer gets trapped

-Spider traps violate the conditions needed
for the random walk theorem

19



Microsoft becomes a spider trap

y a m

y 1/21/2 0

a (1/20 O

m| 0172 1

1/3 1/3 1/4  5/24 0
1/3 1/6 1/6 1/8 0

1/3 12 7112 2/3 1



Random teleports

- The Google solution for spider traps

- At each time step, the random surfer has
two options:

» With probability 3, follow a link at random

- With probability 1-3, jump to some page
uniformly at random

- Common values for 3 are in the range 0.8 to

0.9

- Surfer will teleport out of spider trap
within a few time steps

21



Random teleports (B = 0.8)

1/2
1/2

1/2
0.8*1/2 | +0.2*

1/2 0

1/21/2 0

0 1/2 1

y

1/3
1/3
1/3

1/3 1/3 1/3

0 +0.2 11/31/3 1/3

IS

1/3 1/3 1/3

7115 7/15 1/15
7/15 1/15 1/15
1/15 7/15 13/15
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Random teleports (B = 0.8)

1/21/2 0 1/31/3 1/3
0.8(1/2 0 0 +0.2 11/31/3 1/3
0 1/2 1 1/31/3 1/3

7115 7/15 1/15

7/15 1/15 1/15
, m|1/15 7/15 13/15

ISP

y
a
m

10.333
0.333

[ 0.333]
0.200

0.333

10.467

[0.280 ]
0.200

0.520

(0.259 ]
0.179

[ 7/33 |
5/33

0.563

21/33
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Matrix formulation

-Suppose there are N pages
- Consider a page J, with set of outlinks O(j)
*We have M, = 1/]O() | when j->1 and M, = 0
otherwise
"The random teleport 1s equivalent to

» adding a from j to every other page
with probability (1-)/N

* reducing the probability of following each outlink
from 1/]0(j)| to B/[0(j)|

* Equivalent: tax each page a fraction (1-f3) of its
score and redistribute evenly
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PageRank

- Construct the N-by-N matrix A as follows
- A = PM; + (1-B)/N

-Verify that A is a stochastic matrix

-The r is the principal
eigenvector of this matrix
e satislying r = Ar

- Equivalently, r is the stationary
distribution of the random walk with
teleports

25



Dead ends

- Pages with no outlinks are “
the random surfer

- Nowhere to go on next step

" for

26



Microsoft becomes a dead end

1/21/2 0 1/31/3 1/3
0.8(1/2 0 0 +0.2 11/31/3 1/3
0 1/2 0 1/31/3 1/3

7115 7/15 1/15
7/15 1/15 1/15

. m|1/15 7/15 1/15

ISP

y 1/3  1/3 0
a = 1/3 0.2 0
m 1/3 0.2 0




Dealing with dead-ends

- Teleport

- Follow random teleport links with probability
1.0 from dead-ends

- Adjust matrix accordingly

*Prune and propagate
* Preprocess the graph to eliminate dead-ends
« Might require multiple passes
- Compute page rank on reduced graph

- Approximate values for deadends by
propagating values from reduced graph

28



Computing PageRank

- Key step is matrix-vector multiplication
o W — Arold
- Easy if we have enough main memory to
hold A, rold pnew
-Say N =1 billion pages
- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB

» Matrix A has N? entries
- 10*8is a large number!

29



Rearranging

the equation

r = Ar, where
A; = BM; + (1-B)/N
I = ZlSjSN Al

ri= 2q<<n [BM;+ (1-B)/N] ,

B 2oy Myir + (1-

B 2oy Myir + (1-

r=pBMr + [(1-B)/N]y

where [x] is an N-vector with all entries x

B)/N 2y qjen 1,

3)/N, since |r| =1



Sparse matrix formulation

- We can rearrange the page rank equation:
« 1= BMr + [(1)/Nly
* [(1-B)/Nly 1s an N-vector with all entries (1-)/N
- M is a sparse matrix!
10 links per node, approx 10N entries

- So in each iteration, we need to:
- Compute ¢ = fMreld

« Add a constant value (1-B)/N to each entry in r¢v
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Sparse matrix encoding

-Encode sparse matrix using only nonzero
entries

* Space proportional roughly to number of links
*say 10N, or 4710"1 billion = 40GB

- sull won’t fit iIn memory, but will fit on disk

0 3 1,5,7
1 5 17, 64, 113, 117, 245
2 2 13, 23
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Basic Algorithm

- Assume we have enough RAM to fit r"®¥, plus some
working memory
Store r°4 and matrix M on disk

Basic Algorithm:
- Initialize: rol® = [1/N],
*  |terate:

Update: Perform a sequential scan of M and r°' to update rev
Write out ¢V to disk as r° for next iteration

Every few iterations, compute |r¢V-rold| and stop if it is below
ry

threshold
* Need to read in both vectors into memory

33
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Personalized PageRank

-Query-dependent Ranking

- For a query webpage q, which webpages are
most important to q?

* The relative important webpages to different
queries would be different
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Calculation of P-PageRank

- Recall PageRank calculation:

-1 = Mr + [(1-B)/N]\ or

1/N
1/N

et = BMr + (1-p) ry, where ry =
1/N

- For P-PageRank

(o)

1 qth webpage

\o/

 Replace 1y with 1y =
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Summary

-Ranking on Graph / Network

- PageRank
* Personalized PageRank
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