# CS6220: DATA MINING TECHNIQUES Image Data: Classification via Neural Networks

#### **Instructor: Yizhou Sun**

yzsun@ccs.neu.edu

November 19, 2015

### **Methods to Learn**

|                               | Matrix Data                                                                           | Text<br>Data | Set Data              | Sequence<br>Data   | Time Series    | Graph &<br>Network                | Images            |
|-------------------------------|---------------------------------------------------------------------------------------|--------------|-----------------------|--------------------|----------------|-----------------------------------|-------------------|
| Classification                | Decision Tree;<br>Naïve Bayes;<br>Logistic Regression<br>SVM; kNN                     |              |                       | НММ                |                | Label<br>Propagation*             | Neural<br>Network |
| Clustering                    | K-means;<br>hierarchical<br>clustering; DBSCAN;<br>Mixture Models;<br>kernel k-means* | PLSA         |                       |                    |                | SCAN*;<br>Spectral<br>Clustering* |                   |
| Frequent<br>Pattern<br>Mining |                                                                                       |              | Apriori;<br>FP-growth | GSP;<br>PrefixSpan |                |                                   |                   |
| Prediction                    | Linear Regression                                                                     |              |                       |                    | Autoregression |                                   |                   |
| Similarity<br>Search          |                                                                                       |              |                       |                    | DTW            | P-PageRank                        |                   |
| Ranking                       |                                                                                       |              |                       |                    |                | PageRank                          |                   |

### **Mining Image Data**

Image Data



Neural Networks as a Classifier

Summary

### Images

- Images can be found everywhere
  - Social Networks, e.g. Instagram, Facebook, etc.

-0

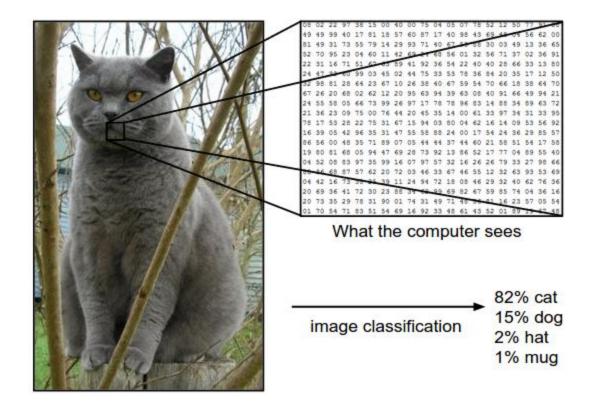
Google

- World Wide Web
- All kinds of cameras



### **Image Representation**

### Image represented as matrix



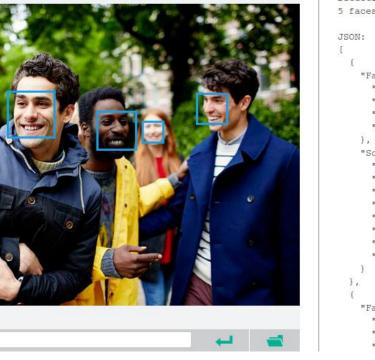
### **Applications: Face Recognition**

### Recognize human face in images



## **Applications: Face Recognition**

#### Can also recognize emotions!



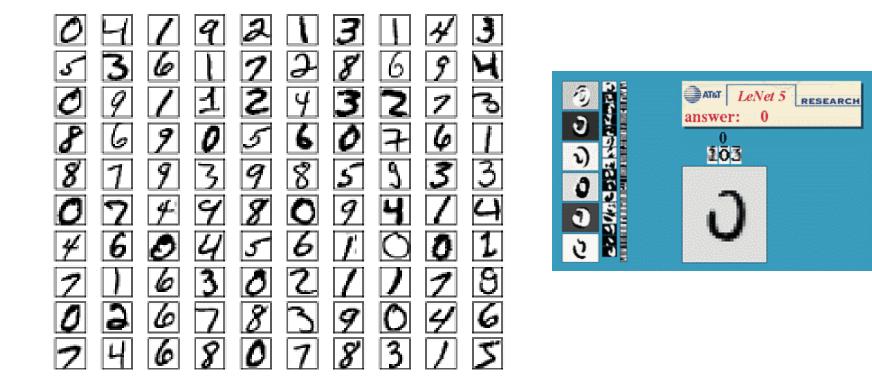
```
Detection Result:
5 faces detected
    "FaceRectangle": {
      "Left": 488,
      "Top": 263,
      "Width": 148,
      "Height": 148
    "Scores": {
      "Anger": 9.075572e-13,
      "Contempt": 7.048959e-9,
      "Disgust": 1.02152783e-11,
      "Fear": 1.778957e-14,
      "Happiness": 0.9999999,
      "Neutral": 1.31694478e-7,
      "Sadness": 6.04054263e-12,
      "Surprise": 3.92249462e-11
    "FaceRectangle": {
      "Left": 153,
      "Top": 251,
      "Width": 133,
```

• Try it yourself @

https://www.projectoxford.ai/demo/emotion

### Applications: Hand Written Digits Recognition

What are the numbers?



### **Mining Image Data**

- Image Data
- Neural Networks as a Classifier

Summary

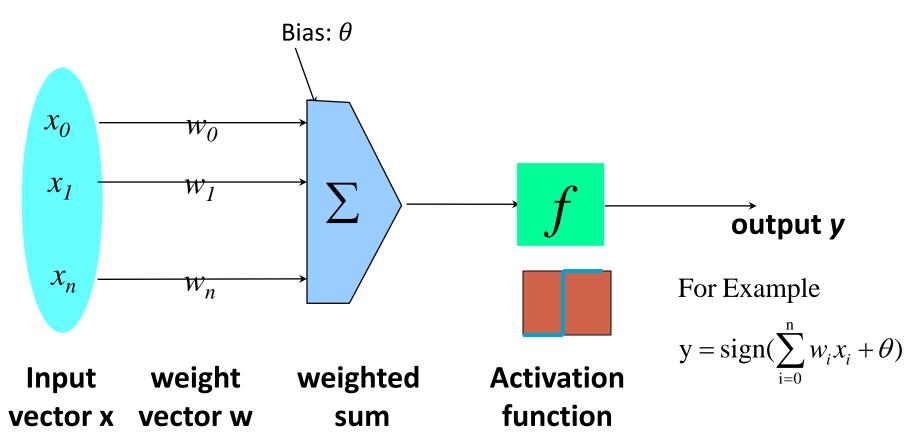
## **Artificial Neural Networks**

- Consider humans:
  - Neuron switching time ~.001 second
  - Number of neurons  $\sim 10^{10}$
  - Connections per neuron  $^{\sim}10^{4-5}$
  - Scene recognition time ~.1 second
  - 100 inference steps doesn't seem like enough -> parallel computation

### Artificial neural networks

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

### **Single Unit: Perceptron**



 An *n*-dimensional input vector **x** is mapped into variable y by means of the scalar product and a nonlinear function mapping

### **Perceptron Training Rule**

For each training data point:

$$w_i \leftarrow w_i + \Delta w_i$$

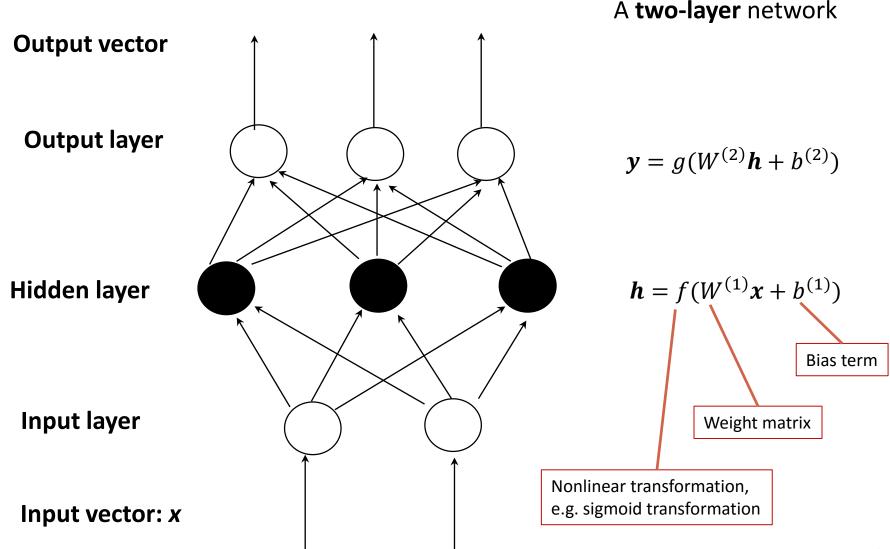
where

$$\Delta w_i = \eta (t - o) x_i$$

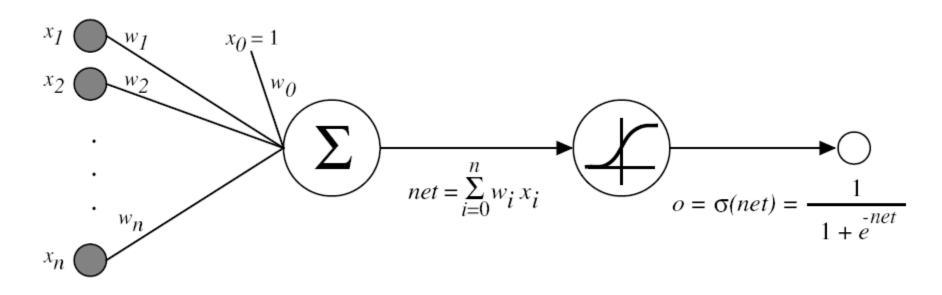
- t: target value (true value)
- o: output value
- η: learning rate (small constant)
- Derived using Gradient Descent method by minimizing the squared error:

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

#### **A Multi-Layer Feed-Forward Neural Network**



### **Sigmoid Unit**



• 
$$\sigma(x) = \frac{1}{1+e^{-x}}$$
 is a sigmoid function  
• Property:  $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$ 

• Will be used in learning

### How A Multi-Layer Neural Network Works

- The inputs to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the **input layer**
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is feed-forward: None of the weights cycles back to an input unit or to an output unit of a previous layer
- From a math point of view, networks perform nonlinear regression: Given enough hidden units and enough training samples, they can closely approximate any continuous function

### **Defining a Network Topology**

- Decide the network topology: Specify # of units in the input layer, # of hidden layers (if > 1), # of units in each hidden layer, and # of units in the output layer
- Normalize the input values for each attribute measured in the training tuples to [0.0—1.0]
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

## Learning by Backpropagation

- Backpropagation: A neural network learning algorithm
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- Also referred to as connectionist learning due to the connections between units

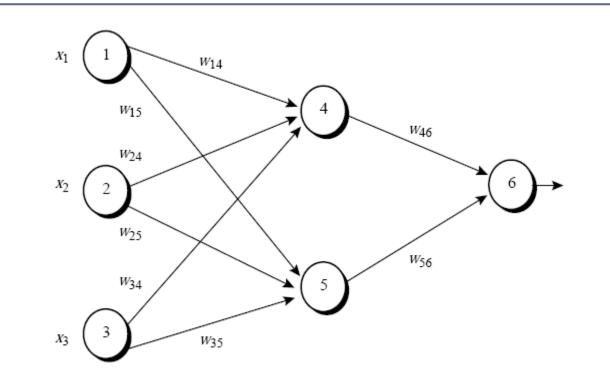
### Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"

### **Backpropagation Steps to Learn Weights**

- Initialize weights to small random numbers, associated with biases
- Repeat until terminating condition meets
  - For each training example
    - Propagate the inputs forward (by applying activation function)
      - For a hidden or output layer unit j
        - Calculate net input:  $I_j = \sum_i w_{ij} O_i + \theta_j$
        - Calculate output of unit  $j: O_j = \frac{1}{1+e^{-l_j}}$
    - Backpropagate the error (by updating weights and biases)
      - For unit j in output layer:  $Err_j = O_j(1 O_j)(T_j O_j)$
      - For unit j in a hidden layer: :  $Err_j = O_j(1 O_j)\sum_k Err_k w_{jk}$
      - Update weights:  $w_{ij} = w_{ij} + \eta Err_j O_i$
- Terminating condition (when error is very small, etc.)

### Example



A multilayer feed-forward neural network

| $x_1$ | $x_2$ | $x_3$ | $w_{14}$ | $w_{15}$ | $w_{24}$ | $w_{25}$ | $w_{34}$ | $w_{35}$ | $w_{46}$ | $w_{56}$ | $\theta_4$ | $\theta_5$ | $\theta_6$ |
|-------|-------|-------|----------|----------|----------|----------|----------|----------|----------|----------|------------|------------|------------|
| 1     | 0     | 1     | 0.2      | -0.3     | 0.4      | 0.1      | -0.5     | 0.2      | -0.3     | -0.2     | -0.4       | 0.2        | 0.1        |

Initial Input, weight, and bias values

### Example

| Input forward: | Table 9.2: The net input and output calculations. |                                             |                         |  |  |
|----------------|---------------------------------------------------|---------------------------------------------|-------------------------|--|--|
|                | Unit j                                            | Net input, $I_j$                            | $Output, O_j$           |  |  |
|                | 4                                                 | 0.2 + 0 - 0.5 - 0.4 = -0.7                  | $1/(1+e^{0.7})=0.332$   |  |  |
|                | 5                                                 | -0.3 + 0 + 0.2 + 0.2 = 0.1                  | $1/(1+e^{-0.1})=0.525$  |  |  |
|                | 6                                                 | (-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105 | $1/(1+e^{0.105})=0.474$ |  |  |

#### Error backpropagation and weight update:

Table 9.3: Calculation of the error at each node.

| Unit $j = Err_i$ |
|------------------|
|------------------|

| 6        | (0.474)(1 - 0.474)(1 - 0.474) = 0.1311     |
|----------|--------------------------------------------|
| <b>5</b> | (0.525)(1 - 0.525)(0.1311)(-0.2) = -0.0065 |
| 4        | (0.332)(1 - 0.332)(0.1311)(-0.3) = -0.0087 |

Table 9.4: Calculations for weight and bias updating. Weight or bias New value

| weight of otas | new vuide                            |
|----------------|--------------------------------------|
| $w_{46}$       | -0.3 + (0.9)(0.1311)(0.332) = -0.261 |
| $w_{56}$       | -0.2 + (0.9)(0.1311)(0.525) = -0.138 |
| $w_{14}$       | 0.2 + (0.9)(-0.0087)(1) = 0.192      |
| $w_{15}$       | -0.3 + (0.9)(-0.0065)(1) = -0.306    |
| $w_{24}$       | 0.4 + (0.9)(-0.0087)(0) = 0.4        |
| $w_{25}$       | 0.1 + (0.9)(-0.0065)(0) = 0.1        |
| $w_{34}$       | -0.5 + (0.9)(-0.0087)(1) = -0.508    |
| $w_{35}$       | 0.2 + (0.9)(-0.0065)(1) = 0.194      |
| $\theta_6$     | 0.1 + (0.9)(0.1311) = 0.218          |
| $\theta_5$     | 0.2 + (0.9)(-0.0065) = 0.194         |
| $\theta_4$     | -0.4 + (0.9)(-0.0087) = -0.408       |
|                |                                      |

### **Efficiency and Interpretability**

- <u>Efficiency</u> of backpropagation: Each iteration through the training set takes O(|D| \* w), with |D| tuples and w weights, but # of iterations can be exponential to n, the number of inputs, in worst case
- For easier comprehension: <u>Rule extraction</u> by network pruning
  - Simplify the network structure by removing weighted links that have the least effect on the trained network
  - Then perform link, unit, or activation value clustering
  - The set of input and activation values are studied to derive rules describing the relationship between the input and hidden unit layers
- <u>Sensitivity analysis</u>: assess the impact that a given input variable has on a network output. The knowledge gained from this analysis can be represented in rules
  - E.g., If x decreases 5% then y increases 8%

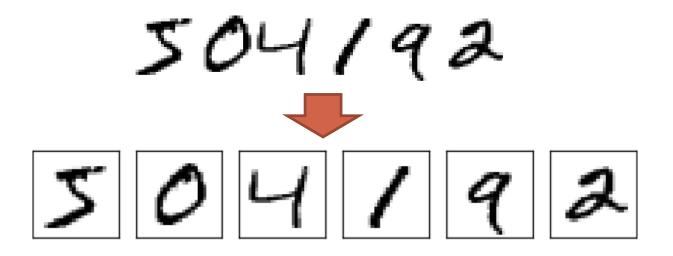
## **Neural Network as a Classifier**

#### Weakness

- Long training time
- Require a number of parameters typically best determined empirically, e.g., the network topology or "structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network
- Strength
  - High tolerance to noisy data
  - Well-suited for continuous-valued inputs and outputs
  - Successful on an array of real-world data, e.g., hand-written letters
  - Algorithms are inherently parallel
  - Techniques have recently been developed for the extraction of rules from trained neural networks

### **Digits Recognition Example**

Obtain sequence of digits by segmentation

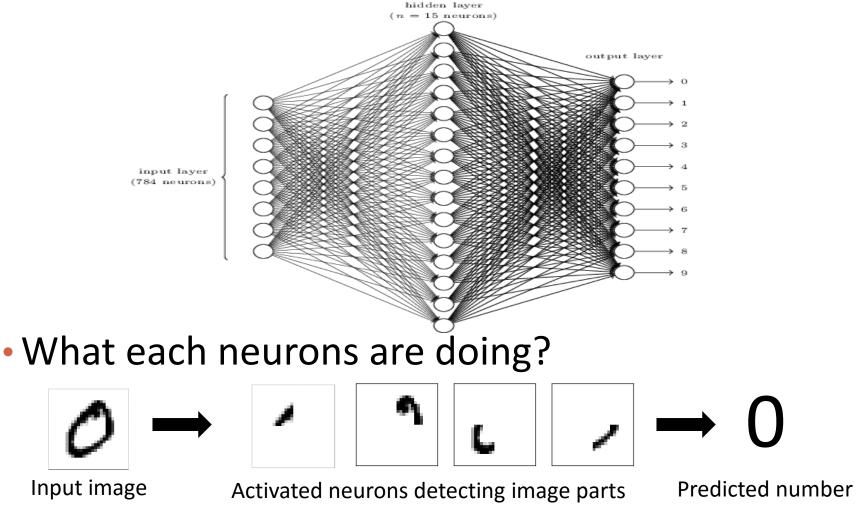


Recognition (our focus)



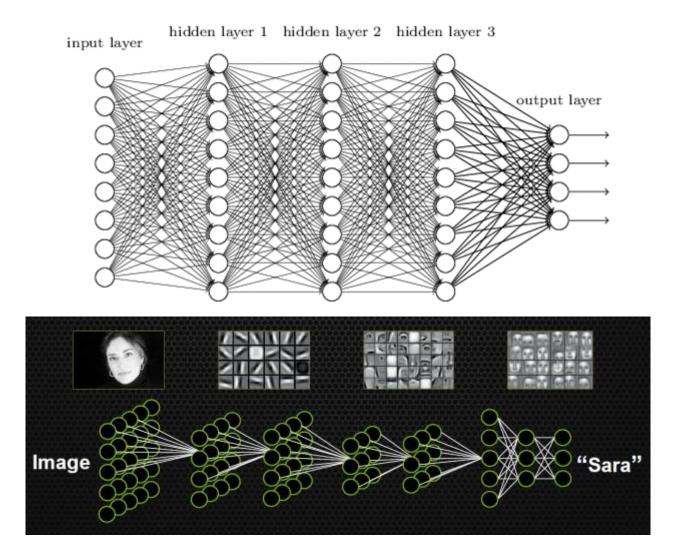
### **Digits Recognition Example**

The architecture of the used neural network



### **Towards Deep Learning**

#### Deep neural network



### **Mining Image Data**

Image Data

Neural Networks as a Classifier

• Summary 🦊

### Summary

- Image data representation
- Image classification via neural networks
  - The structure of neural networks
  - Learning by backpropagation