CS6220: DATA MINING TECHNIQUES

Image Data: Classification via Neural
Networks

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

November 19, 2015

mailto:sun22@illinois.edu

Methods to Learn

Matrix Data Text | Set Data | Sequence | Time Series Graph & Images
Data Data Network

(O EXIY i i:] | Decision Tree; Label Neural
Naive Bayes; Propagation* Network
Logistic Regression

SVM; kNN

Clustering K-means; PLSA SCAN*;
hierarchical Spectral
clustering; DBSCAN; Clustering*
Mixture Models;

kernel k-means*

Frequent Apriori; GSP;
Pattern FP-growth PrefixSpan

Mining

Prediction Linear Regression Autoregression

Similarity DTW P-PageRank
Search

Ranking PageRank

Mining Image Data

* Image Data &
* Neural Networks as a Classifier

* Summary

Images

-Images can be found everywhere

- Social Networks, e.g. Instagram, Facebook, etc.
* World Wide Web
- All kinds of cameras Google

H &aﬁ__’s.&jaaaa Sete

= --”NWﬁwvﬁ‘ ‘/

l--r'-''r'r-il-l---lwsi‘lm.m-ma»A -

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCMeft8Txk8kCFcQ5JgodhxwIlQ&url=https://twitter.com/instagram&psig=AFQjCNF0LEUSN0HDUx9N-tYJcZnKqXySdQ&ust=1447726963772956
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCMeft8Txk8kCFcQ5JgodhxwIlQ&url=https://twitter.com/instagram&psig=AFQjCNF0LEUSN0HDUx9N-tYJcZnKqXySdQ&ust=1447726963772956

Image Representation

-Image represented as matrix

o3 1370239

2 S4 22 40 40 28 &6 33 23 ®0

75 33 53 78 36 84 20 35 17 12 S0

38 40 67 59 54 70 66 18 38 64 7O

63 94 39 €3 08 40 91 66 49 94 21

03 66 7 97 17 78 78 96 83 14 20 34 99 63 72
09 75 00 7€ 44 20 43 35 14 00 €2 33 97 34 31 33 98
28 22 75 31 67 15 94 03 B0 04 €2 16 14 09 53 56 92
42 96 35 31 47 55 s8 24 36 29 85 57
48 35 T1 89 07 05 44 $8 51 54 17 S8
60 05 9§ 47 653 20) T 04 89 55 40
3 97 35 9% 1€ 07 97 79 33 27 90 ce
&7 57 62 20 72 03 4¢ 32 €5 93 53 6

&3

92 33

What the computer sees

82% cat

15% dog
2% hat
1% mug

image classification

Applications: Face Recognition

-Recognhize human face in images

i
]
Ll |

20N
: - Cqﬁéra tor
ha f-’_l‘ i~} Pedrd\gtlns R Souza
v daton & : :

w.\‘ T ORI o)
£

.1l|l"

.
- .
ol @ o *

is > }
= %

\

R
\

.

Applications: Face Recognition

- Can also recognize emotions!

* Try 1t yourself @
https://www.projectoxford.ai/demo/emotion

Applications: Hand Written Digits

-What are the numbers?

0y X 0P = el [T - SN [N
YENEMNENNS
— N [= [IO NS
0y B [0 S [[O [N[Oy
= [chl[=-) [oo O M o] [T
o [N [[RS
o [— SN [N S el [[0
D e e L T ST
T [D [[PN 80| {0 | T
Qi) % X[[N

Mining Image Data

* |mage Data
« Neural Networks as a Classifier &

* Summary

Artificial Neural Networks

- Consider humans:
» Neuron switching time ~.001 second
» Number of neurons ~ 101"
- Connections per neuron ~ 10%7°

» Scene recognition time .1 second

100 inference steps doesn't seem like enough -> parallel
computation

- Artificial neural networks
- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

10

Single Unit: Perceptron

Bias: 6
Xo Wy
X4 Wi
f output y
Xn W

- For Example

y =sign(Q_w,x; +6)
Input weight weighted Activation i=0

vector X vectorw sum function

- An n-dimensional input vector x is mapped into variable y by means of the scalar
product and a nonlinear function mapping

11

Perceptron Training Rule

For each training data point:

where
Aw; = n(t — o)x;
- t: target value (true value)

- 0: output value
- 1: learning rate (small constant)

- Derived using Gradient Descent method by minimizing the
squared error: 1

U] = 5 5, (0= o

12

A Multi-Layer Feed-Forward Neural Network

A two-layer network
Output vector

Output layer

Hidden layer h=fW®x+ pD)

\ / Bias term
Input layer Weight matrix

Nonlinear transformation,
Input vector: x e.g. sigmoid transformation

13

Sigmoid Unit

>)
net = 2 w- x» |
i=0 !

0 = O(net) = —
| +e

1
°O'SC) =——isa sigmoid function
* Irropertv:. do(x
PR Bl — o(2)(1 - o(x))

- Will be used 1n learning

14

How A Multi-Layer Neural Network Works

- The inputs to the network correspond to the attributes measured for each
training tuple

- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although usually only one

- The weighted outputs of the last hidden layer are input to units making up
the output layer, which emits the network's prediction

- The network is feed-forward: None of the weights cycles back to an input
unit or to an output unit of a previous layer

« From a math point of view, networks perform nonlinear regression: Given
enough hidden units and enough training samples, they can closely
approximate any continuous function

15

Defining a Network Topology

- Decide the network topology: Specify # of units in the input layer,
of hidden layers (if > 1), # of units in each hidden layer, and # of
units in the output layer

- Normalize the input values for each attribute measured in the
training tuples to [0.0—1.0]

- OQutput, if for classification and more than two classes, one
output unit per class is used

- Once a network has been trained and its accuracy is
unacceptable, repeat the training process with a different
network topology or a different set of initial weights

16

Learning by Backpropagation

- Backpropagation: A neural network learning algorithm
- Started by psychologists and neurobiologists to develop and test
computational analogues of neurons

- During the learning phase, the network learns by adjusting the
weights so as to be able to predict the correct class label of the
input tuples

- Also referred to as connectionist learning due to the

connections between units

17

Backpropagation

- |teratively process a set of training tuples & compare the

network's prediction with the actual known target value

- For each training tuple, the weights are modified to minimize the
mean squared error between the network's prediction and the

actual target value

- Modifications are made in the “backwards” direction: from the
output layer, through each hidden layer down to the first hidden

layer, hence “backpropagation”

18

Backpropagation Steps to Learn Weights

- Imtialize weights to small random numbers, associated with biases
« Repeat until terminating condition meets

* For each training example

* Propagate the inputs forward (by applying activation function)
* For a hidden or output layer unit j

* Calculate netinput: [; = Y; w;;0; + 6;

* Calculate output of unit j: 0; = ——r
* Backpropagate the error (by updating weights and biases)
* For unit j in output layer: Err; = 0]-(1 — Oj)(Tj — 0]-)
* For unitj in a hidden layer: : Err; = 0]-(1 — 0]-) Y Errewy
* Update weights: w;; = w;; + nErt;0;

 Terminating condition (when error 1s very small, etc.)

Example

i |

Ira

A multilayer feed-forward neural network

T3 W4 Wik Woy W5 W34 Wwas W4e Wwse B4 B Hg

1

1 0.2 —0.3 04 0.1 —0.5 0.2 —03 -02 -04 02 01

Initial Input, weight, and bias values

20

Example

° I N p ut fO rwa rd : Table 9.2: The net input and output calculations.
Unit j Net input, I; Output, O
4 0.240-05-04=-0.7 1/(14+€e"") =0.332
5 —03404+02402=0.1 1/(14 e "1y = 0.525
6 (—0.3)(0.332) — (0.2)(0.525) + 0.1 = —0.105 1/(1 4 &*1%%) = 0.474

- Error backpropagation and weight update:

Table 9.3: Calculation of the error at each node.
Unit j Errj

6 (0.474)(1 — 0.474)(1 — 0.474) = 0.1311
5 (0.525)(1 — 0.525)(0.1311)(—0.2) = —0.0065
4 (0.332)(1 — 0.332)(0.1311)(—0.3) = —0.0087

Table 9.4: Calculations for weight and bias updating.
Weight or bias New value

Was —0.3 4+ (0.9)(0.1311)(0.332) = —0.261
Wse —0.2 4+ (0.9)(0.1311)(0.52 H) = _n 138
w1y 0.2 + (0.9)(—0.0087)(1) = 0.

wis —0.3 4 (0.9)(—0.0065)(1) = —0 306
Way 0.4 4 (0.9)(—0.0087)(0) = 0.4

Wak 0.1+ (0.9]{ 0 Dllbr)([}] =0.1

Way —0.5 + (0.9)(—0.0087)(1) = —0.508
was 0.2+ (0.9)(—0.0065)(1) = 0.194

Be 0.1 4 (0.9)(0.1311) = 0.218

E 0.2 4+ (0.9)(—0.0065) = 0.194

B4 —0.4 4 (0.9)(—0.0087) = —0.408

Efficiency and Interpretability

- Efficiency of backpropagation: Each iteration through the training set takes
O(|D| * w), with |D| tuples and w weights, but # of iterations can be
exponential to n, the number of inputs, in worst case

- For easier comprehension: Rule extraction by network pruning

- Simplify the network structure by removing weighted links that have the least

effect on the trained network
¢ Then perform link, unit, or activation value clustering

 The set of input and activation values are studied to derive rules describing the

relationship between the mput and hidden unit layers

- Sensitivity analysis: assess the impact that a given input variable has on a
network output. The knowledge gained from this analysis can be represented
in rules

« E.g., If x decreases 5% then y increases 8%

22

Neural Network as a Classifier

- Weakness
- Long training time
- Require a number of parameters typically best determined empirically,

e.g., the network topology or “structure.”

* Poor interpretability: Difficult to interpret the symbolic meaning
behind the learned weights and of “hidden units” in the network

- Strength
- High tolerance to noisy data
- Well-suited for continuous-valued mputs and outputs
* Successful on an array of real-world data, e.g., hand-written letters
« Algorithms are inherently parallel

» T'echniques have recently been developed for the extraction of rules

from tramned neural networks

23

Digits Recognition Example

-Obtain sequence of digits by segmentation

S04/ 92
&

SO/ |9|#

- Recognition (our focus)

> =5

Digits Recognition Example

» The architecture of the used neural network

- What each neurons are doing?
Input image Activated neurons detecting image parts

- 0

Predicted number

25

Towards Deep Learning

Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

input layer

26

Mining Image Data

* |mage Data
* Neural Networks as a Classifier

» Summary &

27

Summary

mage data representation
mage classification via neural networks

» T'he structure of neural networks

* Learning by backpropagation

28

