Mining Time Series Data

Instructor: Yizhou Sun
yzsun@ccs.neu.edu

November 30, 2015
Announcement

• No class next week and see you on Dec. 14.
• The final report and presentation guideline is going to be released soon.
• Office hour:
 • Tuesday: 3:30-5:00pm
 • Friday: 2:30-4:00pm
Methods to Learn

<table>
<thead>
<tr>
<th></th>
<th>Matrix Data</th>
<th>Text Data</th>
<th>Set Data</th>
<th>Sequence Data</th>
<th>Time Series</th>
<th>Graph & Network</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN</td>
<td></td>
<td></td>
<td>HMM</td>
<td></td>
<td>Label Propagation*</td>
<td>Neural Network</td>
</tr>
<tr>
<td>Clustering</td>
<td>K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means*</td>
<td>PLSA</td>
<td></td>
<td></td>
<td></td>
<td>SCAN*; Spectral Clustering*</td>
<td></td>
</tr>
<tr>
<td>Frequent Pattern Mining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prediction</td>
<td>Linear Regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autoregression</td>
<td></td>
</tr>
<tr>
<td>Similarity Search</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DTW</td>
<td>P-PageRank</td>
</tr>
<tr>
<td>Ranking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PageRank</td>
</tr>
</tbody>
</table>
Mining Time Series Data

• Basic Concepts

• Time Series Prediction and Forecasting

• Time Series Similarity Search

• Summary
Example: Inflation Rate Time Series

FIGURE 12.1 Inflation and Unemployment in the United States, 1960–1999

Percent per Annum

(a) U.S. CPI Inflation Rate

Price inflation in the United States (Figure 12.1a) drifted upwards from 1960 until 1980, and then fell sharply during the early 1980s. The unemployment rate in the United States (Figure 12.1b) rises during recessions (the shaded episodes) and falls during expansions.
Price inflation in the United States (Figure 12.1a) drifted upwards from 1960 until 1980, and then fell sharply during the early 1980s. The unemployment rate in the United States (Figure 12.1b) rises during recessions (the shaded episodes) and falls during expansions.
Example: Stock

Facebook, Inc. (FB) - NasdaqGS

46.58 ↑ 0.38 (0.82%) 1:10PM EST - Nasdaq Real Time Price

© 2013 Yahoo! Inc.

Volume: 74,447,000
Example: Product Sale

<table>
<thead>
<tr>
<th>Time</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 10</td>
<td>4 16 12 25 13 12 4 8 9 14</td>
</tr>
<tr>
<td>11 - 20</td>
<td>3 14 14 20 7 9 6 11 3 11</td>
</tr>
<tr>
<td>20 - 25</td>
<td>8 7 2 8 8 10 7 16 9 4</td>
</tr>
</tbody>
</table>

![Graph showing sales over time periods](image)
Time Series

- A **time series** is a sequence of numerical data points, measured typically at successive times, spaced at (often uniform) time intervals.

 - Random variables for a time series are represented as:

 - $Y = \{Y_1, Y_2, \ldots\}$, or
 - $Y = \{Y_t: t \in T\}$, where T is the index set

- An observation of a time series with length N is represented as:

 - $Y = \{y_1, y_2, \ldots, y_N\}$
Mining Time Series Data

- Basic Concepts
- Time Series Prediction and Forecasting
- Time Series Similarity Search
- Summary
Categories of Time-Series Movements

- Categories of Time-Series Movements (T, C, S, I)
 - Long-term or trend movements (trend curve): general direction in which a time series is moving over a long interval of time
 - Cyclic movements or cycle variations: long term oscillations about a trend line or curve
 - e.g., business cycles, may or may not be periodic
 - Seasonal movements or seasonal variations
 - E.g., almost identical patterns that a time series appears to follow during corresponding months of successive years.
 - Irregular or random movements
Purely random—No recognizable pattern

Increasing linear trend

Curvilinear trend (quadratic, exponential)

Seasonal pattern plus linear growth
Lag, Difference

• The first lag of Y_t is Y_{t-1}; the jth lag of Y_t is Y_{t-j}

• The first difference of a time series, $\Delta Y_t = Y_t - Y_{t-1}$

 • Sometimes difference in logarithm is used $\Delta \ln(Y_t) = \ln(Y_t) - \ln(Y_{t-1})$
Example: First Lag and First Difference

<table>
<thead>
<tr>
<th>Quarter</th>
<th>U.S. CPI</th>
<th>Rate of Inflation at an Annual Rate (Inf_T)</th>
<th>First Lag (Inf_T-1)</th>
<th>Change in Inflation (∆Inf_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999:I</td>
<td>164.87</td>
<td>1.6</td>
<td>2.0</td>
<td>-0.4</td>
</tr>
<tr>
<td>1999:II</td>
<td>166.03</td>
<td>2.8</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>1999:III</td>
<td>167.20</td>
<td>2.8</td>
<td>2.8</td>
<td>0.0</td>
</tr>
<tr>
<td>1999:IV</td>
<td>168.53</td>
<td>3.2</td>
<td>2.8</td>
<td>0.4</td>
</tr>
<tr>
<td>2000:I</td>
<td>170.27</td>
<td>4.1</td>
<td>3.2</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Autocorrelation

- Autocorrelation: the correlation between a time series and its lagged values
 - The first autocorrelation ρ_1
 \[
 \text{corr}(Y_t, Y_{t-1}) = \frac{\text{cov}(Y_t, Y_{t-1})}{\sqrt{\text{var}(Y_t) \cdot \text{var}(Y_{t-1})}}
 \]
 - The jth autocorrelation ρ_j
 \[
 \text{corr}(Y_t, Y_{t-j}) = \frac{\text{cov}(Y_t, Y_{t-j})}{\sqrt{\text{var}(Y_t) \cdot \text{var}(Y_{t-j})}}
 \]
Sample Autocorrelation Calculation

• The jth sample autocorrelation

\[\hat{\rho}_j = \frac{\hat{\text{cov}}(Y_t, Y_{t-j})}{\hat{\text{var}}(Y_t)} \]

• Where \(\hat{\text{cov}}(Y_t, Y_{t-j}) \) is calculated as:

\[\frac{1}{T-j-1} \sum_{t=j+1}^{T} (Y_t - \bar{Y}_{j+1,T})(Y_{t-j} - \bar{Y}_{1,T-j}) \]

• i.e., considering two time series: \(Y(1,...,T-j) \) and \(Y(j+1,...,T) \)
Example of Autocorrelation

• For inflation and its change

\[\rho_1 = 0.85, \text{ very high: Last quarter’s inflation rate contains much information about this quarter’s inflation rate} \]
Focus on Stationary Time Series

- Stationary is key for time series regression: Future is similar to the past in terms of distribution

A time series Y_t is **stationary** if its probability distribution does not change over time, that is, if the joint distribution of $(Y_{s+1}, Y_{s+2}, \ldots, Y_{s+T})$ does not depend on s; otherwise, Y_t is said to be **nonstationary**. A pair of time series, X_t and Y_t, are said to be **jointly stationary** if the joint distribution of $(X_{s+1}, Y_{s+1}, X_{s+2}, Y_{s+2}, \ldots, X_{s+T}, Y_{s+T})$ does not depend on s. Stationarity requires the future to be like the past, at least in a probabilistic sense.
Autoregression

• Use past values Y_{t-1}, Y_{t-2}, \ldots to predict Y_t
 • An autoregression is a regression model in which Y_t is regressed against its own lagged values.
 • The number of lags used as regressors is called the order of the autoregression.
 • In a first order autoregression, Y_t is regressed against Y_{t-1}
 • In a pth order autoregression, Y_t is regressed against $Y_{t-1}, Y_{t-2}, \ldots, Y_{t-p}$
The AR(1) model:

\[Y_t = \beta_0 + \beta_1 Y_{t-1} + u_t \]

The AR(1) model can be estimated by OLS regression of \(Y_t \) against \(Y_{t-1} \).

Testing \(\beta_1 = 0 \) vs. \(\beta_1 \neq 0 \) provides a test of the hypothesis that \(Y_{t-1} \) is not useful for forecasting \(Y_t \).
Prediction vs. Forecast

• A predicted value refers to the value of Y predicted (using a regression) for an observation in the sample used to estimate the regression – this is the usual definition
 • Predicted values are “in sample”

• A forecast refers to the value of Y forecasted for an observation not in the sample used to estimate the regression.
 • Forecasts are forecasts of the future – which cannot have been used to estimate the regression.
Time Series Regression with Additional Predictors

• So far we have considered forecasting models that use only past values of Y
• It makes sense to add other variables (X) that might be useful predictors of Y, above and beyond the predictive value of lagged values of Y:

\[
Y_t = \beta_0 + \beta_1 Y_{t-1} + \ldots + \beta_p Y_{t-p} \\
+ \delta_1 X_{t-1} + \ldots + \delta_r X_{t-r} + u_t
\]
Mining Time Series Data

• Basic Concepts

• Time Series Prediction and Forecasting

• Time Series Similarity Search

• Summary
Why Similarity Search?

• Wide applications
 • Find a time period with similar inflation rate and unemployment time series?
 • Find a similar stock to Facebook?
 • Find a similar product to a query one according to sale time series?
 • ...

•
Two similar mutual funds in the different fund group
Similarity Search for Time Series Data

- Time Series Similarity Search
 - Euclidean distances and L_p norms
 - Dynamic Time Warping (DTW)
 - Time Domain vs. Frequency Domain
Euclidean Distance and Lp Norms

Given two time series with equal length n

- \(C = \{c_1, c_2, \ldots, c_n\} \)
- \(Q = \{q_1, q_2, \ldots, q_n\} \)
- \(d(C, Q) = (\sum |c_i - q_i|^p)^{1/p} \)
 - When \(p=2 \), it is Euclidean distance
Enhanced Lp Norm-based Distance

• Issues with Lp Norm: cannot deal with offset and scaling in the Y-axis

• Solution: normalizing the time series

\[c_i' = \frac{c_i - \mu(C)}{\sigma(C)} \]
Dynamic Time Warping (DTW)

• For two sequences that do not line up well in X-axis, but share roughly similar shape
 • We need to warp the time axis to make better alignment
Goal of DTW

• Given
 • Two sequences (with possible different lengths):
 • $X = \{x_1, x_2, ..., x_N\}$
 • $Y = \{y_1, y_2, ..., y_M\}$
 • A local distance (cost) measure between x_n and y_m

• Goal:
 • Find an alignment between X and Y, such that, the overall cost is minimized
Cost Matrix of Two Time Series
Represent an Alignment by Warping Path

An \((N,M)\)-warping path is a sequence \(p = (p_1, p_2, \ldots, p_L) \) with \(p_l = (n_l, m_l) \), satisfying the three conditions:

- **Boundary condition**: \(p_1 = (1,1), p_L = (N,M) \)
 - Starting from the first point and ending at last point
- **Monotonicity condition**: \(n_l \) and \(m_l \) are non-decreasing with \(l \)
- **Step size condition**: \(p_{l+1} - p_l \in \{(0,1), (1,0), (1,1)\} \)
 - Move one step right, up, or up-right
Q: Which Path is a Warping Path?
Optimal Warping Path

- The total cost given a warping path p
 - $c_p(X, Y) = \sum l c(x_{n_l}, y_{m_l})$
- The optimal warping path p^*
 - $c_{p^*}(X, Y) = \min\{c_p(X, Y) | p \text{ is an } (N, M) - \text{warping path}\}$
- DTW distance between X and Y is defined as:
 - the optimal cost $c_{p^*}(X, Y)$
How to Find p*?

• Naïve solution:
 • Enumerate all the possible warping path
 • Exponential in N and M!
Dynamic Programming for DTW

- Dynamic programming:
 - Let $D(n,m)$ denote the DTW distance between $X(1,...,n)$ and $Y(1,...,m)$
 - D is called accumulative cost matrix
 - Note $D(N,M) = DTW(X,Y)$
- Recursively calculate $D(n,m)$
 - $D(n,m) = \min\{D(n-1,m), D(n,m-1), D(n-1,m-1)\} + c(x_n, y_m)$
 - When m or $n = 1$
 - $D(n, 1) = \sum_{k=1:n} c(x_k, 1)$
 - $D(1, m) = \sum_{k=1:m} c(1, y_k)$

Time complexity: $O(MN)$
Trace back to Get p^* from D

Algorithm: \textsc{OptimalWarpingPath}

Input: Accumulated cost matrix D.

Output: Optimal warping path p^*.

Procedure: The optimal path $p^* = (p_1, \ldots, p_L)$ is computed in reverse order of the indices starting with $p_L = (N, M)$. Suppose $p_\ell = (n, m)$ has been computed. In case $(n, m) = (1, 1)$, one must have $\ell = 1$ and we are finished. Otherwise,

$$p_{\ell-1} := \begin{cases}
(1, m - 1), & \text{if } n = 1 \\
(n - 1, 1), & \text{if } m = 1 \\
\text{argmin}\{D(n - 1, m - 1),} & \\
\quad \quad \quad \quad D(n - 1, m), D(n, m - 1)\}, & \text{otherwise},
\end{cases}$$

(4.6)

where we take the lexicographically smallest pair in case “argmin” is not unique.
Example

(a)

(b)
Many techniques for signal analysis require the data to be in the frequency domain.

Usually data-independent transformations are used.

The transformation matrix is determined a priori.

- discrete Fourier transform (DFT)
- discrete wavelet transform (DWT)

The distance between two signals in the time domain is the same as their Euclidean distance in the frequency domain.
Example of DFT

Figures taken from: “A comparison of DFT and DWT based similarity search in Time-series Databases” (Also figures on slide 9,17,18,24,25)
Example of DWT (with Harr Wavelet)
Discrete Fourier Transformation

from $\vec{x} = [x_t], t = 0, \ldots, n - 1$ to $\vec{X} = [X_f], f = 0, \ldots, n - 1$:

$$X_f = \frac{1}{\sqrt{n}} \sum_{t=0}^{n-1} x_t \exp(-j2\pi ft/n), \ f = 0, 1, \ldots, n - 1$$

- DFT does a good job of concentrating energy in the first few coefficients
- If we keep only first a few coefficients in DFT, we can compute the lower bounds of the actual distance
- Feature extraction: keep the first few coefficients (F-index) as representative of the sequence
*DFT (Cont.)

- Parseval’s Theorem

\[\sum_{t=0}^{n-1} |x_t|^2 = \sum_{f=0}^{n-1} |X_f|^2 \]

- The Euclidean distance between two signals in the time domain is the same as their distance in the frequency domain.

- Keep the first few (say, 3) coefficients underestimates the distance and there will be no false dismissals!

\[\sum_{t=0}^{n} | S[t] - Q[t] |^2 \leq \epsilon \Rightarrow \sum_{f=0}^{3} | F(S)[f] - F(Q)[f] |^2 \leq \epsilon \]
Mining Time Series Data

- Basic Concepts
- Time Series Prediction and Forecasting
- Time Series Similarity Search
- Summary
Summary

• Time Series Prediction and Forecasting
 • Autocorrelation; autoregression
• Time series similarity search
 • Euclidean distance and L_p norm
 • Dynamic time warping
 • Time domain vs. frequency domain