In this project, you will have an opportunity to apply the data mining algorithms and techniques you learned in the class to some real-world problems.

- You can choose any problem that you are interested in, and formalize it into a data mining task.
- Get some data related to the task.
- Apply some data mining algorithms to your data.
- Evaluate and compare your algorithms.
- Submit a report, together with your data and code.
- Finally, present your project to the whole class.
1. Form Groups

- 3-4 students
- Deadline: Sep. 27 (11:59pm)
- Where to submit: Blackboard
- What to submit: Group name; Group members; Group leader
- Points: 1 point.
Detailed Stages and Deadlines: 2. Project Proposal

- Deadline: Oct. 12 (11:59pm)
- Where to submit: Blackboard
- What to submit: A 2-Page proposal including
 2.1 Problem and goal
 ▶ What do you want to solve?
 ▶ Why do you think it is important?
 ▶ What results do you expect?
 2.2 Formalization into data mining task
 ▶ Which data type?
 ▶ Which function? E.g., Frequent pattern mining, classification, and clustering.
 2.3 Data plan
 ▶ What kind of data?
 ▶ Where and how do you get the data?
 ▶ Make sure get data in time
 2.4 Schedule: detailed plan of your project
 ▶ Points: 5 points
 ▶ Note: We will discuss with every group about your proposals later that week.
Detailed Stages and Deadlines: 3. Midterm Check

- Deadline: Nov. 22 (11:59pm)
- Where to submit: Blackboard
- What to submit: A Temporary report
 - A draft of report
 - Discuss about progress
 - Issues and difficulties you have met
- points: 2 points
- Note: We will discuss with every group about your progress later that week.
Detailed Stages and Deadlines: 4. Final Report

- Deadline: Dec. 14 (11:59pm)
- Where to submit: Blackboard / Course System
- What to submit: A final report, data, and code
 - Problem introduction, formalization, algorithms, experiment results, etc..
- points: 12 + 2 points
Detailed Stages and Deadlines: 5. Final Presentation

- **When:** Dec. 14
- **Who to present:** whole class
- **How long to present:** 15 mins (include Q and A)
- **In what form:** slides (include demo if you like)
 - Motivating your audience, problem introduction, formalization, algorithms, experiment results, demo, etc..
- **points:** 5 points (peer evaluation)
Total: 30 points of regular credit and 2 points of extra credit

1. Group formation (1 point)
2. Proposal (5 points)
3. Midterm check (2 points)
4. Data and code (5 points)
 ▶ Any programming language that can run in CCIS environment (Java and Python recommended)
 ▶ Documentation
5. Final report (12 points)
 ▶ At least two algorithms and two evaluation methods
6. Additional features (2 extra points)
 ▶ Novelty of the problem
 ▶ Your own data
 ▶ More than two algorithms/evaluation methods
 ▶ Other innovative features (e.g., new algorithm)
7. Presentation (5 points)
Grading

Collaboration Rules

- Every member in a team gets the same score (encourage teamwork)
 - Exception: the team has the right to claim someone as a free rider, and we will lower his/her score

- A table describing your division

An example:

<table>
<thead>
<tr>
<th>Task</th>
<th>People</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Collecting and preprocessing data</td>
<td>Student A</td>
</tr>
<tr>
<td>2. Implementing Algorithm 1</td>
<td>Student B</td>
</tr>
<tr>
<td>3. Implementing Algorithm 2</td>
<td>Student C and D</td>
</tr>
<tr>
<td>4. Evaluating and comparing algorithms</td>
<td>Student A</td>
</tr>
<tr>
<td>5. Writing report</td>
<td>Student B and C</td>
</tr>
<tr>
<td>6. Slides, demo, and Presentation</td>
<td>student A, B</td>
</tr>
</tbody>
</table>

- Peer evaluation
Resources and References

Datasets

- UCI Machine Learning Repository
 http://archive.ics.uci.edu/ml/
- DBLP “four-area dataset”:
 http://www.ccs.neu.edu/home/yzsun/data/DBLP_four_area.zip

Sample Projects from Previous Semesters

- Face Recognition
- Outlier Detection from Clinical Lab Data
- CCIS COURSE PLANNER
- Stylometry Classification for Authors
- MBTA Arriving Time Prediction
- Price Range Prediction for Boston Real Estate Data
- Student Application Recommendation System.
- ...
A Simple Example: Email Classification

Problem
▶ Determine whether a given email is spam or not

Data Mining Task
▶ Binary classification

Data
▶ UCI spam data set
 (http://archive.ics.uci.edu/ml/datasets/Spambase)
▶ Number of instances: 4601
▶ Number of attributes: 57
▶ The last column denotes whether the e-mail was spam (1) or not (0)
A Simple Example: Email Classification

Algorithms
▶ Naive Bayesian classifier
▶ Artificial neural network
▶ AdaBoost

Evaluation and Comparison
▶ Error rate
▶ ROC and AUC
▶ Speed
Have fun with your project!

😊