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Elements of Probability

Sample space Ω: the set of all the outcomes of
an experiment

Event space F : a collection of possible
outcomes of an experiment. F ⊆ Ω.

Probability measure: a function P : F → R
that satisfies the following properties:

P(A) ≥ 0 ∀ A ∈ F
P(Ω) = 1
If A1,A2, . . . are disjoint events, then

P(∪iAi) =
∑
i

P(Ai)
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Properties of Probability

If A ⊆ B =⇒ P(A) ≤ P(B)

P(A ∩ B) ≤ min (P(A),P(B))

P(A ∪ B) ≤ P(A) + P(B) (Union Bound)

P(Ω \ A) = 1− P(A)

If A1, . . . ,Ak is a disjoint partition of Ω, then
k∑

i=1

P(Ak) = 1
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Conditional Probability

A conditional probability P(A|B)

measures the probability of an event A

after observing the occurrence of event B

P(A|B) = P(A∩B)
P(B)

Two events A and B are independent iff

P(A|B) = P(A) or equivalently,

P(A ∩ B) = P(A)P(B)
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Conditional Probability Examples

A math teacher gave her class two tests. 25%
of the class passed both tests and 42% of the
class passed the first test. What percent of
those who passed the first test also passed the
second test?

In New England, 84% of the houses have a
garage and 65% of the houses have a garage
and a back yard. What is the probability that a
house has a backyard given that it has a
garage?
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Independent Events Examples

What’s the probability of getting a sequence of
1,2,3,4,5,6 if we roll a dice six times?

A school survey found that 9 out of 10
students like pizza. If three students are chosen
at random with replacement, what is the
probability that all three students like pizza?
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Random Variable
A random variable X is a function that maps a
sample space Ω to real values. Formally,

X : Ω −→ R

Examples:

Rolling one dice
X = number on the dice at each roll

Rolling two dice at the same time
X = sum of the two numbers
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Random Variable

A random variable can be continuous. E.g.,

X = the length of a randomly selected phone
call
(What’s the Ω?)

X = amount of coke left in a can marked 12oz
(What’s the Ω?)
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Probability Mass Function
If X is a discrete random variable, we can specify a
probability for each of its possible values using the
probability mass function (PMF ). Formally, a PMF
is a function p: Ω −→ R such that

p(x) = P(X = x)

Rolling a dice:
p(X = i) = 1

6 i = 1, 2, . . . , 6

Rolling two dice at the same time:
X = sum of the two numbers
p(X = 2) = 1

36

Yijun Zhao DATA MINING TECHNIQUES Review of Probability Theory



Probability Mass Function

X ∼ Bernoulli(p), p ∈ [0, 1]

p(x) =

{
p if x = 1
1− p if x = 0

X ∼ Binomial(n, p), p ∈ [0, 1] and n ∈ Z+

p(x) =
(
n
x

)
px(1− p)n−x

X ∼ Geometric(p), p > 0

p(x) = p(1− p)x−1

X ∼ Poisson(λ), λ > 0

p(x) = e−λλ
x

x!
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Probability Density Function

If X is a continuous random variable, we can
NOT specify a probability for each of its
possible values (why?)

We use a probability density function PDF to
describe the relative likelihood for a random
variable to take on a given value

A (PDF ) specifies the probability of X takes a
value within a range. Formally, a PDF is a
function f (x): Ω −→ R such that

P(a < X < b) =

∫ b

a

f (x)dx
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Probability Density Function
X ∼ uniform on [a, b]:

 

f (x) = 1
b−a

X ∼ N(µ, σ) :

 

f (x) = 1
σ
√

2π
e
− 1

2σ2
(x−µ)2
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Joint Probability Mass Function

If we have two discrete random variables X ,Y , we
can define their joint probability mass function
(PMF ) pXY : R2 −→ [0, 1] as:

p(x , y) = P(X = x ,Y = y)

where p(x , y) ≤ 1 and
∑
x∈X

∑
y∈Y

p(x , y) = 1

X ,Y : rolling two dice
p(x , y) = 1

36 x , y = 1, 2, . . . , 6

X : rolling one dice Y : drawing a colored ball
p(6, green) =? p(5, red) =?
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Joint Probability Density Function
If we have two continuous random variables X ,Y ,
we can define their joint probability density function
(PDF ) fXY : R2 −→ [0, 1] as:

P(a < X < b, c < Y < d) =

∫ d

c

∫ b

a

f (x , y)dxdy

2D Gaussian
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Marginal Probability Mass Function
How does the joint PMF over two discrete variables
relate to the PMF for each variable separately? It
turns out that

p(x) =
∑
y∈Y

p(x , y)

X ,Y : rolling two dice

p(x , y) = 1
36 x , y = 1, 2, . . . , 6

p(x) =
6∑

y=1
p(x , y) = 1

6
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Marginal Probability Density Function

Similarly, we can obtain a marginal PDF (also
called marginal density) for a continuous random
variable from a joint PDF :

f (x) =

∫ ∞
−∞

f (x , y)dy

Integrating out one variable in the 2D Gaussian
gives a 1D Gaussian in either dimension
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Conditional Probability Distribution

A conditional probability distribution defines

the probability distribution over Y when we

know that X must take on a certain value x

Discrete case: conditional PMF

p(y |x) = p(x ,y)
p(x) ⇐⇒ p(x , y) = p(y |x)p(x)

Continuous case: conditional PDF

f (y |x) = f (x ,y)
f (x) ⇐⇒ f (x , y) = f (y |x)f (x)
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Marginal vs. Conditional
 Marginal probability:  

 

 Conditional probability: probability of rolling a 2 
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Bayes Rule

We can express the joint probability in

two ways:

p(x , y) = p(y |x)p(x)

p(x , y) = p(x |y)p(y)

Bayes rule:

p(y |x) = p(x |y)p(y)
p(x) (discrete)

f (y |x) = f (x |y)f (y)
f (x) (continuous)
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Bayes Rule Application

A patient underwent a HIV test and got a positive
result. Suppose we know that

Overall risk of having HIV in the population is
0.1%

The test can accurately identify 98% of HIV
infected patients

The test can accurately identify 99% of healthy
patients

What’s the probability the person indeed infected
HIV?
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Bayes Rule - Application

We have two random variables here:

X ∈ {+,−}: the outcome of the HIV test

C ∈ {Y,N}: the patient has HIV or not

We want to know: P(C=Y|X=+)?

Apply Bayes rule:

P(C=Y|X=+) = P(X=+|C=Y)P(C=Y)
P(X=+)

P(X=+|C=Y) = 0.98 P(C=Y) = 0.001

P(X=+) = 0.98∗0.001+(1-0.99)∗0.999 = 0.01097

Answer: 0.98 ∗ 0.001/0.01097 = 8.9%
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Bayes Rule Terminology

P(Y |X ) =
P(X |Y )P(Y )

P(X )

P(Y ): prior probability or, simply, prior

P(X |Y ): conditional probability or, likelihood

P(X ): marginal probability

P(Y |X ): posterior probability or, simply, posterior
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Independence

Two random variables X and Y are independent iff

For discrete random variables
p(x , y) = p(x)p(y) ∀x ∈ X , y ∈ Y

For discrete random variables
p(y |x) = p(y) ∀y ∈ Y and p(x) 6= 0

For continuous random variables
f (x , y) = f (x)f (y) ∀x , y ∈ R

For continuous random variables
f (y |x) = f (y) ∀y ∈ R and f (x) 6= 0
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Multiple Random Variables

Extend to multiple random variables :

Joint Distribution (discrete):

p(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn)

Conditional Distribution (chain rule - discrete)

p(x1, . . . , xn) = p(xn|x1, . . . , xn−1)p(x1, . . . , xn−1)

= p(xn|x1, . . . , xn−1)p(xn−1|x1, . . . , xn−2)p(x1, . . . , xn−2)

= p(x1)
n∏

i=2

p(xi |x1, . . . , xi−1)

(continuous case can be defined similarly using PDF )
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Multiple Random Variables

Independence:

Discrete case: X1, . . . ,Xn are independent iff

p(x1, . . . , xn) =
n∏

i=1

p(xi)

Continuous case: X1, . . . ,Xn are independent iff

f (x1, . . . , xn) =
n∏

i=1

f (xi)
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Multiple Random Variables

Bayes rule:

Discrete case:

p(xn|x1, . . . , xn−1) = p(x1,...,xn−1|xn)p(xn)
p(x1,...,xn−1)

Continuous case:

f (xn|x1, . . . , xn−1) = f (x1,...,xn−1|xn)f (xn)
f (x1,...,xn−1)
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Probabilistic View of a Dataset

What about a dataset S = {(x1, y1), . . . , (xN , yN)}?
We can view S as d + 1 random variables
where d is the number of attributes in x, i.e.

X1, X2, . . . , Xd , Y

Uncover(model) p(x1, x2, . . . , xd , y) from the
training data

For ANY (x1, x2, . . . , xn), we will compute:

P(y = 0|x1, x2, . . . , xn) ?

P(y = 1|x1, x2, . . . , xn) ?

That is predicting y from x !
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