CS6220: DATA MINING TECHNIQUES

Matrix Data: Prediction

Instructor: Yizhou Sun
 yzsun@ccs.neu.edu

January 19, 2016

Announcements

- Team formation due next Wednesday
- Homework 1 out by tomorrow

Today's Schedule

- Course Project Introduction
- Linear Regression Model
- Decision Tree

Methods to Learn

	Matrix Data	Text Data	Set Data	Sequence Data	Time Series	Graph \& Network	Images
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN			HMM		Label Propagation	Neural Network
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel kmeans*	PLSA				SCAN; Spectral Clustering	
Frequent Pattern Mining			Apriori; FP-growth	GSP; PrefixSpan			
Prediction	Linear Regression				Autoregression	Collaborative Filtering	
Similarity Search					DTW	P-PageRank	
Ranking						PageRank	
							4

How to learn these algorithms?

- Three levels

- When it is applicable?
- Input, output, strengths, weaknesses, time complexity
- How it works?
- Pseudo-code, work flows, major steps
- Can work out a toy problem by pen and paper
- Why it works?
- Intuition, philosophy, objective, derivation, proof

Matrix Data: Prediction

- Matrix Data
- Linear Regression Model
- Model Evaluation and Selection
-Summary

Example

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	M	1	70	50	1	12	1.73
R1002	M	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	M	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	M	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	M	1	69	67	1	12	3.25

A matrix of $\mathrm{n} \times p$:

- n data objects / points
- p attributes / dimensions

$$
\left[\begin{array}{ccccc}
x_{11} & \ldots & x_{1 f} & \ldots & x_{1 p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{i 1} & \ldots & x_{i f} & \ldots & x_{i p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{n 1} & \ldots & x_{n f} & \ldots & x_{n p}
\end{array}\right]
$$

Attribute Type

- Numerical
- E.g., height, income
- Categorical / discrete
- E.g., Sex, Race

Categorical Attribute Types

- Nominal: categories, states, or "names of things"
- Hair_color = \{auburn, black, blond, brown, grey, red, white\}
- marital status, occupation, ID numbers, zip codes

- Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
- e.g., gender
- Asymmetric binary: outcomes not equally important.
- e.g., medical test (positive vs. negative)
- Convention: assign 1 to most important outcome (e.g., HIV positive)
- Ordinal
- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size $=\{$ small, medium, large\}, grades, army rankings

Matrix Data: Prediction

- Matrix Data
- Linear Regression Model \longmapsto
- Model Evaluation and Selection
-Summary

Linear Regression

-Ordinary Least Square Regression

- Closed form solution
- Gradient descent
- Linear Regression with Probabilistic Interpretation

The Linear Regression Problem

- Any Attributes to Continuous Value: $\mathbf{x} \Rightarrow \mathrm{y}$
- \{age; major ; gender; race\} \Rightarrow GPA
- $\{$ income; credit score; profession $\} \Rightarrow$ loan
- $\{$ college; major $;$ GPA $\} \Rightarrow$ future income
-...

Illustration

Formalization

- Data: n independent data objects
- $y_{i}, \mathrm{i}=1, \ldots, n$
- $\boldsymbol{x}_{i}=\left(x_{i 0}, x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)^{\mathrm{T}}, \mathrm{i}=1, \ldots, n$
- A constant factor is added to model the bias term, i. e. , $x_{i 0}=1$
- Model:
- y: dependent variable
- x: explanatory variables
- $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{T}$: weight vector
$\cdot y=\boldsymbol{x}^{T} \boldsymbol{\beta}=\beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots+x_{p} \beta_{p}$

A 2-step Process

- Model Construction

- Use training data to find the best parameter $\boldsymbol{\beta}$, denoted as $\widehat{\boldsymbol{\beta}}$
- Model Usage
- Model Evaluation
- Use validation data to select the best model
- Feature selection
- Apply the model to the unseen data (test data): $\hat{y}=\boldsymbol{x}^{T} \widehat{\boldsymbol{\beta}}$

Least Square Estimation

- Cost function (Total Square Error):
- $J(\boldsymbol{\beta})=\sum_{i}\left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}-y_{i}\right)^{2}$
- Matrix form:
$\cdot J(\boldsymbol{\beta})=(\mathrm{X} \boldsymbol{\beta}-\boldsymbol{y})^{T}(X \boldsymbol{\beta}-\boldsymbol{y})$

$$
\text { or }\left.\|\mathrm{X} \boldsymbol{\beta}-\boldsymbol{y}\|\right|^{2}
$$

$$
\left[\begin{array}{ccccc}
1, x_{11} & \ldots & x_{1 f} & \ldots & x_{1 p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1, x_{i 1} & \ldots & x_{i f} & \ldots & x_{i p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1, x_{n 1} & \ldots & x_{n f} & \ldots & x_{n p}
\end{array}\right]
$$

$X: n \times(p+1)$ matrix
$y: n \times 1$ vector

Ordinary Least Squares (OLS)

- Goal: find $\widehat{\boldsymbol{\beta}}$ that minimizes $J(\boldsymbol{\beta})$

$$
\begin{aligned}
\cdot J(\boldsymbol{\beta}) & =(\mathrm{X} \boldsymbol{\beta}-y)^{T}(X \boldsymbol{\beta}-y) \\
& =\boldsymbol{\beta}^{T} X^{T} X \boldsymbol{\beta}-y^{T} X \boldsymbol{\beta}-\boldsymbol{\beta}^{T} X^{T} y+y^{T} y
\end{aligned}
$$

- Ordinary least squares
- Set first derivative of $J(\boldsymbol{\beta})$ as 0

$$
\begin{aligned}
& \cdot \frac{\partial J}{\partial \boldsymbol{\beta}}=2 \boldsymbol{\beta}^{T} X^{\mathrm{T}} X-2 y^{T} X=0 \\
& \cdot \Rightarrow \widehat{\boldsymbol{\beta}}=\left(X^{T} X\right)^{-1} X^{T} y
\end{aligned}
$$

Gradient Descent

- Minimize the cost function by moving down in the steepest direction

Batch Gradient Descent

- Move in the direction of steepest descend

Repeat until converge \{

$$
\boldsymbol{\beta}^{(t+1)}:=\boldsymbol{\beta}^{(\mathrm{t})}-\left.\eta \frac{\partial J}{\partial \boldsymbol{\beta}}\right|_{\boldsymbol{\beta}=\boldsymbol{\beta}^{(\mathrm{t})}, \quad \text { e.g., } \eta=0.1, ~ . ~}
$$

\}
Where $J(\boldsymbol{\beta})=\sum_{i}\left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}-y_{i}\right)^{2}=\sum_{i} J_{i}(\boldsymbol{\beta})$ and

$$
\frac{\partial J}{\partial \boldsymbol{\beta}}=\sum_{i} \frac{\partial J_{i}}{\partial \boldsymbol{\beta}}=\sum_{i} 2 \boldsymbol{x}_{i}\left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}-y_{i}\right)
$$

Stochastic Gradient Descent

- When a new observation, i, comes in, update weight immediately (extremely useful for largescale datasets):

Repeat \{

$$
\begin{aligned}
& \text { for } \mathrm{i}=1: \mathrm{n}\{ \\
& \qquad \boldsymbol{\beta}^{(t+1)}:=\boldsymbol{\beta}^{(\mathrm{t})}+2 \eta\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}^{(t)}\right) \boldsymbol{x}_{\boldsymbol{i}}
\end{aligned}
$$

$$
\}
$$

\} If the prediction for object i is smaller than the real value, $\boldsymbol{\beta}$ should move forward to the direction of $\boldsymbol{x}_{\boldsymbol{i}}$

Other Practical Issues

- What if $X^{T} X$ is not invertible?
- Add a small portion of identity matrix, λI, to it (ridge regression ${ }^{*}$) $\sum_{i}\left(y_{i}-x_{i}^{T} \beta\right)^{2}+\lambda \sum_{j=1}^{i} \beta_{j}^{2}$
- What if some attributes are categorical?
- Set dummy variables
- E.g., $x=1$, if sex $=F ; x=0$, if sex $=M$
- Nominal variable with multiple values?
- Create more dummy variables for one variable
-What if non-linear correlation exists?
- Transform features, say, x to x^{2}

Probabilistic Interpretation

- Review of normal distribution

Probabilistic Interpretation

- Model: $y_{i}=x_{i}^{T} \beta+\varepsilon_{i}$
- $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$
- $y_{i} \mid x_{i}, \beta \sim N\left(x_{i}^{T} \beta, \sigma^{2}\right)$
- $E\left(y_{i} \mid x_{i}\right)=x_{i}^{T} \beta$
- Likelihood:
- $L(\boldsymbol{\beta})=\prod_{i} p\left(y_{i} \mid x_{i}, \beta\right)$

$$
=\prod_{i} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\left(y_{i}-x_{i}^{T} \boldsymbol{\beta}\right)^{2}}{2 \sigma^{2}}\right\}
$$

- Maximum Likelihood Estimation
- find $\widehat{\boldsymbol{\beta}}$ that maximizes $\mathrm{L}(\boldsymbol{\beta})$
$\cdot \arg \max L=\arg \min J$, Equivalent to OLS!

Matrix Data: Prediction

- Matrix Data
- Linear Regression Model
- Model Evaluation and Selection
-Summary

Model Selection Problem

- Basic problem:
- how to choose between competing linear regression models
- Model too simple:
- "underfit" the data; poor predictions; high bias; low variance
- Model too complex:
- "overfit" the data; poor predictions; low bias; high variance
- Model just right:
- balance bias and variance to get good predictions

Bias and Variance

- Bias: $E(\hat{f}(x))-f(x) \quad$ Estimated predictor $\hat{f}(x): x^{T} \widehat{\boldsymbol{\beta}}$
- How far away is the expectation of the estimator to the true value? The smaller the better.
- Variance: $\operatorname{Var}(\hat{f}(x))=E\left[(\hat{f}(x)-E(\hat{f}(x)))^{2}\right]$
- How variant is the estimator? The smaller the better.
- Reconsider mean square error
- $J(\widehat{\boldsymbol{\beta}}) / n=\sum_{i}\left(\boldsymbol{x}_{i}^{T} \widehat{\boldsymbol{\beta}}-y_{i}\right)^{2} / n$
- Can be considered as

$$
\begin{gathered}
E\left[(\hat{f}(x)-f(x)-\varepsilon)^{2}\right]=\text { bias }^{2}+\text { variance }+ \text { noise } \\
\text { Note } E(\varepsilon)=0, \operatorname{Var}(\varepsilon)=\sigma^{2}
\end{gathered}
$$

Bias-Variance Trade-off

Cross-Validation

- Partition the data into K folds

- Use K-1 fold as training, and 1 fold as testing
- Calculate the average accuracy best on K training-testing pairs
- Accuracy on validation/test dataset!
- Mean square error can again be used: $\sum_{i}\left(\boldsymbol{x}_{i}^{T} \widehat{\boldsymbol{\beta}}-y_{i}\right)^{2} / n$

AIC \& BIC*

- AIC and BIC can be used to test the quality of statistical models
- AIC (Akaike information criterion)
- $A I C=2 k-2 \ln (\hat{L})$,
- where k is the number of parameters in the model and \hat{L} is the likelihood under the estimated parameter
- BIC (Bayesian Information criterion)
- $\mathrm{BIC}=k \ln (n)-2 \ln (\hat{L})$,
- Where n is the number of objects

Stepwise Feature Selection

- Avoid brute-force selection

- 2^{p}
- Forward selection
- Starting with the best single feature
- Always add the feature that improves the performance best
- Stop if no feature will further improve the performance
- Backward elimination
- Start with the full model
- Always remove the feature that results in the best performance enhancement
- Stop if removing any feature will get worse performance

Matrix Data: Prediction

- Matrix Data
- Linear Regression Model
- Model Evaluation and Selection
-Summary \vDash

Summary

-What is matrix data?

- Attribute types
- Linear regression
- OLS
- Probabilistic interpretation
- Model Evaluation and Selection
- Bias-Variance Trade-off
- Mean square error
- Cross-validation, AIC, BIC, step-wise feature selection

