CS6220: DATA MINING TECHNIQUES

Matrix Data: Classification: Part 3

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

February 3, 2016

Announcements

Homework 2 will be out tomorrow

Methods to Learn

	Matrix Data	Text Data	Set Data	Sequence Data	Time Series	Graph & Network	Images
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN			HMM		Label Propagation	Neural Network
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k- means*	PLSA				SCAN; Spectral Clustering	
Frequent Pattern Mining			Apriori; FP-growth	GSP; PrefixSpan			

Autoregression

DTW

Collaborative

P-PageRank

PageRank

Filtering

	ivietilous to Leali					
	Matrix Data	Text Data	Set Data	Sequence Data	Time Serie	
Classification	Decision Tree; Naïve Bayes; Logistic Regression			НММ		

Linear Regression

Prediction

Similarity

Search

Ranking

Matrix Data: Classification: Part 3

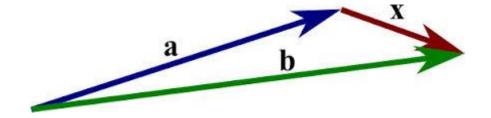
SVM (Support Vector Machine)

- kNN (k Nearest Neighbor)
- Other Issues
- Summary

Math Review

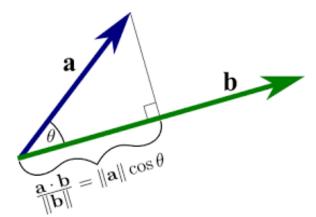
Vector

 $\bullet \mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$



• Subtracting two vectors: x = b - a

- Dot product
 - $\cdot \boldsymbol{a} \cdot \boldsymbol{b} = \sum a_i b_i$



- Geometric interpretation: projection
- If \boldsymbol{a} and \boldsymbol{b} are orthogonal, $\boldsymbol{a} \cdot \boldsymbol{b} = 0$

Math Review (Cont.)

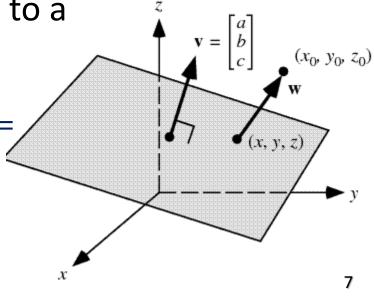
Plane/Hyperplane

- $a_1x_1 + a_2x_2 + \dots + a_nx_n = c$
- Line (n=2), plane (n=3), hyperplane (higher dimensions)
- Normal of a plane
 - $\mathbf{n} = (a_1, a_2, ..., a_n)$
 - a vector which is perpendicular to the surface

Math Review (Cont.) z

- Define a plane using normal n = (a, b, c) and a point (x_0, y_0, z_0) in the plane:
 - $(a,b,c) \cdot (x_0 x, y_0 y, z_0 z) = 0 \Rightarrow$ $ax + by + cz = ax_0 + by_0 + cz_0 (= d)$
- Distance from a point (x_0, y_0, z_0) to a plane ax + by + cz = d

$$\left| (x_0 - x, y_0 - y, z_0 - z) \cdot \frac{(a, b, c)}{||(a, b, c)||} \right| = \frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$$



 (x_0, y_0, z_0)

(x, y, z)

Linear Classifier

• Given a training dataset $\{x_i, y_i\}_{i=1}^N$

 A separating hyperplane can be written as a linear combination of attributes

$$\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = \mathbf{0}$$

where $W=\{w_1, w_2, ..., w_n\}$ is a weight vector and b a scalar (bias)

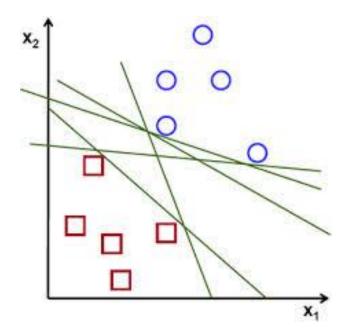
For 2-D it can be written as

$$W_0 + W_1 X_1 + W_2 X_2 = 0$$

Classification:

$$w_0 + w_1 x_1 + w_2 x_2 > 0 => y_i = +1$$

 $w_0 + w_1 x_1 + w_2 x_2 \le 0 => y_i = -1$



Perceptron

$$\mathbf{x} = (\mathbf{1}, x_1, x_2, \dots, x_d)^T$$
 $\mathbf{w} = (\omega_0, \omega_1, \omega_2, \dots, \omega_d)^T$ $y = \{1, -1\}$ $\alpha \in (0, 1]$ (learning rate)

Initialize $\mathbf{w} = \mathbf{0}$ (can be any vector) Repeat:

- For each training example (\mathbf{x}_i, y_i) :
 - Compute $\hat{y}_i = \text{sign}(\mathbf{w}^\mathsf{T} \mathbf{x_i})$
 - if $(y_i \neq \hat{y_i})$ $\mathbf{w} = \mathbf{w} + \alpha(y_i \mathbf{x_i})$

Until
$$(y_i = \hat{y_i} \quad \forall i = 1 \dots N)$$

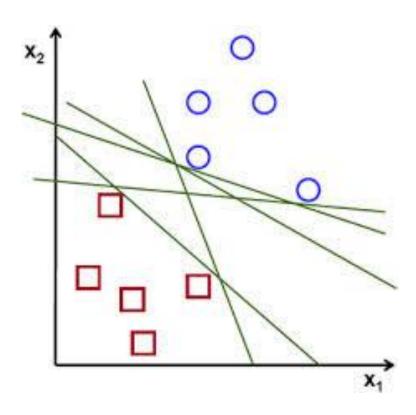
Return w

Example

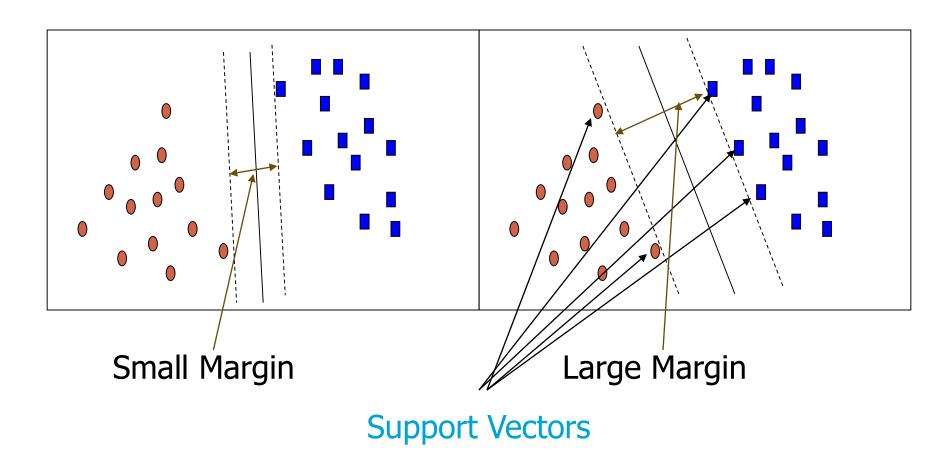
x0 x1 x2		true	W hoforo undata	predicted	W	
			label	before update	label	after update
1	0	1	Y	(0.0, 0.0, 0.0)	N	(0.9, 0.0, 0.9)
1	1	1	N	(0.9, 0.0, 0.9)	Y	(0.0, -0.9, 0.0)
1	0	0	Y	(0.0, -0.9, 0.0)	N	(0.9, -0.9, 0.0)
1	1	0	Y	(0.9, -0.9, 0.0)	N	(1.8, 0.0, 0.0)
1	0	1	Y	(1.8, 0.0, 0.0)	Y	(1.8, 0.0, 0.0)
1	1	1	N	(1.8, 0.0, 0.0)	Y	(0.9, -0.9, -0.9)
1	0	0	Y	(0.9, -0.9, -0.9)	Y	(0.9, -0.9, -0.9)
1	1	0	Y	(0.9, -0.9, -0.9)	N	(1.8, 0.0, -0.9)
1	0	1	Y	(1.8, 0.0, -0.9)	Y	(1.8, 0.0, -0.9)
1	1	1	N	(1.8, 0.0, -0.9)	Y	(0.9, -0.9, -1.8)
1	0	0	Y	(0.9, -0.9, -1.8)	Y	(0.9, -0.9, -1.8)
1	1	0	Y	(0.9, -0.9, -1.8)	N	(1.8, 0.0, -1.8)

Can we do better?

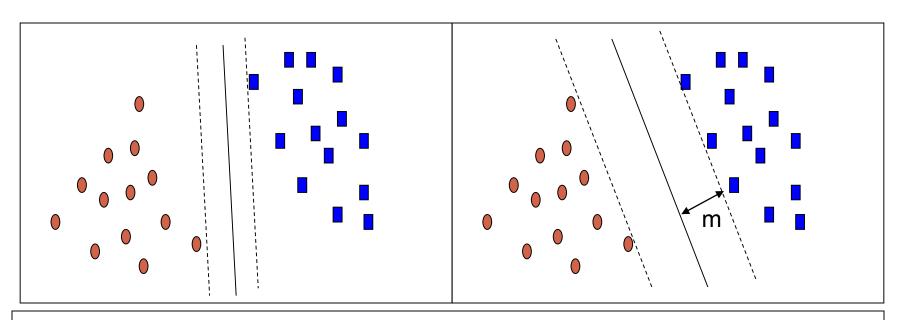
• Which hyperplane to choose?



SVM—Margins and Support Vectors



SVM—When Data Is Linearly Separable



Let data D be $(\mathbf{X}_1, \mathbf{y}_1)$, ..., $(\mathbf{X}_{|D|}, \mathbf{y}_{|D|})$, where \mathbf{X}_i is the set of training tuples associated with the class labels \mathbf{y}_i

There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find the best one</u> (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)

SVM—Linearly Separable

A separating hyperplane can be written as

$$\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = \mathbf{0}$$

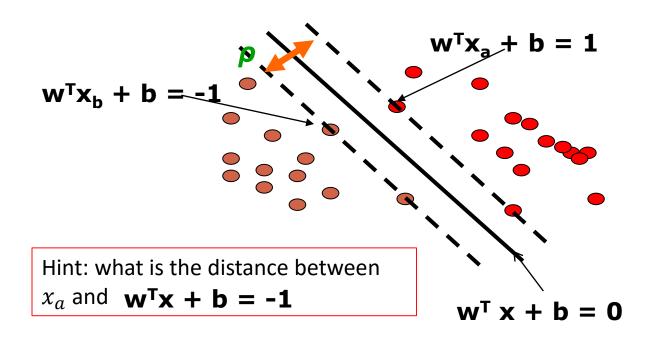
The hyperplane defining the sides of the margin, e.g.,:

H₁:
$$w_0 + w_1 x_1 + w_2 x_2 \ge 1$$
 for $y_i = +1$, and
H₂: $w_0 + w_1 x_1 + w_2 x_2 \le -1$ for $y_i = -1$

- Any training tuples that fall on hyperplanes H₁ or H₂ (i.e., the sides defining the margin) are support vectors
- This becomes a constrained (convex) quadratic optimization problem: Quadratic objective function and linear constraints → Quadratic Programming (QP) → Lagrangian multipliers

Maximum Margin Calculation

- w: decision hyperplane normal vector
- x_i: data point i
- y_i : class of data point i (+1 or -1)



margin:
$$\rho = \frac{2}{||\boldsymbol{w}||}$$

SVM as a Quadratic Programming

Objective: Find **w** and *b* such that $\rho = \frac{2}{||w||}$ is maximized;

Constraints: For all $\{(\mathbf{x_i}, y_i)\}$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x_i} + b \ge 1 \text{ if } y_i = 1$$

$$\mathbf{w}^{\mathbf{T}}\mathbf{x_i} + b \ge 1 \text{ if } y_i = 1;$$

 $\mathbf{w}^{\mathbf{T}}\mathbf{x_i} + b \le -1 \text{ if } y_i = -1$

A better form

Objective: Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w}$ is minimized;

Constraints: for all $\{(\mathbf{x_i}, y_i)\}: y_i(\mathbf{w^Tx_i} + b) \ge 1$

Solve QP

- This is now optimizing a quadratic function subject to linear constraints
- Quadratic optimization problems are a wellknown class of mathematical programming problem, and many (intricate) algorithms exist for solving them (with many special ones built for SVMs)
- The solution involves constructing a dual problem where a Lagrange multiplier α_i is associated with every constraint in the primary problem:

Lagrange Formulation

Minimize

$$L(\mathbf{w}, \mathbf{b}, \alpha) = \frac{1}{2}\mathbf{w}^\mathsf{T}\mathbf{w} - \sum_{i=1}^N \alpha_i(y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + \mathbf{b}) - 1)$$

Take the partial derivatives w.r.t \mathbf{w} , \mathbf{b} :

$$\nabla_{\mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i = 0 \Longrightarrow \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L}{\partial b} = -\sum_{i=1}^{N} \alpha_i y_i = 0$$

Primal Form and Dual Form

Primal

Objective: Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w}$ is minimized;

Constraints: for all $\{(\mathbf{x_i}, y_i)\}: y_i(\mathbf{w^Tx_i} + b) \ge 1$

Equivalent under some conditions: KKT conditions

Objective: Find $\alpha_1...\alpha_n$ such that

 $\mathbf{Q}(\alpha) = \Sigma \alpha_i - \Sigma \Sigma \alpha_i \alpha_i y_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_i$ is maximized and

Dual

Constraints

- (1) $\Sigma \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i
- More derivations:

http://cs229.stanford.edu/notes/cs229-notes3.pdf

The Optimization Problem Solution

The solution has the form:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$
 $b = y_k - \mathbf{w^T} \mathbf{x_k}$ for any $\mathbf{x_k}$ such that $\alpha_k \neq 0$

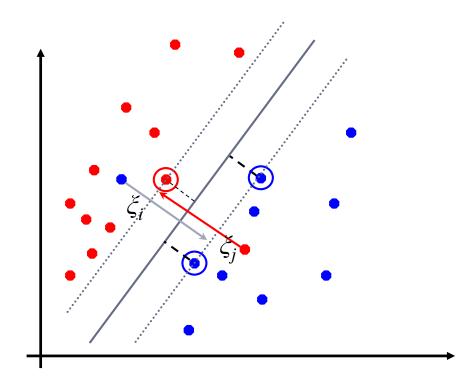
- Each non-zero α_i indicates that corresponding $\mathbf{x_i}$ is a support vector.
- Then the classifying function will have the form:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an inner product between the test point x and the support vectors x_i
 - We will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x_i}^T \mathbf{x_i}$ between all pairs of training points.

Soft Margin Classification

- If the training data is not linearly separable, slack variables ξ_i can be added to allow misclassification of difficult or noisy examples.
- Allow some errors
 - Let some points be moved to where they belong, at a cost
- Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)



Soft Margin Classification Mathematically

The old formulation:

Find w and b such that
$$\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
 is minimized and for all $\{(\mathbf{x_i}, y_i)\}$ $y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + \mathbf{b}) \ge 1$

The new formulation incorporating slack variables:

```
Find w and b such that  \Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{i} \text{ is minimized and for all } \{ (\mathbf{x_i}, y_i) \} 
 y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + b) \ge 1 - \xi_i \text{ and } \xi_i \ge 0 \text{ for all } i
```

- Parameter C can be viewed as a way to control overfitting
 - A regularization term (L1 regularization)

Soft Margin Classification – Solution

The dual problem for soft margin classification:

Find $\alpha_1...\alpha_N$ such that

$$\begin{aligned} \mathbf{Q}(\mathbf{\alpha}) = & \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j} \text{ is maximized and} \\ (1) & \sum \alpha_i y_i = 0 \\ (2) & 0 \leq \alpha_i \leq C \text{ for all } \alpha_i \end{aligned}$$

- Neither slack variables ξ_i nor their Lagrange multipliers appear in the dual problem!
- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$

$$b = y_k (1 - \xi_k) - \mathbf{w^T} \mathbf{x}_k \text{ where } k = \underset{k'}{\operatorname{argmax}} \alpha_{k'}$$

w is not needed explicitly for classification!

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

Sec. 15.1

Classification with SVMs

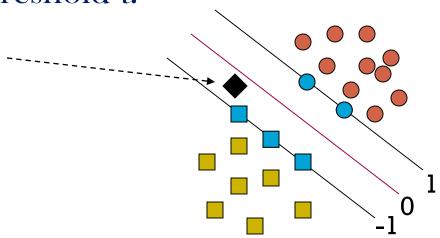
- Given a new point x, we can score its projection onto the hyperplane normal:
 - I.e., compute score: $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = \sum \alpha_{i} y_{i} \mathbf{x}_{i}^{\mathsf{T}}\mathbf{x} + b$
 - Decide class based on whether < or > 0

• Can set confidence threshold *t*.

Score > t: yes

Score < -t no

Else: don't know



Linear SVMs: Summary

- The classifier is a separating hyperplane.
- The most "important" training points are the support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers α_i .
- Both in the dual formulation of the problem and in the solution, training points appear only inside inner products:

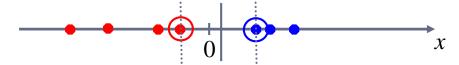
Find $\alpha_1...\alpha_N$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$ is maximized and (1) $\sum \alpha_i y_i = 0$

(2)
$$0 \le \alpha_i \le C$$
 for all α_i

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathbf{T}} \mathbf{x} + b$$

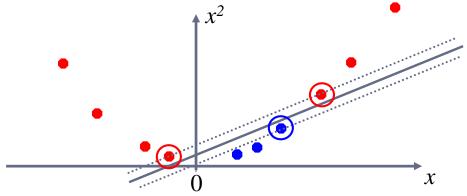
Non-linear SVMs

 Datasets that are linearly separable (with some noise) work out great:



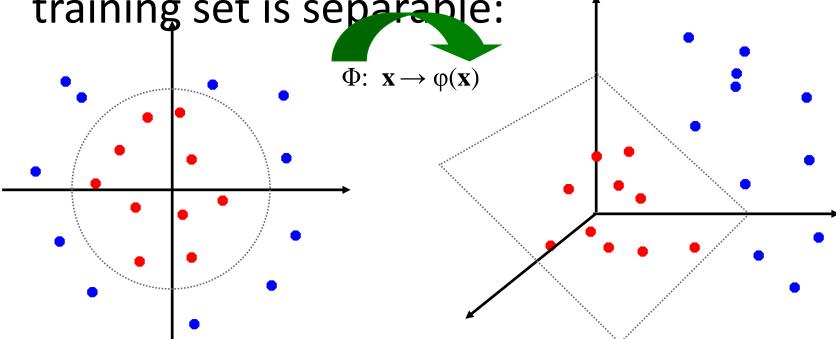
But what are we going to do if the dataset is just too hard?

How about ... mapping data to a higher-dimensional space:



Non-linear SVMs: Feature spaces

•General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:



The "Kernel Trick"

- The linear classifier relies on an inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- If every data point is mapped into high-dimensional space via some transformation Φ : $\mathbf{x} \rightarrow \phi(\mathbf{x})$, the inner product becomes:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j)$$

- A kernel function is some function that corresponds to an inner product in some expanded feature space.
- Example:

2-dimensional vectors
$$\mathbf{x} = [x_1 \ x_2]$$
; let $K(\mathbf{x_i}, \mathbf{x_j}) = (1 + \mathbf{x_i}^\mathsf{T} \mathbf{x_j})^2$, Need to show that $K(\mathbf{x_i}, \mathbf{x_j}) = \phi(\mathbf{x_i})^\mathsf{T} \phi(\mathbf{x_j})$:

$$K(\mathbf{x_{i}}, \mathbf{x_{j}}) = (1 + \mathbf{x_{i}}^{\mathsf{T}} \mathbf{x_{j}})^{2} = 1 + x_{i1}^{2} x_{j1}^{2} + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^{2} x_{j2}^{2} + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} = 1 + x_{i1}^{2} x_{i2}^{2} x_{i2}^{2} + 2 x_{i1}^{2} x_{i2}^{2} + 2 x_{i1}^{2} x_{i2}^{2} + 2 x_{i2}^{2} x_{i2}^{2} + 2 x_{i2}^{2} x_{i2}^{2} + 2 x_{i1}^{2} x_{i2}^{2} + 2 x_{i2}^{2} x_{i2}^{2} + 2 x_$$

SVM: Different Kernel functions

- Instead of computing the dot product on the transformed data, it is math. equivalent to applying a kernel function $K(\mathbf{X}_i, \mathbf{X}_j)$ to the original data, i.e., $K(\mathbf{X}_i, \mathbf{X}_j) = \Phi(\mathbf{X}_i)^T \Phi(\mathbf{X}_i)$
- Typical Kernel Functions

Polynomial kernel of degree $h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

Gaussian radial basis function kernel: $K(X_i, X_i) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

 *SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)

Non-linear SVM

- Replace inner-product with kernel functions
 - Optimization problem

Find $\alpha_1...\alpha_N$ such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{x_i, x_j}) \text{ is maximized and}$$

$$(1) \quad \sum \alpha_i y_i = 0$$

$$(2) \quad 0 \le \alpha_i \le C \text{ for all } \alpha_i$$

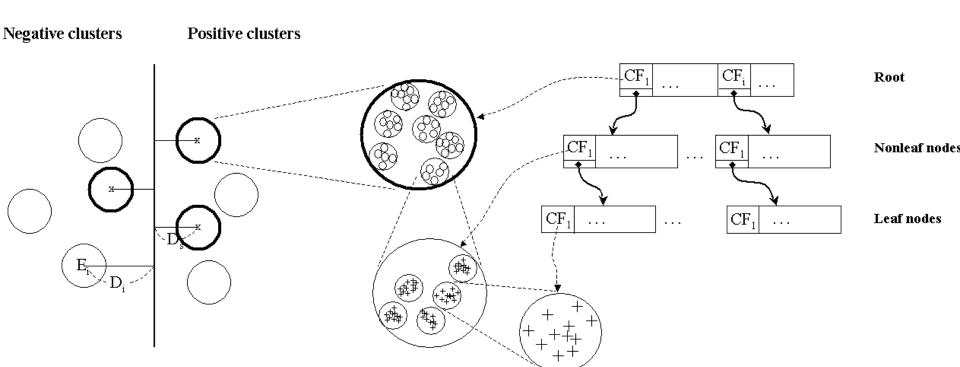
- Decision boundary

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{K}(\mathbf{x_i, x_j}) + b$$

*Scaling SVM by Hierarchical Micro-Clustering

- SVM is not scalable to the number of data objects in terms of training time and memory usage
- H. Yu, J. Yang, and J. Han, "<u>Classifying Large Data Sets Using SVM with</u>
 <u>Hierarchical Clusters</u>", KDD'03)
- CB-SVM (Clustering-Based SVM)
 - Given limited amount of system resources (e.g., memory), maximize the SVM performance in terms of accuracy and the training speed
 - Use micro-clustering to effectively reduce the number of points to be considered
 - At deriving support vectors, de-cluster micro-clusters near "candidate vector" to ensure high classification accuracy

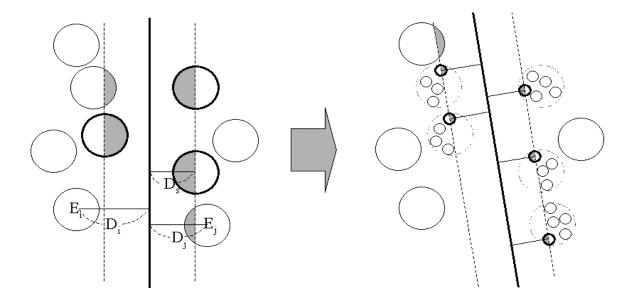
*CF-Tree: Hierarchical Micro-cluster



- Read the data set once, construct a statistical summary of the data (i.e., hierarchical clusters) given a limited amount of memory
- Micro-clustering: Hierarchical indexing structure
 - provide finer samples closer to the boundary and coarser samples farther from the boundary

*Selective Declustering: Ensure High Accuracy

- CF tree is a suitable base structure for selective declustering
- De-cluster only the cluster E_i such that
 - D_i R_i < D_s, where D_i is the distance from the boundary to the center point of E_i and R_i is the radius of E_i
 - Decluster only the cluster whose subclusters have possibilities to be the support cluster of the boundary
 - "Support cluster": The cluster whose centroid is a support vector



*CB-SVM Algorithm: Outline

- Construct two CF-trees from positive and negative data sets independently
 - Need one scan of the data set
- Train an SVM from the centroids of the root entries
- De-cluster the entries near the boundary into the next level
 - The children entries de-clustered from the parent entries are accumulated into the training set with the non-declustered parent entries
- Train an SVM again from the centroids of the entries in the training set
- Repeat until nothing is accumulated

*Accuracy and Scalability on Synthetic Dataset

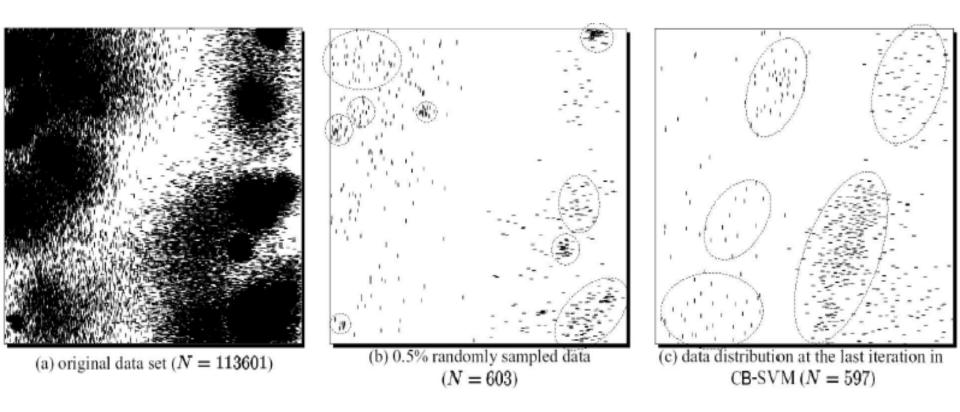


Figure 6: Synthetic data set in a two-dimensional space. '|': positive data; '-': negative data

 Experiments on large synthetic data sets shows better accuracy than random sampling approaches and far more scalable than the original SVM algorithm

SVM Related Links

- SVM Website: http://www.kernel-machines.org/
- Representative implementations
 - LIBSVM: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - **SVM-light:** simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - **SVM-torch**: another recent implementation also written in C
- From classification to regression and ranking:
 - http://www.dainf.ct.utfpr.edu.br/~kaestner/Mineracao/hwanjoyu-symtutorial.pdf

Matrix Data: Classification: Part 3

- SVM (Support Vector Machine)
- kNN (k Nearest Neighbor)
- Other Issues
- Summary

Lazy vs. Eager Learning

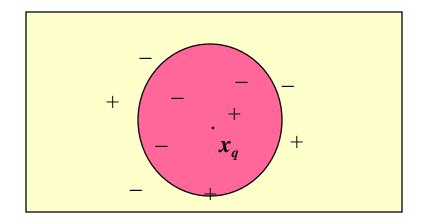
- Lazy vs. eager learning
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - Eager learning (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

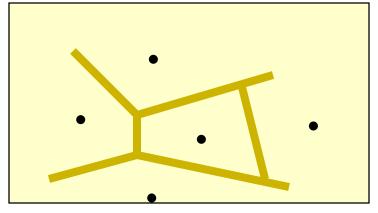
Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - k-nearest neighbor approach
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of Euclidean distance, dist(X₁, X₂)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_a
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples



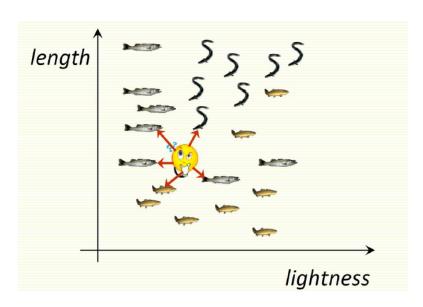


kNN Example

X = (length, lightness)

 $Classes = \{salmon, sea bass, eel\}$

Task: Identify fish given its (length, lightness)



K=5: 3 sea bass, 1 eel, 1 salmon \Rightarrow sea bass

kNN Algorithm Summary

- Choose K
- For a given new instance X_{new} , find K closest training points w.r.t. a distance measure
- Classify $X_{new} = \text{majority vote among}$ the K points

Discussion on the k-NN Algorithm

- k-NN for real-valued prediction for a given unknown tuple
 - Returns the mean values of the *k* nearest neighbors
- <u>Distance-weighted</u> nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query x_q
 - Give greater weight to closer neighbors

$$w = \frac{1}{d(x_q, x_i)^2}$$

- $y_q = \frac{\sum w_i y_i}{\sum w_i}$, where x_i 's are x_q 's nearest neighbors
- Robust to noisy data by averaging k-nearest neighbors
- <u>Curse of dimensionality</u>: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, axes stretch or elimination of the least relevant attributes

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

Data matrix

- n data points with p dimensions
- Two modes

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

- Dissimilarity matrix
 - n data points, but registers only the distance
 - A triangular matrix
 - Single mode

```
\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}
```

Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the M nominal states

Proximity Measure for Binary Attributes

A contingency table for binary data

Object jObject jObject i 0 sum q r q+r s+t sum q+s r+t p

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- $d(i,j) = \frac{r+s}{a+r+s}$

 $d(i,j) = \frac{r+s}{a+r+s+t}$

 Jaccard coefficient (similarity measure for asymmetric binary variables):

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Standardizing Numeric Data

- Z-score: $z = \frac{x \mu}{\sigma}$
 - X: raw score to be standardized, μ : mean of the population, σ : standard deviation
 - the distance between the raw score and the population mean in units of the standard deviation
 - negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

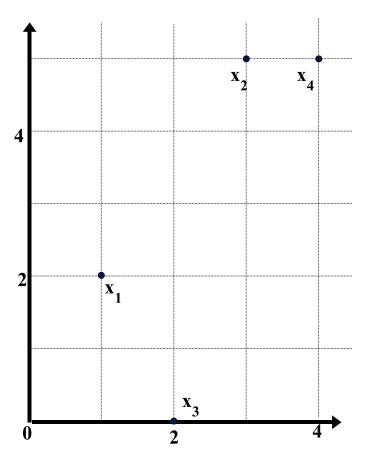
$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$
 where
$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$$

$$z_{if} = \frac{x_i - m_f}{s_f}$$
 • standardized measure (z-score):

Using mean absolute deviation is more robust than using standard deviation

Example:

Data Matrix and Dissimilarity Matrix



Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x</i> 2	3	5
<i>x</i> 3	2	0
<i>x4</i>	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x</i> 2	3.61	0		
<i>x3</i>	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two pdimensional data objects, and h is the order (the distance so defined is also called L-h norm)

- Properties
 - d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positive definiteness)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: Manhattan (city block, L₁ norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• *h* = 2: (L₂ norm) Euclidean distance

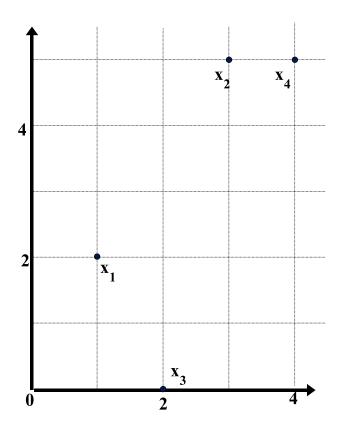
$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Example: Minkowski Distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5



Dissimilarity Matrices

Manhattan (L₁)

L	x 1	x2	х3	x4
x1	0			
x2	5	0		
x 3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	x 3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x1	x 2	х3	x4
x1	0			
x2	3	0		
x 3	2	5	0	
x4	3	1	5	0

Ordinal Variables

- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, ..., M_f\}$
 - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

• compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

• *f* is binary or nominal:

$$d_{ij}^{(f)} = 0$$
 if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ otherwise

- f is numeric: use the normalized distance
- f is ordinal
 - Compute ranks r_{if} and $z_{if} = \frac{r_{if}-1}{M_f-1}$ Treat z_{if} as interval-scaled

Cosine Similarity

• A **document** can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$,

where \bullet indicates vector dot product, | | d | |: the length of vector d

Example: Cosine Similarity

- $cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where • indicates vector dot product, ||d|: the length of vector d
- Ex: Find the similarity between documents 1 and 2.

$$d_I$$
 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)
 d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

$$d_{1} \bullet d_{2} = 5 * 3 + 0 * 0 + 3 * 2 + 0 * 0 + 2 * 1 + 0 * 1 + 0 * 1 + 2 * 1 + 0 * 0 + 0 * 1 = 25$$

$$| | d_{1} | | = (5 * 5 + 0 * 0 + 3 * 3 + 0 * 0 + 2 * 2 + 0 * 0 + 0 * 0 + 2 * 2 + 0 * 0 + 0 * 0)^{0.5} = (42)^{0.5} = 6.481$$

$$| | d_{2} | | = (3 * 3 + 0 * 0 + 2 * 2 + 0 * 0 + 1 * 1 + 1 * 1 + 0 * 0 + 1 * 1 + 0 * 0 + 1 * 1)^{0.5} = (17)^{0.5} = 4.12$$

$$\cos(d_{1}, d_{2}) = 0.94$$

Model Selection for kNN

- The number of neighbors k
 - Small k: overfitting (high variance)
 - Big k: bringing too many irrelevant points (high bias)
 - More discussions:

http://scott.fortmann-roe.com/docs/BiasVariance.html

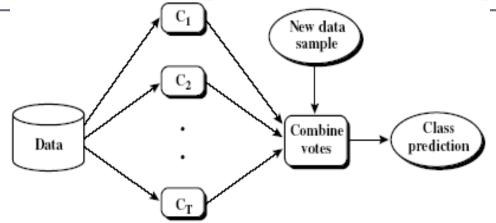
The distance function

Matrix Data: Classification: Part 3

- SVM (Support Vector Machine)
- kNN (k Nearest Neighbor)
- Other Issues

Summary

Ensemble Methods: Increasing the Accuracy



- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M_1 , M_2 , ..., M_k , with the aim of creating an improved model M^*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers

Bagging: Boostrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of d tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
 - A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M^* counts the votes and assigns the class with the most votes to X
- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple

Performance of Bagging

- Accuracy
 - Often significantly better than a single classifier derived from D
 - For noise data: not considerably worse, more robust
 - Proved improved accuracy in prediction
- Example
 - Suppose we have 5 completely independent classifiers...
 - If accuracy is 70% for each
 - The final prediction is correct, if at least 3 classifiers make the correct prediction
 - 3 are correct: $\binom{5}{3} \times (.7^3)(.3^2)$
 - 4 are correct: $\binom{5}{4} \times (.7^4)(.3^1)$
 - 5 are correct: $\binom{5}{5} \times (.7^5)(.3^0)$
 - In all, 10 (.7^3)(.3^2)+5(.7^4)(.3)+(.7^5)
 - 83.7% majority vote accuracy
 - 101 Such classifiers
 - 99.9% majority vote accuracy

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses—weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_t is learned, the weights are updated to allow the subsequent classifier, M_{t+1} , to pay more attention to the training tuples that were misclassified by M_t
 - The final **M* combines the votes** of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data

*Adaboost (Freund and Schapire, 1997)

- Given a set of d class-labeled tuples, (X₁, y₁), ..., (X_d, y_d)
- Initially, all the weights of tuples are set the same (1/d)
- Generate k classifiers in k rounds. At round t,
 - Tuples from D are sampled (with replacement) to form a training set D_t of the same size based on its weight
 - A classification model M_t is derived from D_t
 - If a tuple is misclassified, its weight is increased, o.w. it is decreased
 - $w_{t+1,j} \propto w_{t,j} \times \exp(-\alpha_t)$ if j is correctly classified
 - $w_{t+1,j} \propto w_{t,j} \times \exp(\alpha_t)$ if j is incorrectly classified

 α_t : weight forclassifier t, the higher the better

AdaBoost

• Error rate: $err(\mathbf{X}_j)$ is the misclassification error of tuple \mathbf{X}_j . Classifier \mathbf{M}_t error rate $(\epsilon_t = error(\mathbf{M}_t))$ is the sum of the weights of the misclassified tuples:

$$error(M_t) = \sum_{j}^{d} w_{tj} \times err(\mathbf{X}_{tj})$$

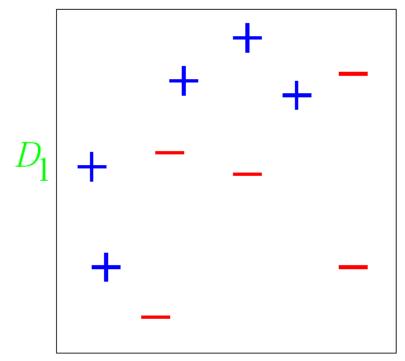
• The weight of classifier
$$M_t$$
's vote is
$$\alpha_t = \frac{1}{2} \ln \frac{1 - error(M_t)}{error(M_t)}$$

Final classifier M*

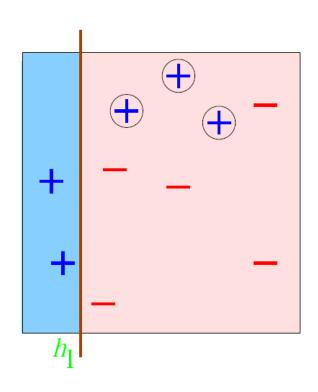
$$M^*(x) = sign(\sum_t \alpha_t M_t(x))$$

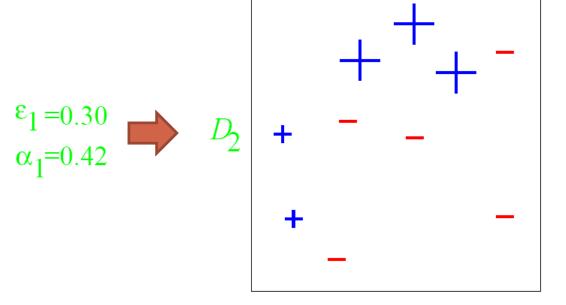
AdaBoost Example

- From "A Tutorial on Boosting"
 - By Yoav Freund and Rob Schapire
- Note they use h_t to represent classifier instead of M_t

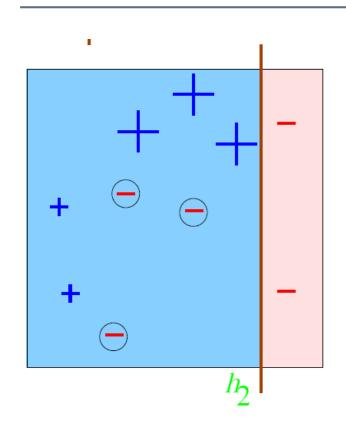


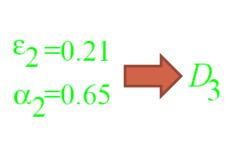
Round 1

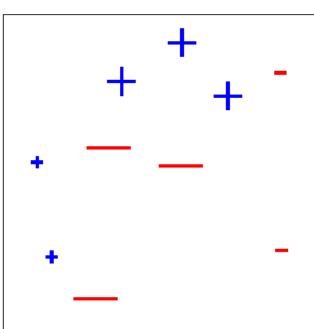




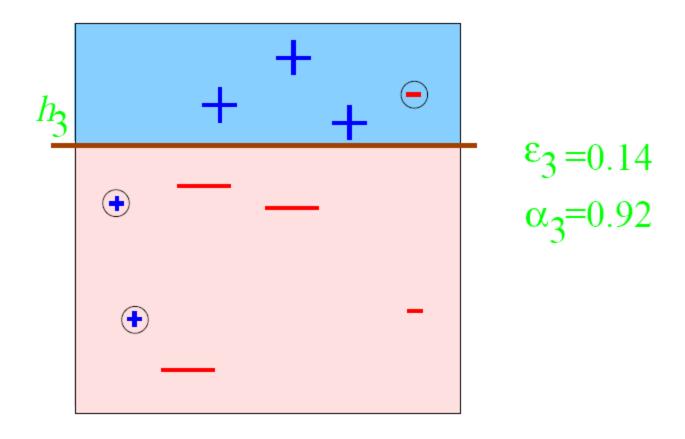
Round 2



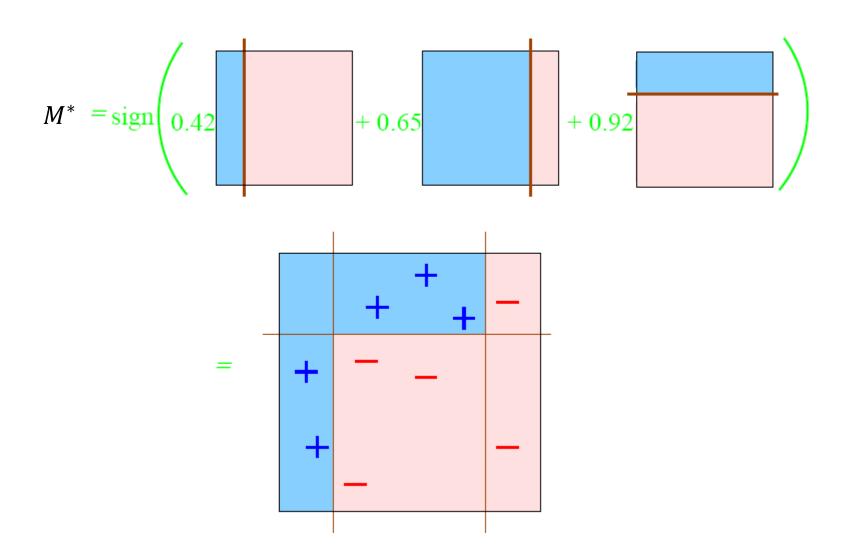




Round 3



Final Model



*Random Forest (Breiman 2001)

Random Forest:

- Each classifier in the ensemble is a *decision tree* classifier and is generated using a random selection of attributes at each node to determine the split
- During classification, each tree votes and the most popular class is returned
- Two Methods to construct Random Forest:
 - Forest-RI (*random input selection*): Randomly select, at each node, F attributes as candidates for the split at the node. The CART methodology is used to grow the trees to maximum size
 - Forest-RC (*random linear combinations*): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Comparable in accuracy to Adaboost, but more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than bagging or boosting

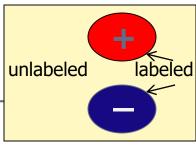
Classification of Class-Imbalanced Data Sets

- Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.
- Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data
- Typical methods for imbalance data in 2-class classification:
 - Oversampling: re-sampling of data from positive class
 - Under-sampling: randomly eliminate tuples from negative class
 - Threshold-moving: moves the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
 - Ensemble techniques: Ensemble multiple classifiers introduced above
- Still difficult for class imbalance problem on multiclass tasks

Multiclass Classification

- Classification involving more than two classes (i.e., > 2 Classes)
- Method 1. One-vs.-all (OVA): Learn a classifier one at a time
 - Given m classes, train m classifiers: one for each class
 - Classifier j: treat tuples in class j as *positive* & all others as *negative*
 - To classify a tuple **X**, the set of classifiers vote as an ensemble
- Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes
 - Given m classes, construct m(m-1)/2 binary classifiers
 - A classifier is trained using tuples of the two classes
 - To classify a tuple **X**, each classifier votes. X is assigned to the class with maximal vote
- Comparison
 - All-vs.-all tends to be superior to one-vs.-all
 - Problem: Binary classifier is sensitive to errors, and errors affect vote count

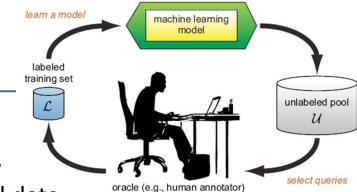
*Semi-Supervised Classification



- Semi-supervised: Uses labeled and unlabeled data to build a classifier
- Self-training:
 - Build a classifier using the labeled data
 - Use it to label the unlabeled data, and those with the most confident label prediction are added to the set of labeled data
 - Repeat the above process
 - Adv: easy to understand; disadv: may reinforce errors
- Co-training: Use two or more classifiers to teach each other
 - Each learner uses a mutually independent set of features of each tuple to train a good classifier, say f₁
 - Then f₁ and f₂ are used to predict the class label for unlabeled data X
 - Teach each other: The tuple having the most confident prediction from f_1 is added to the set of labeled data for f_2 , & vice versa
- Other methods, e.g., joint probability distribution of features and labels

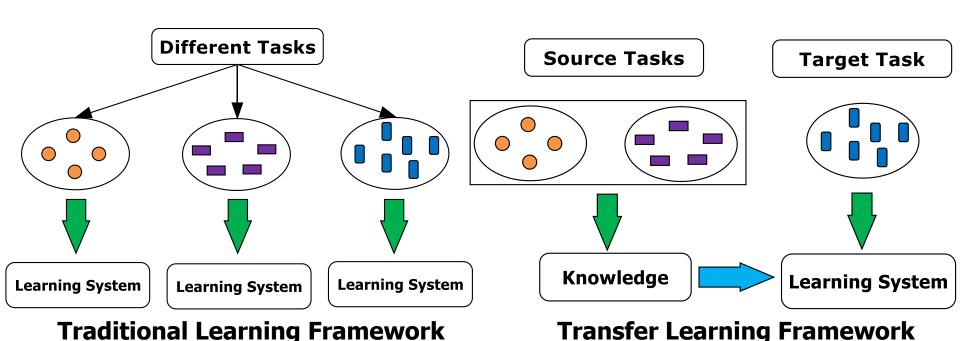
*Active Learning

- Class labels are expensive to obtain
- Active learner: query human (oracle) for labels
- Pool-based approach: Uses a pool of unlabeled data
 - L: a small subset of D is labeled, U: a pool of unlabeled data in D
 - Use a query function to carefully select one or more tuples from U and request labels from an oracle (a human annotator)
 - The newly labeled samples are added to L, and learn a model
 - Goal: Achieve high accuracy using as few labeled data as possible
- Evaluated using learning curves: Accuracy as a function of the number of instances queried (# of tuples to be queried should be small)
- Research issue: How to choose the data tuples to be queried?
 - Uncertainty sampling: choose the least certain ones
 - Reduce *version space*, the subset of hypotheses consistent w. the training data
 - Reduce expected entropy over U: Find the greatest reduction in the total number of incorrect predictions



*Transfer Learning: Conceptual Framework

- Transfer learning: Extract knowledge from one or more source tasks and apply the knowledge to a target task
- Traditional learning: Build a new classifier for each new task
- Transfer learning: Build new classifier by applying existing knowledge learned from source tasks



Transfer Learning: Methods and Applications

- Applications: Especially useful when data is outdated or distribution changes, e.g.,
 Web document classification, e-mail spam filtering
- Instance-based transfer learning: Reweight some of the data from source tasks and use it to learn the target task
- TrAdaBoost (Transfer AdaBoost)
 - Assume source and target data each described by the same set of attributes (features) & class labels, but rather diff. distributions
 - Require only labeling a small amount of target data
 - Use source data in training: When a source tuple is misclassified, reduce the weight of such tupels so that they will have less effect on the subsequent classifier
- Research issues
 - Negative transfer: When it performs worse than no transfer at all
 - Heterogeneous transfer learning: Transfer knowledge from different feature space or multiple source domains
 - Large-scale transfer learning

Matrix Data: Classification: Part 3

- SVM (Support Vector Machine)
- kNN (k Nearest Neighbor)
- Other Issues
- Summary

Support Vector Machine

• Support vectors; Maximum marginal hyperplane; Linear separable; Linear inseparable; Kernel tricks

Instance-Based Learning

• Lazy learning vs. eager learning; K-nearest neighbor algorithm; Similarity / dissimilarity measures

*Other Topics

• Ensemble; Class imbalanced data; multi-class classification; semi-supervised learning; active learning; transfer learning