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Announcements
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•Homework 1 grades out

•Re-grading policy: 

• If you have doubts in your grading, please submit 

a regrading form (via emails to both TAs and CC 

to the Instructor) indicating clearly the reason why 

you think it should be regraded 

• The deadline of the regrading form should be 

submitted within one week after you receive your 

score 

• We will regrade the whole homework/exam
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What is Cluster Analysis?

• Cluster: A collection of data objects

• similar (or related) to one another within the same group

• dissimilar (or unrelated) to the objects in other groups

• Cluster analysis (or clustering, data segmentation, …)

• Finding similarities between data according to the characteristics 

found in the data and grouping similar data objects into clusters

• Unsupervised learning: no predefined classes (i.e., learning by 
observations vs. learning by examples: supervised)

• Typical applications

• As a stand-alone tool to get insight into data distribution 

• As a preprocessing step for other algorithms
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Applications of Cluster Analysis

• Data reduction

• Summarization: Preprocessing for regression, PCA, classification, 

and association analysis

• Compression: Image processing: vector quantization

• Prediction based on groups

• Cluster & find characteristics/patterns for each group

• Finding K-nearest Neighbors

• Localizing search to one or a small number of clusters

• Outlier detection: Outliers are often viewed as those “far away” 

from any cluster
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Clustering: Application Examples

• Biology: taxonomy of living things: kingdom, phylum, class, order, 
family, genus and species

• Information retrieval: document clustering

• Land use: Identification of areas of similar land use in an earth 
observation database

• Marketing: Help marketers discover distinct groups in their 
customer bases, and then use this knowledge to develop 
targeted marketing programs

• City-planning: Identifying groups of houses according to their 
house type, value, and geographical location

• Earth-quake studies: Observed earth quake epicenters should 
be clustered along continent faults

• Climate: understanding earth climate, find patterns of 
atmospheric and ocean 7



Basic Steps to Develop a Clustering Task

• Feature selection

• Select info concerning the task of interest

• Minimal information redundancy

• Proximity measure

• Similarity of two feature vectors

• Clustering criterion

• Expressed via a cost function or some rules

• Clustering algorithms

• Choice of algorithms

• Validation of the results

• Validation test (also, clustering tendency test)

• Interpretation of the results

• Integration with applications
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Requirements and Challenges
• Scalability

• Clustering all the data instead of only on samples

• Ability to deal with different types of attributes

• Numerical, binary, categorical, ordinal, linked, and mixture of these 

• Constraint-based clustering

• User may give inputs on constraints

• Use domain knowledge to determine input parameters

• Interpretability and usability

• Others 

• Discovery of clusters with arbitrary shape

• Ability to deal with noisy data

• Incremental clustering and insensitivity to input order

• High dimensionality
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Partitioning Algorithms: Basic Concept

• Partitioning method: Partitioning a dataset D of n objects into a set of k

clusters, such that the sum of squared distances is minimized (where ci is 

the centroid or medoid of cluster Ci)

• Given k, find a partition of k clusters that optimizes the chosen partitioning 

criterion

• Global optimal: exhaustively enumerate all partitions

• Heuristic methods: k-means and k-medoids algorithms

• k-means (MacQueen’67, Lloyd’57/’82): Each cluster is represented by the 

center of the cluster

• k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw’87): Each cluster is represented by one of the objects in the 

cluster  
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The K-MeansClustering Method

• Given k, the k-means algorithm is implemented in four steps:

• Step 0: Partition objects into k nonempty subsets

• Step 1: Compute seed points as the centroids of the clusters 

of the current partitioning (the centroid is the center, i.e., 

mean point, of the cluster)

• Step 2: Assign each object to the cluster with the nearest 

seed point  

• Step 3: Go back to Step 1, stop when the assignment does 

not change
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An Example of K-Means Clustering

K=2

Arbitrarily 
partition 
objects into 
k groups

Update the 
cluster 
centroids

Update the 
cluster 
centroids

Reassign  objectsLoop if 
needed

The initial data set

 Partition objects into k nonempty 

subsets

 Repeat

 Compute centroid (i.e., mean 

point) for each partition 

 Assign each object to the 

cluster of its nearest centroid  

 Until no change
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Theory Behind K-Means

•Objective function

• 𝐽 =  𝑗=1
𝑘  𝐶 𝑖 =𝑗 ||𝑥𝑖 − 𝑐𝑗||

2

• Total within-cluster variance

•Re-arrange the objective function

• 𝐽 =  𝑗=1
𝑘  𝑖 𝑤𝑖𝑗||𝑥𝑖 − 𝑐𝑗||

2

• 𝑤𝑖𝑗 ∈ {0,1}

• 𝑤𝑖𝑗 = 1, 𝑖𝑓 𝑥𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗; 𝑤𝑖𝑗 =
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Looking for:

• The best assignment 𝑤𝑖𝑗

• The best center 𝑐𝑗
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Solution of K-Means

• Iterations
• Step 1: Fix centers 𝑐𝑗, find assignment 𝑤𝑖𝑗 that 
minimizes 𝐽
• => 𝑤𝑖𝑗 = 1, 𝑖𝑓 ||𝑥𝑖 − 𝑐𝑗||

2 is the smallest

• Step 2: Fix assignment 𝑤𝑖𝑗, find centers that 
minimize 𝐽
• => first derivative of 𝐽 = 0

• => 
𝜕𝐽

𝜕𝑐𝑗
= −2  𝑖 𝑤𝑖𝑗(𝑥𝑖 − 𝑐𝑗) = 0

• =>𝑐𝑗 =
 𝑖 𝑤𝑖𝑗𝑥𝑖

 𝑖 𝑤𝑖𝑗

• Note  𝑖 𝑤𝑖𝑗 is the total number of objects in cluster j
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Comments on the K-MeansMethod

• Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t  is # 

iterations. Normally, k, t << n.

• Comment: Often terminates at a local optimal

• Weakness

• Applicable only to objects in a continuous n-dimensional space 

• Using the k-modes method for categorical data

• In comparison, k-medoids can be applied to a wide range of data

• Need to specify k, the number of clusters, in advance (there are ways to 

automatically determine the best k (see Hastie et al., 2009)

• Sensitive to noisy data and outliers

• Not suitable to discover clusters with non-convex shapes
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Variations of the K-Means Method

• Most of the variants of the k-means which differ in

• Selection of the initial k means

• Dissimilarity calculations

• Strategies to calculate cluster means

• Handling categorical data: k-modes

• Replacing means of clusters with modes

• Using new dissimilarity measures to deal with categorical objects

• Using a frequency-based method to update modes of clusters

• A mixture of categorical and numerical data: k-prototype method
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What Is the Problem of the K-Means Method?

• The k-means algorithm is sensitive to outliers !

• Since an object with an extremely large value may substantially distort the 

distribution of the data

• K-Medoids:  Instead of taking the mean value of the object in a cluster as a 

reference point, medoids can be used, which is the most centrally located

object in a cluster
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PAM: A Typical K-Medoids Algorithm
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The K-Medoid Clustering Method

• K-Medoids Clustering: Find representative objects (medoids) in clusters

• PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)

• Starts from an initial set of medoids and iteratively replaces one of the 

medoids by one of the non-medoids if it improves the total distance of the 

resulting clustering

• PAM works effectively for small data sets, but does not scale well for large 

data sets (due to the computational complexity)

• Efficiency improvement on PAM

• CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples

• CLARANS (Ng & Han, 1994): Randomized re-sampling
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Hierarchical Clustering

• Use distance matrix as clustering criteria.  This method does not 
require the number of clusters k as an input, but needs a 
termination condition 

Step 0 Step 1 Step 2 Step 3 Step 4

b

d

c

e

a
a b

d e

c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative

(AGNES)

divisive

(DIANA)
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AGNES (Agglomerative Nesting)

• Introduced in Kaufmann and Rousseeuw (1990)

• Implemented in statistical packages, e.g., Splus

• Use the single-link method and the dissimilarity matrix  

• Merge nodes that have the least dissimilarity

• Go on in a non-descending fashion

• Eventually all nodes belong to the same cluster
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Dendrogram: Shows How Clusters are Merged

Decompose data objects into a several levels of nested partitioning (tree of 

clusters), called a dendrogram

A clustering of the data objects is obtained by cutting the dendrogram at 

the desired level, then each connected component forms a cluster
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DIANA (Divisive Analysis)

• Introduced in Kaufmann and Rousseeuw (1990)

• Implemented in statistical analysis packages, e.g., Splus

• Inverse order of AGNES

• Eventually each node forms a cluster on its own
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Distance between Clusters

• Single link:  smallest distance between an element in one cluster and an 

element in the other, i.e.,  dist(Ki, Kj) = min dist(tip, tjq)

• Complete link: largest distance between an element in one cluster and an 

element in the other, i.e.,  dist(Ki, Kj) = max dist(tip, tjq)

• Average: avg distance between an element in one cluster and an element in 

the other, i.e.,  dist(Ki, Kj) = avg dist(tip, tjq)

• Centroid: distance between the centroids of two clusters, i.e.,  dist(Ki, Kj) = 

dist(Ci, Cj)

• Medoid: distance between the medoids of two clusters, i.e.,  dist(Ki, Kj) = 

dist(Mi, Mj)

• Medoid: a chosen, centrally located object in the cluster

X X
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Centroid, Radius and Diameter of a Cluster (for numerical 
data sets)

• Centroid:  the “middle” of a cluster

• Radius: square root of average distance from any point of the 

cluster to its centroid

• Diameter: square root of average mean squared distance 

between all pairs of points in the cluster
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Example: Single Link vs. Complete Link
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Extensions to Hierarchical Clustering

• Major weakness of agglomerative clustering methods

• Can never undo what was done previously

• Do not scale well: time complexity of at least O(n2), where n is 

the number of total objects

• Integration of hierarchical & distance-based clustering

• *BIRCH (1996): uses CF-tree and incrementally adjusts the 

quality of sub-clusters

• *CHAMELEON (1999): hierarchical clustering using dynamic 

modeling
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Density-Based Clustering Methods

• Clustering based on density (local cluster criterion), such as 
density-connected points

• Major features:
• Discover clusters of arbitrary shape

• Handle noise

• One scan

• Need density parameters as termination condition

• Several interesting studies:

• DBSCAN: Ester, et al. (KDD’96)

• OPTICS: Ankerst, et al (SIGMOD’99).

• DENCLUE: Hinneburg & D. Keim  (KDD’98)

• CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based)
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DBSCAN: Basic Concepts

• Two parameters:

• Eps: Maximum radius of the neighborhood

• MinPts: Minimum number of points in an Eps-
neighborhood of that point

• NEps(q): {p belongs to D | dist(p,q) ≤ Eps}

• Directly density-reachable: A point p is directly density-
reachable from a point q w.r.t. Eps, MinPts if 

• p belongs to NEps(q)

• core point condition:

|NEps (q)| ≥ MinPts

MinPts = 5

Eps = 1 cm

p

q
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Density-Reachable and Density-Connected

• Density-reachable: 

• A point p is density-reachable from a 

point q w.r.t. Eps, MinPts if there is a 

chain of points p1, …, pn, p1 = q, pn = p

such that pi+1 is directly density-reachable 

from pi

• Density-connected

• A point p is density-connected to a point 

q w.r.t. Eps, MinPts if there is a point o 

such that both, p and q are density-

reachable from o w.r.t. Eps and MinPts

p

q
p2

p q

o
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DBSCAN: Density-Based Spatial Clustering of Applications 
with Noise

• Relies on a density-based notion of cluster:  A cluster is defined as 
a maximal set of density-connected points

• Noise: object not contained in any cluster is noise

• Discovers clusters of arbitrary shape in spatial databases with 
noise

Core

Border

Noise

Eps = 1cm

MinPts = 5
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DBSCAN: The Algorithm

• If a spatial index is used, the computational complexity of DBSCAN is O(nlogn), 
where n is the number of database objects. Otherwise, the complexity is O(n2) 35



DBSCAN: Sensitive to Parameters

DBSCAN online Demo: 

http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html
36

http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html


Questions about Parameters

•Fix Eps, increase MinPts, what will 
happen?

•Fix MinPts, decrease Eps, what will 
happen?
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*OPTICS:  A Cluster-Ordering Method (1999)

• OPTICS: Ordering Points To Identify the Clustering Structure

• Ankerst, Breunig, Kriegel, and Sander (SIGMOD’99)

• Produces a special order of the database wrt its density-based 

clustering structure  

• This cluster-ordering contains info equiv to the density-based 

clusterings corresponding to a broad range of parameter settings

• Good for both automatic and interactive cluster analysis, 

including finding intrinsic clustering structure

• Can be represented graphically or using visualization techniques

• Index-based time complexity:  O(N*logN)
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OPTICS: Some Extension from DBSCAN

• Core Distance of an object p: the smallest value ε’ such that the ε-
neighborhood of p has at least MinPts objects

•Let Nε(p): ε-neighborhood of p, ε is a distance 

value; card(Nε(p)): the size of set Nε(p) 

•Let MinPts-distance(p): the distance from p to its 

MinPts’ neighbor

Core-distanceε, MinPts(p) =  Undefined, if card(Nε(p)) < MinPts

MinPts-distance(p), otherwise
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• Reachability Distance of object p from core object q is the min 
radius value that makes p density-reachable from q
• Let distance(q,p) be the Euclidean distance between q and p 

Reachability-distanceε, MinPts(p, q) =

Undefined, if q is not a core object

max(core-distance(q), distance(q, p)), otherwise
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Core Distance & Reachability Distance

41
𝜺 = 𝟔𝒎𝒎, 𝑴𝒊𝒏𝑷𝒕𝒔 = 𝟓





Reachability-
distance

Cluster-order of the objects

undefined

‘
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Output of OPTICS: cluster-ordering



Extract DBSCAN-Clusters
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Density-Based Clustering: OPTICS & Applications
demo: http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/OPTICS/Demo

http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/OPTICS/Demo


*DENCLUE: Using Statistical Density Functions

• DENsity-based CLUstEring by Hinneburg & Keim  (KDD’98)

• Using statistical density functions:

• Major features

• Solid mathematical foundation

• Good for data sets with large amounts of noise

• Allows a compact mathematical description of arbitrarily shaped clusters 

in high-dimensional data sets

• Significant faster than existing algorithm (e.g., DBSCAN)

• But needs a large number of parameters
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• Overall density of the data space can be calculated as the 
sum of the influence function of all data points
• Influence function: describes the impact of a data point within its 

neighborhood

• Clusters can be determined mathematically by identifying 
density attractors
• Density attractors are local maximal of the overall density function

• Center defined clusters: assign to each density attractor the points 

density attracted to it

• Arbitrary shaped cluster: merge density attractors that are connected 

through paths of high density (> threshold)

Denclue: Technical Essence
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Density Attractor

47

Can be detected by hill-climbing procedure of finding local maximums



Noise Threshold

•Noise Threshold 𝜉

•Avoid trivial local maximum points

•A point can be a density attractor only if 
 𝑓 𝑥 ≥ 𝜉

48



Center-Defined and Arbitrary
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Measuring Clustering Quality

• Two methods: extrinsic vs. intrinsic  

• Extrinsic: supervised, i.e., the ground truth is available

• Compare a clustering against the ground truth using certain 

clustering quality measure

• Ex. Purity, BCubed precision and recall metrics, normalized 

mutual information

• Intrinsic: unsupervised, i.e., the ground truth is unavailable

• Evaluate the goodness of a clustering by considering how well 

the clusters are separated, and how compact the clusters are

• Ex. Silhouette coefficient
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Purity

• Let 𝑪 = 𝑐1, … , 𝑐𝐾 be the output clustering 
result, 𝜴 = 𝜔1, … , 𝜔𝐾 be the ground truth 
clustering result (ground truth class)

• 𝑐𝑘 𝑎𝑛𝑑 𝑤𝑘 are sets of data points

• 𝑝𝑢𝑟𝑖𝑡𝑦 𝐶, Ω =
1

𝑁
 𝑘 max

𝑗
|𝑐𝑘 ∩ 𝜔𝑗|
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Example

• Clustering output: cluster 1, cluster 2, and cluster 3 

• Ground truth clustering result: ×’s, ◊’s, and ○’s.

• cluster 1 vs. ×’s, cluster 2 vs. ○’s, and cluster 3 vs. ◊’s
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Normalized Mutual Information

•𝑁𝑀𝐼 Ω, 𝐶 =
𝐼(Ω,𝐶)

𝐻 Ω 𝐻(𝐶)

• 𝐼 Ω, 𝐶 =

•𝐻 Ω =

54
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Example

Cluster 1 Cluster 2 Cluster 3 sum

crosses 5 1 2 8

circles 1 4 0 5

diamonds 0 1 3 4

sum 6 6 5 N=17
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|𝝎𝒌 ∩ 𝒄𝒋| |𝝎𝒌|

|𝒄𝒋|



Precision and Recall
• P = TP/(TP+FP)

• R = TP/(TP+FN)

• F-measure: 2P*R/(P+R)

• Consider pairs of data points: 

• hopefully, two data points that are in the same cluster will be 

clustered into the same cluster (TP), and two data points that are 

in different clusters will be clustered into different clusters (TN).

56

Same cluster Different clusters

Same class TP FN

Different classes FP TN



Example
Data points Output clustering Ground truth 

clustering (class) 

a 1 2

b 1 2

c 2 2

d 2 1

57

• # pairs of data points: 6
• (a, b): same class, same cluster
• (a, c): same class, different cluster
• (a, d): different class, different cluster
• (b, c): same class, different cluster
• (b, d): different class, different cluster
• (3,4): different class,  same cluster

TP = 1
FP = 1
FN = 2
TN = 2
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Summary
• Cluster analysis groups objects based on their similarity and has 

wide applications; Measure of similarity can be computed for 
various types of data

• K-means and K-medoids algorithms are popular partitioning-
based clustering algorithms

• AGNES and DIANA are interesting hierarchical clustering 
algorithms

• DBSCAN, OPTICS*, and DENCLU* are interesting density-based 
algorithms

• Clustering evaluation
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