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Matrix Data: Clustering: Part 2
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- Mixture Model and EM algorithm

*Kernel K-means
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Recall K-Means

- Objective function
— \V'k 2
] = Zj=1 Zc(i)zj [lx; = ¢l
- T'otal within-cluster variance
- Re-arrange the objective function
— \'k 2
] = Zj=1ZiWij| x; — G|
° Wij € {0,1}
“w;i =1, if x; belongs to cluster j; wi; =0, otherwise

- Looking for:
* The best assignment w;;
* The best center ¢;



Solution of K-Meanks

. ]=)‘,_1)‘Wij”xi_cj”2
*|lterations =T

- Step 1: Fix centers ¢j, find assignment w;; that mimmuzes |

Ik

- Step 2: Fix assignment w; ;, Iind centers that mimmuze |
 => first derivative of ] =0

=50 = T2 2 Wij(x; —¢;) =0
RiWiix

* =>(; -
2. Wij

* Note );; w;; is the total number of objects in cluster j
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Limitations of K-Means

-K-means has problems when clusters are of different
* S1zes
- Densities

* Non-Spherical Shapes
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Limitations of K-Means: Different Density and Size
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Limitations of K-Means: Non-Spherical Shapes
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Demo

- http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet

Co

de/Cluster.html

-- Previous Operation Records -- -+ -- Previous Operation Records -- -
Algorithm : K-means - Algorithm : K-means '
Data : User Defined Close Window| Data : User Defined Grose window
Number of Cluster : 2 Number of Cluster: 2
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http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html

Connections of K-means to Other Methods

? ¥

Gaussian
. Kernel K-
Mixture P aane
Model
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Fuzzy Set and Fuzzy Cluster

» Clustering methods discussed so far

- Every data object 1s assigned to exactly one cluster

-Some applications may need for fuzzy or soft cluster
assignment

- Ex. An e-game could belong to both entertainment and software

-Methods: fuzzy clusters and probabilistic model-based
clusters

Fuzzy cluster: A fuzzyset S: Fo: X - [0, 1] (value
between 0 and 1)
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Mixture Model-Based Clustering

*A set C of k probabilistic clusters C,, ...,C,
* probability density tunctions: 7, ..., £,

- Cluster prior probabilities: w;, ..., w, ) iwj =1

- Probability of an object / generated by cluster C: is:

*P(xi,z; = () = w;fi(x;)

- Probability of i generated by the set of cluster C is:

» P(x;) = X wifi(x;)
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Maximum Likelihood Estimation

- Since objects are assumed to be generated
independently, for a data set D = {X,, ..., X.}, we

have,
Po) = [P =] | > whaw
i J

l

- Task: Find a set C of k probabilistic clusters s.t. P(D)
IS maximized
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The EM (Expectation Maximization) Algorithm

- The (EM) algorithm: A framework to approach maximum likelihood or maximum a
posteriori estimates of parameters in statistical models.

- E-step assigns objects to clusters according to the current tuzzy
clustering or parameters of probabilistic clusters

wi; = p(z; = j|6],x;) < p(x;|CF, 67 )p(C)
- M-step tinds the new clustering or parameters that maximize the
expected likelihood
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Gaussian Mixture Model

*Generative model

- For each object:

- Pick its distribution component: Z~Multi(wy, ..., wy,)

* Sample a value from the selected distribution: X~N(uz, O'ZZ)
- Overall likelihood function
L(D| 6) =[1; X; wjp(x:luj, o)
s.t.jwp=T1andw; =0
* Q: What s 6 here?
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Estimating Parameters

‘L(D; 0) = X;log ¥ ; wip(x;|uj, 07)
» Considering the first dervative of ;-

au] ‘Z W]p(leupﬂ ) ouj
_y ij(xiluj,ﬂj) 1 ap(xiluj,ﬂf)
'Y wip(xilujo) p(xiluof)  Op;

ij(xi“ij;o']z) alOQP(xilﬂj,Gf)
2 ij(xi“lj»o']g) ou;

7 S\

. =Zi

wi; = P(Z = j|X = x;,0) OL(x;)/0u;

Intractable!

Like weighted
likelihood
estimation;

But the weight is
determined by
the parameters!
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Apply EM algorithm: 1-d

- An iterative algorithm (at iteration t+1)
- E(expectation)-step
* Evaluate the weight w;; when u;, g;, w;are given
£ wipxilei (e
U3 whp @il (oD

» M(maximization)-step

* W;

- Evaluate u;, o7, w; when w;;’s are given that maximize the weighted likelihood

* |t is equivalent to Gaussian distribution parameter estimation when each point
has a weight belonging to each distribution

2
t t
W.. x— .
,#Hl_leuxl (0 2)t+1 = 2i ‘J| ' HJH witl o 3wt
;T o Zowl, W 2
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Example: 1-D GMM

components
mixture model

estimated model
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2-d Gaussian

» Bivariate Gaussian distribution

- Two dimensional random variable: X = (

())2) ~ N = (Z;)Z B (J(XGEXZ)

- Uy and U, are means of X;and X,

- g1 and o0, are standard deviations of X;and X,

- 0(X1,X,) is the covariance between X and X,,i.e.,0(Xq,X;) =
E(Xy — 1) (X7 — u2)
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Apply EM algorithm: 2-d

- An iterative algorithm (at iteration t+1)
- E(expectation)-step
* Evaluate the weight Wi when M, Xj, wiare given

; wtp(xlmj %)
2 Z wip (x|, E9)
- M(maximization)-step
 Evaluate M, 2, W when Wl-j'S are given that maximize the weighted likelihood

* |t is equivalent to Gaussian distribution parameter estimation when each point
has a weight belonging to each distribution

° Wi

t|]. t
i Wij |xl,2—ﬂj,zH

)

t whllx . —pt |
t+1 _ LiWijXi t+1 _ Li Wiy |x"1 ”1'1‘ .
( ]1)

° — z t+1 —
”] lelt] ’ Ziwfj ,( ]’2)

t
2 Wij

t t t
ZiWij(xi,1—Hj,1)(xi,2_“j,2) i W_t+1 < Z wt.
i wij o Y

‘ (U(X1»X2)j)t+1=
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K-Means: A Special Case of Gaussian Mixture Model

When each Gaussian component with covariance matrix
2
o“l

» Soft K-means Distance!
’P(Xi‘lij; 02) X eXp{—(xi — Hj)2|/07}

-When g% = 0

* Solt assignment becomes hard assignment

“w;i - 1, if x;1s closest to Uj (why?)
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*Why EM Works?

* I-Step: computing a tight lower bound t of the original objective
function at 8,4

* M-Step: find 8,,,,, to maximize the lower bound

’l(gnew) = f(gnew) = f(gold) — l(eold)

29



*How to Find Tight Lower Bound?

(8 = lﬂgz p(d, h;0)
h
B q(h) .
= IDEZI: a0 g (h): the tight lower bound
t to get
p(d, h; 6) e
2 1W =

-Jensen’s inequality

. d h pld,h: @)
log q h Rl
oM 5 og 2

- When “=" holds to get a tight lower bound?
*q(h) = p(hld, 8) (why?)
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Advantages and Disadvantages of GMM

- Strength

- Mixture models are more general than partitoning: different densities and sizes of

clusters
* Clusters can be characterized by a small number of parameters
« The results may satisty the statistical assumptions of the generative models
- Weakness
« Converge to local optimal (overcome: run multi-times w. random mitialization)

- Computationally expensive 1f the number of distributions 1s large, or the data set

contains very few observed data points
- Hard to esiimate the number of clusters

 Can only deal with spherical clusters
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*Kernel K-Means

- How to cluster the following data?
ar &

‘I_

2
3
24

bt

- A non-linear map: ¢:R" > F
« Map a data pomnt into a higher/infinite dimensional space

X = ¢x)

* Dot product matrix K;;
Kij =< (xp), p(x5) >
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Typical Kernel Functions

- Recall kernel SVM:

Polynomial kernel of degree /h :
(Gaussian radial basis function kernel :

Sigmoid kernel :

I&F(Xh AX}) — EJ—HX,'—)LEHQEQG-Q

K(X;, X;) = tanh(xX; - X; — 0)
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Solution of Kernel K-Means

- Objective function under new feature space:

] = X5 Yiwiillo(x) — ¢ |2
 Algorithm
» By fixing assignment w;;
cCj = X Wi d(x;)/ Xy wij

- In the assignment step, assign the data points to the closest center

2
Xir wirjp(xir)
cd(xi, ) = H(P(xi) = ;V_, ivi,jx | = ¢Qx;) - d(xy) —

5 T Wi #Ge)-9(xy) o T Ty Wi (xr) 9
Zil Wil (Zil Wi’j)Az

Do not really need to know ¢(x), but only K;;
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Advantages and Disadvantages of Kernel K-Means

- Advantages
- Algorithm 1s able to 1dentify the non-linear structures.

- Disadvantages
- Number of cluster centers need to be predetined.

- Algorithm 1s complex 1 nature and ttime complexity 1s large.

- References
- Kernel k-means and Spectral Clustering by Max Welling.

- Kernel k-means, Spectral Clustering and Normalized Cut by Indemt
S. Dhillon, Yuqiang Guan and Brian Kulis.

- An Introduction to kernel methods by Colin Campbell.
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- Mixture Model and EM algorithm
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Summary

*Revisit k-means

* Dernvative

* Mixture models

» Gaussian mixture model; multinomial mixture model; EM
algorithm; Connection to k-means

-Kernel k-means*

- Objective function; solution; connection to k-means
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