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•Revisit K-means

•Mixture Model and EM algorithm
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•Summary
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Recall K-Means

• Objective function

• 𝐽 =  𝑗=1
𝑘  𝐶 𝑖 =𝑗 ||𝑥𝑖 − 𝑐𝑗||

2

• Total within-cluster variance

• Re-arrange the objective function

• 𝐽 =  𝑗=1
𝑘  𝑖𝑤𝑖𝑗||𝑥𝑖 − 𝑐𝑗||

2

• 𝑤𝑖𝑗 ∈ {0,1}

• 𝑤𝑖𝑗 = 1, 𝑖𝑓 𝑥𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗; 𝑤𝑖𝑗 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Looking for:

• The best assignment 𝑤𝑖𝑗
• The best center 𝑐𝑗
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Solution of K-Means

• Iterations

• Step 1: Fix centers 𝑐𝑗, find assignment 𝑤𝑖𝑗 that minimizes 𝐽

• => 𝑤𝑖𝑗 = 1, 𝑖𝑓 ||𝑥𝑖 − 𝑐𝑗||
2 is the smallest

• Step 2: Fix assignment 𝑤𝑖𝑗, find centers that minimize 𝐽
• => first derivative of 𝐽 = 0

• => 
𝜕𝐽

𝜕𝑐𝑗
= −2 𝑖𝑤𝑖𝑗(𝑥𝑖 − 𝑐𝑗) =0

• =>𝑐𝑗 =
 𝑖𝑤𝑖𝑗𝑥𝑖

 𝑖𝑤𝑖𝑗
• Note  𝑖𝑤𝑖𝑗 is the total number of objects in cluster j
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𝐽 = 
𝑗=1

𝑘

 

𝑖

𝑤𝑖𝑗||𝑥𝑖 − 𝑐𝑗||
2













Converges! Why?



Limitations of K-Means

•K-means has problems when clusters are of different

• Sizes

• Densities

• Non-Spherical Shapes
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Limitations of K-Means: Different Density  and Size
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Limitations of K-Means: Non-Spherical Shapes
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Demo

•http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Co
de/Cluster.html
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http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html


Connections of K-means to Other Methods
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Fuzzy Set and Fuzzy Cluster

•Clustering methods discussed so far
• Every data object is assigned to exactly one cluster

•Some applications may need for fuzzy or soft cluster 
assignment 
• Ex. An e-game could belong to both entertainment and software

•Methods: fuzzy clusters and probabilistic model-based 
clusters

•Fuzzy cluster:  A fuzzy set S: FS : X → [0, 1] (value 
between 0 and 1)
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Mixture Model-Based Clustering

•A set C of k probabilistic clusters C1, …,Ck

• probability density functions: f1, …, fk, 

• Cluster prior probabilities: w1, …, wk,  𝑗𝑤𝑗 = 1

•Probability of an object i generated by cluster Cj is:

•𝑃(𝑥𝑖 , 𝑧𝑖 = 𝐶𝑗) = 𝑤𝑗𝑓𝑗(𝑥𝑖)

•Probability of i generated by the set of cluster C is:

• 𝑃 𝑥𝑖 =  𝑗𝑤𝑗𝑓𝑗(𝑥𝑖)
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Maximum Likelihood Estimation

•Since objects are assumed to be generated 

independently, for a data set D = {x1, …, xn}, we 

have,

𝑃 𝐷 = 

𝑖

𝑃 𝑥𝑖 = 

𝑖

 

𝑗

𝑤𝑗𝑓𝑗(𝑥𝑖)

•Task: Find a set C of k probabilistic clusters s.t. P(D) 

is maximized
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The EM (Expectation Maximization) Algorithm

• The (EM) algorithm: A framework to approach maximum likelihood or maximum a 
posteriori estimates of parameters in statistical models.

• E-step assigns objects to clusters according to the current fuzzy 

clustering or parameters of probabilistic clusters

•𝑤𝑖𝑗
𝑡 = 𝑝 𝑧𝑖 = 𝑗 𝜃𝑗

𝑡 , 𝑥𝑖 ∝ 𝑝 𝑥𝑖 𝐶𝑗
𝑡 , 𝜃𝑗
𝑡 𝑝(𝐶𝑗

𝑡)

• M-step finds the new clustering or parameters that maximize the 

expected likelihood
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Gaussian Mixture Model

•Generative model

• For each object:

• Pick its distribution component: 𝑍~𝑀𝑢𝑙𝑡𝑖 𝑤1, … , 𝑤𝑘

• Sample a value from the selected distribution: 𝑋~𝑁 𝜇𝑍, 𝜎𝑍
2

•Overall likelihood function

•𝐿 𝐷| 𝜃 =  𝑖 𝑗𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗 , 𝜎𝑗
2)

s.t.  𝑗𝑤𝑗 = 1 𝑎𝑛𝑑 𝑤𝑗 ≥ 0

• Q: What is 𝜃 here?
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Estimating Parameters

•𝐿 𝐷; 𝜃 =  𝑖 log 𝑗𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗 , 𝜎𝑗
2)

• Considering the first derivative of 𝜇𝑗:

•
𝜕𝐿

𝜕𝑢𝑗
=  𝑖

𝑤𝑗

 𝑗𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝜇𝑗

• =  𝑖
𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗

2)

 𝑗𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

1

𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝜇𝑗

• =  𝑖
𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗

2)

 𝑗𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝑙𝑜𝑔𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝑢𝑗

23𝑤𝑖𝑗 = 𝑃(𝑍 = 𝑗|𝑋 = 𝑥𝑖 , 𝜃) 𝜕𝑙(𝑥𝑖)/𝜕𝜇𝑗

Intractable!

Like weighted 
likelihood 
estimation;
But the weight is 
determined by 
the parameters!



Apply EM algorithm: 1-d

• An iterative algorithm (at iteration t+1)
• E(expectation)-step

• Evaluate the weight 𝑤𝑖𝑗 when 𝜇𝑗 , 𝜎𝑗 , 𝑤𝑗are given

• 𝑤𝑖𝑗
𝑡 =

𝑤𝑗
𝑡𝑝(𝑥𝑖|𝜇𝑗

𝑡,(𝜎𝑗
2)𝑡)

 𝑗𝑤𝑗
𝑡𝑝(𝑥𝑖|𝜇𝑗

𝑡,(𝜎𝑗
2)𝑡)

• M(maximization)-step

• Evaluate 𝜇𝑗 , 𝜎𝑗 , 𝑤𝑗 when 𝑤𝑖𝑗’s are given that maximize the weighted likelihood

• It is equivalent to Gaussian distribution parameter estimation when each point 
has a weight belonging to each distribution

• 𝜇𝑗
𝑡+1 =

 𝑖𝑤𝑖𝑗
𝑡 𝑥𝑖

 𝑖𝑤𝑖𝑗
𝑡 ; (𝜎𝑗

2)𝑡+1 =
 𝑖𝑤𝑖𝑗
𝑡 𝑥𝑖−𝜇𝑗

𝑡
2

 𝑖𝑤𝑖𝑗
𝑡 ; 𝑤𝑗

𝑡+1 ∝  𝑖𝑤𝑖𝑗
𝑡
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Example: 1-D GMM
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2-d Gaussian

• Bivariate Gaussian distribution 

• Two dimensional random variable: X =
𝑋1
𝑋2

𝑋1
𝑋2
∼ 𝑁(𝝁 =

𝜇1
𝜇2
, Σ =

𝜎1
2 𝜎 𝑋1, 𝑋2

𝜎 𝑋1, 𝑋2 𝜎2
2 )

• 𝜇1 𝑎𝑛𝑑 𝜇2 are means of 𝑋1𝑎𝑛𝑑 𝑋2
• 𝜎1 𝑎𝑛𝑑 𝜎2 𝑎𝑟𝑒 standard deviations of 𝑋1𝑎𝑛𝑑 𝑋2
• 𝜎 𝑋1, 𝑋2 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑋1𝑎𝑛𝑑 𝑋2, 𝑖. 𝑒. , 𝜎 𝑋1, 𝑋2 =
𝐸 𝑋1 − 𝜇1 𝑋2 − 𝜇2
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Apply EM algorithm: 2-d

• An iterative algorithm (at iteration t+1)
• E(expectation)-step

• Evaluate the weight 𝑤𝑖𝑗 when 𝝁𝑗 , Σ𝑗 , 𝑤𝑗are given

• 𝑤𝑖𝑗
𝑡 =

𝑤𝑗
𝑡𝑝(𝒙𝑖|𝝁𝑗

𝑡,Σ𝑗
𝑡)

 𝑗𝑤𝑗
𝑡𝑝(𝒙𝑖|𝝁𝑗

𝑡,Σ𝑗
𝑡)

• M(maximization)-step

• Evaluate 𝝁𝑗 , Σ𝑗 , 𝑤𝑗 when 𝑤𝑖𝑗’s are given that maximize the weighted likelihood
• It is equivalent to Gaussian distribution parameter estimation when each point 

has a weight belonging to each distribution

• 𝝁𝑗
𝑡+1 =

 𝑖𝑤𝑖𝑗
𝑡 𝒙𝑖

 𝑖𝑤𝑖𝑗
𝑡 ; (𝜎𝑗,1

2 )𝑡+1 =
 𝑖𝑤𝑖𝑗
𝑡 𝑥𝑖,1−𝜇𝑗,1

𝑡
2

 𝑖𝑤𝑖𝑗
𝑡 ; (𝜎𝑗,2

2 )𝑡+1 =
 𝑖𝑤𝑖𝑗
𝑡 𝑥𝑖,2−𝜇𝑗,2

𝑡
2

 𝑖𝑤𝑖𝑗
𝑡 ;

• (𝜎 𝑋1, 𝑋2 𝑗)
𝑡+1=

 𝑖𝑤𝑖𝑗
𝑡 (𝑥𝑖,1−𝜇𝑗,1

𝑡 )(𝑥𝑖,2−𝜇𝑗,2
𝑡 )

 𝑖𝑤𝑖𝑗
𝑡 ; 𝑤𝑗

𝑡+1 ∝  𝑖𝑤𝑖𝑗
𝑡
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K-Means: A Special Case of Gaussian Mixture Model

•When each Gaussian component with covariance matrix 
𝜎2𝐼

• Soft K-means

•𝑝 𝑥𝑖 𝜇𝑗 , 𝜎
2 ∝ exp{− 𝑥𝑖 − 𝜇𝑗

2
/𝜎2}

•When 𝜎2 → 0

• Soft assignment becomes hard assignment

•𝑤𝑖𝑗 → 1, 𝑖𝑓 𝑥𝑖 is closest to 𝜇𝑗 (why?)

28

Distance!



*Why EM Works?

• E-Step: computing a tight lower bound f of the original objective 

function at 𝜃𝑜𝑙𝑑
• M-Step: find 𝜃𝑛𝑒𝑤 to maximize the lower bound

• 𝑙 𝜃𝑛𝑒𝑤 ≥ 𝑓 𝜃𝑛𝑒𝑤 ≥ 𝑓(𝜃𝑜𝑙𝑑) = 𝑙(𝜃𝑜𝑙𝑑)
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*How to Find Tight Lower Bound?

•

• Jensen’s inequality

•

• When “=” holds to get a tight lower bound?

• 𝑞 ℎ = 𝑝(ℎ|𝑑, 𝜃) (why?)

30

𝑞 ℎ : 𝑡ℎ𝑒 𝑡𝑖𝑔ℎ𝑡 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝑤𝑒 𝑤𝑎𝑛𝑡 𝑡𝑜 𝑔𝑒𝑡



Advantages and Disadvantages of GMM

• Strength

• Mixture models are more general than partitioning: different densities and sizes of 

clusters

• Clusters can be characterized by a small number of parameters

• The results may satisfy the statistical assumptions of the generative models

• Weakness

• Converge to local optimal (overcome: run multi-times w. random initialization)

• Computationally expensive if the number of distributions is large, or the data set 

contains very few observed data points

• Hard to estimate the number of clusters

• Can only deal with spherical clusters
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*Kernel K-Means
• How to cluster the following data?

• A non-linear map: 𝜙:𝑅𝑛 → 𝐹
• Map a data point into a higher/infinite dimensional space

• 𝑥 → 𝜙 𝑥

• Dot product matrix 𝐾𝑖𝑗
• 𝐾𝑖𝑗 =< 𝜙 𝑥𝑖 , 𝜙(𝑥𝑗) >
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Typical Kernel Functions

•Recall kernel SVM:
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Solution of Kernel K-Means

• Objective function under new feature space:

• 𝐽 =  𝑗=1
𝑘  𝑖𝑤𝑖𝑗||𝜙(𝑥𝑖) − 𝑐𝑗||

2

• Algorithm 
• By fixing assignment 𝑤𝑖𝑗

• 𝑐𝑗 =  𝑖𝑤𝑖𝑗 𝜙(𝑥𝑖)/ 𝑖𝑤𝑖𝑗
• In the assignment step, assign the data points to the closest center

• 𝑑 𝑥𝑖 , 𝑐𝑗 = 𝜙 𝑥𝑖 −
 𝑖′𝑤𝑖′𝑗𝜙 𝑥𝑖′

 𝑖′𝑤𝑖′𝑗

2

= 𝜙 𝑥𝑖 ⋅ 𝜙 𝑥𝑖 −

2
 
𝑖′
𝑤
𝑖′𝑗
𝜙 𝑥𝑖 ⋅𝜙 𝑥𝑖′

 
𝑖′
𝑤𝑖′𝑗

+
 
𝑖′
 𝑙𝑤𝑖′𝑗𝑤𝑙𝑗𝜙 𝑥𝑖′ ⋅𝜙 𝑥𝑙

( 
𝑖′
𝑤𝑖′𝑗)^2

35Do not really need to know 𝝓 𝒙 , 𝒃𝒖𝒕 𝒐𝒏𝒍𝒚 𝑲𝒊𝒋



Advantages and Disadvantages of Kernel K-Means

• Advantages
• Algorithm is able to identify the non-linear structures.

• Disadvantages
• Number of cluster centers need to be predefined.

• Algorithm is complex in nature and time complexity is large.

• References
• Kernel k-means and Spectral Clustering by Max Welling.

• Kernel k-means, Spectral Clustering and Normalized Cut by Inderjit
S. Dhillon, Yuqiang Guan and Brian Kulis.

• An Introduction to kernel methods by Colin Campbell.
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Summary

•Revisit k-means

• Derivative

•Mixture models

• Gaussian mixture model; multinomial mixture model; EM 

algorithm; Connection to k-means

•Kernel k-means*

• Objective function; solution; connection to k-means
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