CS6220: DATA MINING TECHNIQUES

Matrix Data: Clustering: Part 2

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

February 17, 2016

Methods to Learn

	Matrix Data	Text Data	Set Data	Sequence Data	Time Series	Graph & Network	Images
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN			HMM		Label Propagation	Neural Network
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means*	PLSA				SCAN; Spectral Clustering	
Frequent Pattern Mining			Apriori; FP- growth	GSP; PrefixSpan			
Prediction	Linear Regression				Autoregression	Collaborative Filtering	
Similarity Search					DTW	P-PageRank	
Ranking						PageRank	

Matrix Data: Clustering: Part 2

Mixture Model and EM algorithm

Kernel K-means

Recall K-Means

Objective function

•
$$J = \sum_{j=1}^{k} \sum_{C(i)=j} ||x_i - c_j||^2$$

- Total within-cluster variance
- Re-arrange the objective function

•
$$J = \sum_{j=1}^{k} \sum_{i} w_{ij} ||x_i - c_j||^2$$

•
$$w_{ij} \in \{0,1\}$$

- $w_{ij} = 1$, if x_i belongs to cluster j; $w_{ij} = 0$, otherwise
- Looking for:
 - The best assignment w_{ij}
 - The best center c_j

Solution of K-Means $J = \sum_{i=1}^{k} \sum_{k=1}^{k} w_{ij} ||x_i - c_j||^2$

Iterations

- Step 1: Fix centers c_j , find assignment w_{ij} that minimizes J• => $w_{ij} = 1$, $if ||x_i - c_j||^2$ is the smallest
- Step 2: Fix assignment w_{ij} , find centers that minimize J
 - => first derivative of J = 0

• =>
$$\frac{\partial J}{\partial c_j} = -2\sum_i w_{ij}(x_i - c_j) = 0$$

• => $c_j = \frac{\sum_i w_{ij}x_i}{\sum_i w_{ij}}$
• Note $\sum_i w_{ij}$ is the total number of objects in cluster j

Converges! Why?

Limitations of K-Means

- K-means has problems when clusters are of different
 - Sizes
 - Densities
 - Non-Spherical Shapes

Limitations of K-Means: Different Density and Size

Original Points

K-means (3 Clusters)

Limitations of K-Means: Non-Spherical Shapes

Original Points

K-means (2 Clusters)

Demo

<u>http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Co</u> <u>de/Cluster.html</u>

Connections of K-means to Other Methods

Matrix Data: Clustering: Part 2

Revisit K-means

Mixture Model and EM algorithm

• Kernel K-means

• Summary

Fuzzy Set and Fuzzy Cluster

- Clustering methods discussed so far
 - Every data object is assigned to exactly one cluster
- Some applications may need for fuzzy or soft cluster assignment
 - Ex. An e-game could belong to both entertainment and software
- Methods: fuzzy clusters and probabilistic model-based clusters
- Fuzzy cluster: A fuzzy set S: $F_S : X \rightarrow [0, 1]$ (value between 0 and 1)

Mixture Model-Based Clustering

- A set *C* of *k* probabilistic clusters *C*₁, ..., *C*_k
 - probability density functions: $f_1, ..., f_k$,
 - Cluster prior probabilities: $w_1, ..., w_k, \sum_j w_j = 1$
- Probability of an object *i* generated by cluster C_i is:
 - $P(x_i, z_i = C_j) = w_j f_j(x_i)$
- Probability of *i* generated by the set of cluster *C* is:

•
$$P(x_i) = \sum_j w_j f_j(x_i)$$

Maximum Likelihood Estimation

 Since objects are assumed to be generated independently, for a data set D = {x₁, ..., x_n}, we have,

$$P(D) = \prod_{i} P(x_i) = \prod_{i} \sum_{j} w_j f_j(x_i)$$

Task: Find a set C of k probabilistic clusters s.t. P(D) is maximized

The EM (Expectation Maximization) Algorithm

- The (EM) algorithm: A framework to approach maximum likelihood or maximum a posteriori estimates of parameters in statistical models.
 - **E-step** assigns objects to clusters according to the current fuzzy clustering or parameters of probabilistic clusters

•
$$w_{ij}^t = p(z_i = j | \theta_j^t, x_i) \propto p(x_i | C_j^t, \theta_j^t) p(C_j^t)$$

• **M-step** finds the new clustering or parameters that maximize the expected likelihood

Gaussian Mixture Model

Generative model

- For each object:
 - Pick its distribution component: $Z \sim Multi(w_1, ..., w_k)$
 - Sample a value from the selected distribution: $X \sim N(\mu_Z, \sigma_Z^2)$
- Overall likelihood function
 - $L(D \mid \theta) = \prod_i \sum_j w_j p(x_i \mid \mu_j, \sigma_j^2)$
 - s.t. $\sum_j w_j = 1$ and $w_j \ge 0$
 - Q: What is θ here?

Estimating Parameters

•
$$L(D; \theta) = \sum_{i} \log \sum_{j} w_{j} p(x_{i} | \mu_{j}, \sigma_{j}^{2})$$
 Intractable!
• Considering the first derivative of μ_{j} :
• $\frac{\partial L}{\partial u_{j}} = \sum_{i} \frac{w_{j}}{\sum_{j} w_{j} p(x_{i} | \mu_{j}, \sigma_{j}^{2})} \frac{\partial p(x_{i} | \mu_{j}, \sigma_{j}^{2})}{\partial \mu_{j}}$
• $= \sum_{i} \frac{w_{j} p(x_{i} | \mu_{j}, \sigma_{j}^{2})}{\sum_{j} w_{j} p(x_{i} | \mu_{j}, \sigma_{j}^{2})} \frac{1}{p(x_{i} | \mu_{j}, \sigma_{j}^{2})} \frac{\partial p(x_{i} | \mu_{j}, \sigma_{j}^{2})}{\partial \mu_{j}}$
• $= \sum_{i} \frac{w_{j} p(x_{i} | \mu_{j}, \sigma_{j}^{2})}{\sum_{j} w_{j} p(x_{i} | \mu_{j}, \sigma_{j}^{2})} \frac{\partial \log p(x_{i} | \mu_{j}, \sigma_{j}^{2})}{\partial u_{j}}$
• $\sum_{i} \frac{w_{j} p(x_{i} | \mu_{j}, \sigma_{j}^{2})}{\sum_{j} w_{j} p(x_{i} | \mu_{j}, \sigma_{j}^{2})} \frac{\partial \log p(x_{i} | \mu_{j}, \sigma_{j}^{2})}{\partial u_{j}}$
• $\sum_{i} \frac{w_{ij} = P(Z = j | X = x_{i}, \theta)}{\sum_{j} w_{ij} (x_{i} | \mu_{j}, \theta_{j})} \frac{\partial l(x_{i})}{\partial \mu_{j}} \frac{V_{i}}{\partial \mu_{j}}$

Apply EM algorithm: 1-d

- An iterative algorithm (at iteration t+1)
 - E(expectation)-step
 - Evaluate the weight w_{ij} when μ_j , σ_j , w_j are given

•
$$w_{ij}^t = \frac{w_j^t p(x_i | \mu_{j}^t, (\sigma_j^2)^t)}{\sum_j w_j^t p(x_i | \mu_{j}^t, (\sigma_j^2)^t)}$$

- M(maximization)-step
 - Evaluate μ_j, σ_j, w_j when w_{ij} 's are given that maximize the weighted likelihood
 - It is equivalent to Gaussian distribution parameter estimation when each point has a weight belonging to each distribution

•
$$\mu_j^{t+1} = \frac{\sum_i w_{ij}^t x_i}{\sum_i w_{ij}^t}; (\sigma_j^2)^{t+1} = \frac{\sum_i w_{ij}^t ||x_i - \mu_j^t||^2}{\sum_i w_{ij}^t}; w_j^{t+1} \propto \sum_i w_{ij}^t$$

Example: 1-D GMM

2-d Gaussian

- Bivariate Gaussian distribution • Two dimensional random variable: $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N(\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma(X_1, X_2) \\ \sigma(X_1, X_2) & \sigma_2^2 \end{pmatrix})$
 - μ_1 and μ_2 are means of X_1 and X_2
 - σ_1 and σ_2 are standard deviations of X_1 and X_2
 - $\sigma(X_1, X_2)$ is the covariance between X_1 and X_2 , i.e., $\sigma(X_1, X_2) = E(X_1 \mu_1)(X_2 \mu_2)$

Apply EM algorithm: 2-d

- An iterative algorithm (at iteration t+1)
 - E(expectation)-step
 - Evaluate the weight w_{ij} when $\boldsymbol{\mu}_j, \Sigma_j, w_j$ are given

•
$$w_{ij}^t = \frac{w_j^t p(x_i | \boldsymbol{\mu}_j^t, \boldsymbol{\Sigma}_j^t)}{\sum_j w_j^t p(x_i | \boldsymbol{\mu}_j^t, \boldsymbol{\Sigma}_j^t)}$$

- M(maximization)-step
 - Evaluate μ_j , Σ_j , w_j when w_{ij} 's are given that maximize the weighted likelihood
 - It is equivalent to Gaussian distribution parameter estimation when each point has a weight belonging to each distribution

•
$$\boldsymbol{\mu}_{j}^{t+1} = \frac{\sum_{i} w_{ij}^{t} x_{i}}{\sum_{i} w_{ij}^{t}}; (\sigma_{j,1}^{2})^{t+1} = \frac{\sum_{i} w_{ij}^{t} ||x_{i,1} - \mu_{j,1}^{t}||^{2}}{\sum_{i} w_{ij}^{t}}; (\sigma_{j,2}^{2})^{t+1} = \frac{\sum_{i} w_{ij}^{t} ||x_{i,2} - \mu_{j,2}^{t}||^{2}}{\sum_{i} w_{ij}^{t}}; (\sigma_{j,2}^{2})^{t+1} = \frac{\sum_{i} w_{ij}^{t} ||x_{i,2} - \mu_{j,2}^{t}||x_{$$

K-Means: A Special Case of Gaussian Mixture Model

- When each Gaussian component with covariance matrix $\sigma^2 I$
- Soft K-means • $p(x_i | \mu_j, \sigma^2) \propto \exp\{-(x_i - \mu_j)^2 / \sigma^2\}$ • When $\sigma^2 \to 0$
 - Soft assignment becomes hard assignment
 - $w_{ij} \rightarrow 1$, if x_i is closest to μ_j (why?)

*Why EM Works?

- E-Step: computing a tight lower bound f of the original objective function at θ_{old}
- M-Step: find θ_{new} to maximize the lower bound
- $l(\theta_{new}) \ge f(\theta_{new}) \ge f(\theta_{old}) = l(\theta_{old})$

*How to Find Tight Lower Bound?

$$\begin{split} \ell(\theta) &= \log \sum_{h} p(d,h;\theta) \\ &= \log \sum_{h} \frac{q(h)}{q(h)} p(d,h;\theta) \\ &= \log \sum_{h} q(h) \frac{p(d,h;\theta)}{q(h)} \end{split}$$

q(h): the tight lower bound we want to get

Jensen's inequality

•
$$\log \sum_{h} q(h) \frac{p(d,h;\theta)}{q(h)} \ge \sum_{h} q(h) \log \frac{p(d,h;\theta)}{q(h)}$$

- When "=" holds to get a tight lower bound?
 - $q(h) = p(h|d, \theta)$ (why?)

Advantages and Disadvantages of GMM

- Strength
 - Mixture models are more general than partitioning: different densities and sizes of clusters
 - Clusters can be characterized by a small number of parameters
 - The results may satisfy the statistical assumptions of the generative models
- Weakness
 - Converge to local optimal (overcome: run multi-times w. random initialization)
 - Computationally expensive if the number of distributions is large, or the data set contains very few observed data points
 - Hard to estimate the number of clusters
 - Can only deal with spherical clusters

Matrix Data: Clustering: Part 2

Revisit K-means

Mixture Model and EM algorithm

• Kernel K-means

• Summary

*Kernel K-Means

• How to cluster the following data?

- A non-linear map: $\phi: \mathbb{R}^n \to \mathbb{F}$
 - Map a data point into a higher/infinite dimensional space
 - $x \to \phi(x)$
- Dot product matrix *K*_{*ij*}
 - $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle$

Typical Kernel Functions

• Recall kernel SVM:

Polynomial kernel of degree h: $K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

Gaussian radial basis function kernel : $K(X_i, X_j) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel : $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

Solution of Kernel K-Means

• Objective function under new feature space:

•
$$J = \sum_{j=1}^{k} \sum_{i} w_{ij} ||\phi(x_i) - c_j||^2$$

- Algorithm
 - By fixing assignment *w*_{*ij*}
 - $c_j = \sum_i w_{ij} \phi(x_i) / \sum_i w_{ij}$
 - In the assignment step, assign the data points to the closest center

$$d(x_i, c_j) = \left\| \phi(x_i) - \frac{\sum_{i'} w_{i'j} \phi(x_{i'})}{\sum_{i'} w_{i'j}} \right\|^2 = \phi(x_i) \cdot \phi(x_i) - \frac{\sum_{i'} w_{i'j} \phi(x_i) \cdot \phi(x_{i'})}{\sum_{i'} w_{i'j}} + \frac{\sum_{i'} \sum_{l} w_{i'j} w_{lj} \phi(x_{i'}) \cdot \phi(x_l)}{(\sum_{i'} w_{i'j})^{2}}$$

Do not really need to know $\phi(x)$, but only K_{ij}

Advantages and Disadvantages of Kernel K-Means

Advantages

• Algorithm is able to identify the non-linear structures.

Disadvantages

- Number of cluster centers need to be predefined.
- Algorithm is complex in nature and time complexity is large.

<u>References</u>

- Kernel k-means and Spectral Clustering by Max Welling.
- Kernel k-means, Spectral Clustering and Normalized Cut by Inderjit S. Dhillon, Yuqiang Guan and Brian Kulis.
- An Introduction to kernel methods by Colin Campbell.

Matrix Data: Clustering: Part 2

Revisit K-means

Mixture Model and EM algorithm

• Kernel K-means

Summary

- Revisit k-means
 - Derivative
- Mixture models
 - Gaussian mixture model; multinomial mixture model; EM algorithm; Connection to k-means
- Kernel k-means*
 - Objective function; solution; connection to k-means