CS6220: DATA MINING TECHNIQUES

Text Data: Topic Models

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

February 17, 2016

Methods to Learn

	Matrix Data	Text Data	Set Data	Sequence Data	Time Series	Graph & Network	Images
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN			НММ		Label Propagation	Neural Network
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means*	PLSA				SCAN; Spectral Clustering	
Frequent Pattern Mining			Apriori; FP- growth	GSP; PrefixSpan			
Prediction	Linear Regression				Autoregression	Collaborative Filtering	
Similarity Search					DTW	P-PageRank	
Ranking						PageRank	

Text Data: Topic Models

Text Data and Topic Models

Probabilistic Latent Semantic Analysis

Summary

Text Data

• Word/term

- Document
 - A bag of words

Corpus

• A collection of documents

Represent a Document

• Most common way: Bag-of-Words

- Ignore the order of words
- keep the count
- c1: Human machine interface for Lab ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user-perceived response time to error measurement
- m1: The generation of random, binary, unordered trees
- m2: The intersection graph of paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

	c1	c2	с3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

More Details

- Represent the doc as a vector where each entry corresponds to a different word and the number at that entry corresponds to how many times that word was present in the document (or some function of it)
 - Number of words is huge
 - Select and use a smaller set of words that are of interest
 - E.g. uninteresting words: 'and', 'the' 'at', 'is', etc. These are called stop-words
 - <u>Stemming</u>: remove endings. E.g. 'learn', 'learning', 'learnable', 'learned' could be substituted by the single stem 'learn'
 - Other simplifications can also be invented and used
 - The set of different remaining words is called <u>dictionary</u> or <u>vocabulary</u>. Fix an ordering of the terms in the dictionary so that you can operate them by their index.
 - Can be extended to bi-gram, tri-gram, or so

Topics

Topic

• A topic is represented by a word distribution

• Relate to an issue

universe	0.0439	drug	0.0672	cells	0.0675	sequence	0.0818	years	0.156
galaxies	0.0375	patients	0.0493	stem	0.0478	sequences	0.0493	million	0.0556
clusters	0.0279	drugs	0.0444	human	0.0421	genome	0.033	ago	0.045
matter	0.0233	clinical	0.0346	cell	0.0309	dna	0.0257	time	0.0317
galaxy	0.0232	treatment	0.028	gene	0.025	sequencing	0.0172	age	0.0243
cluster	0.0214	trials	0.0277	tissue	0.0185	map	0.0123	year	0.024
cosmic	0.0137	therapy	0.0213	cloning	0.0169	genes	0.0122	record	0.0238
dark.	0.0131	trial	0.0164	transfer	0.0155	chromosome	0.0119	early	0.0233
light	0.0109	disease	0.0157	blood	0.0113	regions	0.0119	billion	0.0177
density	0.01	medical	0.00997	embryos	0.0111	human	0.0111	history	0.0148
bacteria	0.0983	male	0.0558	theory	0.0811	immune	0.0909	stars	0.0524
bacterial	0.0561	females	0.0541	physics	0.0782	response	0.0375	star	0.0458
resistance	0.0431	female	0.0529	physicists	0.0146	system	0.0358	astrophys	0.0237
coli	0.0381	males	0.0477	einstein	0.0142	responses	0.0322	mass	0.021
strains	0.025	sex	0.0339	university	0.013	antigen	0.0263	disk.	0.0173
microbiol	0.0214	reproductive	0.0172	gravity	0.013	antigens	0.0184	black	0.0161
microbial	0.0196	offspring	0.0168	black	0.0127	immunity	0.0176	gas	0.0149
strain	0.0165	sexual	0.0166	theories	0.01	immunology	0.0145	stellar	0.0127
salmonella	0.0163	reproduction	0.0143	aps	0.00987	antibody	0.014	astron	0.0125
	0.0146		0.0100				0.0100		0.00004

TOPIC 42 roduced capture indicatory fragment actions of the second capture categratic compared actions fragment accounting warehousing characteristics continue to a second capture provided and action of the second capture categories and actions and action actio waendowskie of the series of t

TOPIC 45

TOPIC 43

TOPIC 43 anthoologica subpologica subpologica subpologica subpologica subpologica subpologica subpologica subpologica pologica subpologica minipage of the second se

TOPIC 46

supplement locate solering partially university Adjuluing unincorporated

Topic Models

Topic modeling

- Get topics automatically from a corpus
- Assign documents to topics automatically
- Most frequently used topic models
 - pLSA
 - LDA

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

Text Data: Topic Models

Text Data and Topic Models

Probabilistic Latent Semantic Analysis

Summary

Notations

- Word, document, topic
 - •w, d, z
- Word count in document
 - c(w,d)
- Word distribution for each topic (β_z)
 - β_{zw} : p(w|z)
- Topic distribution for each document (θ_d)
 - θ_{dz} : p(z|d) (Yes, fuzzy clustering)

Review of Multinomial Distribution

- $\mbox{-}$ Select n data points from K categories, each with probability p_k
 - n trials of independent categorical distribution
 - E.g., get 1-6 from a dice with 1/6
- When K=2, binomial distribution
 - n trials of independent Bernoulli distribution
 - E.g., flip a coin to get heads or tails

Generative Model for pLSA

Describe how a document is generated probabilistically

- For each position in d, $n = 1, ..., N_d$
 - Generate the topic for the position as $z_n \sim mult(\cdot | \theta_d), i.e., p(z_n = k) = \theta_{dk}$ (Note, 1 trial multinomial, i.e., categorical distribution)
 - Generate the word for the position as

$$w_n \sim mult(\cdot | \beta_{z_n}), i.e., p(w_n = w) = \beta_{z_n w}$$

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

The Likelihood Function for a Corpus

Probability of a word

$$p(w|d) = \sum_{k} p(w, z = k|d) = \sum_{k} p(w|z = k)p(z = k|d) = \sum_{k} \beta_{kw}\theta_{dk}$$

Likelihood of a corpus

Re-arrange the Likelihood Function

Group the same word from different positions together

$$\max \log L = \sum_{dw} c(w, d) \log \sum_{z} \theta_{dz} \beta_{zw}$$

s.t. $\sum_{z} \theta_{dz} = 1$ and $\sum_{w} \beta_{zw} = 1$

Optimization: EM Algorithm

Repeat until converge

• E-step: for each word in each document, calculate is conditional probability belonging to each topic

$$p(z|w,d) \propto p(w|z,d)p(z|d) = \beta_{zw}\theta_{dz} (i.e., p(z|w,d) = \frac{\beta_{zw}\theta_{dz}}{\sum_{z'}\beta_{z'w}\theta_{dz'}})$$

• M-step: given the conditional distribution, find the parameters that can maximize the expected likelihood

$$\beta_{zw} \propto \sum_{d} p(z|w,d)c(w,d) (i.e., \beta_{zw} = \frac{\sum_{d} p(z|w,d)c(w,d)}{\sum_{w',d} p(z|w',d)c(w',d)})$$

$$\theta_{dz} \propto \sum_{w} p(z|w,d)c(w,d) (i.e., \theta_{dz} = \frac{\sum_{w} p(z|w,d)c(w,d)}{N_d})$$

Text Data: Topic Models

• Text Data and Topic Models

Probabilistic Latent Semantic Analysis

Summary

Basic Concepts

- Word/term, document, corpus, topic
- How to represent a document
- pLSA
 - Generative model
 - Likelihood function
 - EM algorithm