Set Data: Frequent Pattern Mining

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

February 24, 2016
Announcement

- **Midterm**
 - Next Wednesday (3/2), 2-hour (6:10-8:10pm) in class
 - Closed-book exam, and one A4 size reference sheet is allowed
 - Bring a calculator (NO cell phone)
 - Cover to last lecture (today’s lecture will be in homework #4)

- Homework #3 is due on 3/4
- Homework #4 is out on 3/4
Methods to Learn

<table>
<thead>
<tr>
<th></th>
<th>Matrix Data</th>
<th>Text Data</th>
<th>Set Data</th>
<th>Sequence Data</th>
<th>Time Series</th>
<th>Graph & Network</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN</td>
<td></td>
<td></td>
<td></td>
<td>HMM</td>
<td>Label Propagation*</td>
<td>Neural Network</td>
</tr>
<tr>
<td>Clustering</td>
<td>K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means*</td>
<td>PLSA</td>
<td></td>
<td></td>
<td></td>
<td>SCAN*; Spectral Clustering*</td>
<td></td>
</tr>
<tr>
<td>Frequent Pattern Mining</td>
<td></td>
<td>Apriori; FP-growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prediction</td>
<td>Linear Regression</td>
<td></td>
<td></td>
<td></td>
<td>Autoregression</td>
<td>Collaborative Filtering</td>
<td></td>
</tr>
<tr>
<td>Similarity Search</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DTW</td>
<td>P-PageRank</td>
<td></td>
</tr>
<tr>
<td>Ranking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PageRank</td>
<td></td>
</tr>
</tbody>
</table>
Mining Frequent Patterns, Association and Correlations

- Basic Concepts
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods
- Summary
Set Data

- A data point corresponds to a set of items

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Beer, Nuts, Diaper</td>
</tr>
<tr>
<td>20</td>
<td>Beer, Coffee, Diaper</td>
</tr>
<tr>
<td>30</td>
<td>Beer, Diaper, Eggs</td>
</tr>
<tr>
<td>40</td>
<td>Nuts, Eggs, Milk</td>
</tr>
<tr>
<td>50</td>
<td>Nuts, Coffee, Diaper, Eggs, Milk</td>
</tr>
</tbody>
</table>
What Is Frequent Pattern Analysis?

• **Frequent pattern**: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
 • First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining

• **Motivation**: Finding inherent regularities in data
 • What products were often purchased together?—Beer and diapers?!
 • What are the subsequent purchases after buying a PC?
 • What kinds of DNA are sensitive to this new drug?
Why Is Freq. Pattern Mining Important?

• Freq. pattern: An intrinsic and important property of datasets
• Foundation for many essential data mining tasks
 • Association, correlation, and causality analysis
 • Sequential, structural (e.g., sub-graph) patterns
 • Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 • Classification: discriminative, frequent pattern analysis
 • Cluster analysis: frequent pattern-based clustering
• Broad applications
Basic Concepts: Frequent Patterns

- **itemset**: A set of one or more items
- **k-itemset** $X = \{x_1, \ldots, x_k\}$
- **(absolute) support**, or, **support count** of X: Frequency or occurrence of an itemset X
- **(relative) support**, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is **frequent** if X’s support is no less than a minsup threshold

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Beer, Nuts, Diaper</td>
</tr>
<tr>
<td>20</td>
<td>Beer, Coffee, Diaper</td>
</tr>
<tr>
<td>30</td>
<td>Beer, Diaper, Eggs</td>
</tr>
<tr>
<td>40</td>
<td>Nuts, Eggs, Milk</td>
</tr>
<tr>
<td>50</td>
<td>Nuts, Coffee, Diaper, Eggs, Milk</td>
</tr>
</tbody>
</table>

Customer buys beer
Customer buys both
Customer buys diaper
Basic Concepts: Association Rules

- Find all the rules \(X \rightarrow Y \) with minimum support and confidence
 - support, \(s \), probability that a transaction contains \(X \cup Y \)
 - confidence, \(c \), conditional probability that a transaction having \(X \) also contains \(Y \)

Let \(\text{minsup} = 50\% \), \(\text{minconf} = 50\% \)

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, \{Beer, Diaper\}:3

- **Strong Association rules**
 - \(\text{Beer} \rightarrow \text{Diaper} \) (60%, 100%)
 - \(\text{Diaper} \rightarrow \text{Beer} \) (60%, 75%)
Closed Patterns and Max-Patterns

• A long pattern contains a combinatorial number of sub-patterns, e.g., \(\{a_1, \ldots, a_{100}\} \) contains \(2^{100} - 1 = 1.27 \times 10^{30} \) sub-patterns!

• Solution: Mine closed patterns and max-patterns instead

• An itemset \(X \) is closed if \(X \) is frequent and there exists no super-pattern \(Y \supset X \), with the same support as \(X \) (proposed by Pasquier, et al. @ ICDT’99)

• An itemset \(X \) is a max-pattern if \(X \) is frequent and there exists no frequent super-pattern \(Y \supset X \) (proposed by Bayardo @ SIGMOD’98)

• Closed pattern is a lossless compression of freq. patterns
 • Reducing the # of patterns and rules
Closed Patterns and Max-Patterns

- Exercise. DB = \{<a_1, ..., a_{100}>, < a_1, ..., a_{50}>\}
 - Min_sup = 1.

- What is the set of closed pattern(s)?
 - <a_1, ..., a_{100}>: 1
 - < a_1, ..., a_{50}>: 2

- What is the set of max-pattern(s)?
 - <a_1, ..., a_{100}>: 1

- What is the set of all patterns?
 - !!
Computational Complexity of Frequent Itemset Mining

• How many itemsets are potentially to be generated in the worst case?
 • The number of frequent itemsets to be generated is sensitive to the minsup threshold
 • When minsup is low, there exist potentially an exponential number of frequent itemsets
 • The worst case: M^N where M: # distinct items, and N: max length of transactions
Mining Frequent Patterns, Association and Correlations

- Basic Concepts
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods
- Summary
Scalable Frequent Itemset Mining Methods

• Apriori: A Candidate Generation-and-Test Approach
 • Improving the Efficiency of Apriori

• FP-Growth: A Frequent Pattern-Growth Approach

• ECLAT: Frequent Pattern Mining with Vertical Data Format

• Generating Association Rules
The Apriori Property and Scalable Mining Methods

• The Apriori property of frequent patterns
 • Any nonempty subsets of a frequent itemset must be frequent
 • If \{beer, diaper, nuts\} is frequent, so is \{beer, diaper\}
 • i.e., every transaction having \{beer, diaper, nuts\} also contains \{beer, diaper\}

• Scalable mining methods: Three major approaches
 • Apriori (Agrawal & Srikant@VLDB’94)
 • Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD’00)
 • Vertical data format approach (Eclat)
Apriori: A Candidate Generation & Test Approach

- **Apriori pruning principle**: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @ VLDB’94, Mannila, et al. @ KDD’ 94)

- **Method**:
 - *Initially*, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - **Test** the candidates against DB
 - **Terminate** when no frequent or candidate set can be generated
From Frequent k-1 Itemset To Frequent k-Itemset

C_k: Candidate itemset of size k

L_k: frequent itemset of size k

- From L_{k-1} to C_k (Candidates Generation)
 - The join step
 - The prune step
- From C_k to L_k
 - Test candidates by scanning database
Candidates Generation

• How to generate candidates C_k?
 • **Step 1**: self-joining L_{k-1}
 • Two length k-1 itemsets l_1 and l_2 can join, only if the first k-2 items are the same, and for the last term, $l_1[k-1] < l_2[k-1]$ (why?)
 • **Step 2**: pruning

• Why we need pruning for candidates?
 • **How**?
 • Again, use Apriori property
 • A candidate itemset can be safely pruned, if it contains infrequent subset

Assume a pre-specified order for items, e.g., alphabetical order
• Example of Candidate-generation from L_3 to C_4
 • $L_3 = \{abc, abd, acd, ace, bcd\}$
 • Self-joining: $L_3 \times L_3$
 • $abcd$ from abc and abd
 • $acde$ from acd and ace
 • Pruning:
 • $acde$ is removed because ade is not in L_3
 • $C_4 = \{abcd\}$
The Apriori Algorithm—Example

Database TDB

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, C, D</td>
</tr>
<tr>
<td>20</td>
<td>B, C, E</td>
</tr>
<tr>
<td>30</td>
<td>A, B, C, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E</td>
</tr>
</tbody>
</table>

Sup$_{min}$ = 2

C_1

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{D}</td>
<td>1</td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
</tr>
</tbody>
</table>

L_1

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
</tr>
</tbody>
</table>

C_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B}</td>
<td>1</td>
</tr>
<tr>
<td>{A, C}</td>
<td>2</td>
</tr>
<tr>
<td>{A, E}</td>
<td>1</td>
</tr>
<tr>
<td>{B, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, E}</td>
<td>3</td>
</tr>
<tr>
<td>{C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

L_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, E}</td>
<td>3</td>
</tr>
<tr>
<td>{C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

C_3

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

L_3

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>
The Apriori Algorithm (Pseudo-Code)

\(C_k\): Candidate itemset of size k
\(L_k\): frequent itemset of size k

\(L_1 = \{\text{frequent items}\};\)

\textbf{for} \ (k = 2; L_{k-1} \neq \emptyset; k++) \ \textbf{do begin}

\hspace{1em} \(C_k\) = candidates generated from \(L_{k-1}\);

\hspace{1em} \textbf{for each} transaction \(t\) in database do

\hspace{2em} \text{increment the count of all candidates in } C_{k+1} \text{ that are contained in } t

\hspace{1em} \(L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support}\)

\textbf{end}

\textbf{return} \(\bigcup_k L_k\);
Questions

• How many scans on DB are needed for Apriori algorithm?
• When (k = ?) does Apriori algorithm generate the biggest number of candidate itemsets?
 • Is support counting for candidates expensive?
Further Improvement of the Apriori Method

• Major computational challenges
 • Multiple scans of transaction database
 • Huge number of candidates
 • Tedious workload of support counting for candidates

• Improving Apriori: general ideas
 • Reduce passes of transaction database scans
 • Shrink number of candidates
 • Facilitate support counting of candidates
Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns

- A. Savasere, E. Omiecinski and S. Navathe,

\[DB_1 + DB_2 + \cdots + DB_k = DB \]

\[\text{sup}_1(i) < \sigma DB_1 \]
\[\text{sup}_2(i) < \sigma DB_2 \]
\[\cdots \]
\[\text{sup}_k(i) < \sigma DB_k \]
\[\text{sup}(i) < \sigma DB \]
Hash-based Technique: Reduce the Number of Candidates

- A \(k \)-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent

 - Candidates: a, b, c, d, e
 - Hash entries
 - \{ab, ad, ae\}
 - \{bd, be, de\}
 - ...
 - Frequent 1-itemset: a, b, d, e

 - \(ab \) is not a candidate 2-itemset if the sum of count of \{ab, ad, ae\} is below support threshold

- J. Park, M. Chen, and P. Yu. *An effective hash-based algorithm for mining association rules*. *SIGMOD’95*
Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only borders of closure of frequent patterns are checked
 - Example: check $abcd$ instead of ab, ac, ..., etc.
- Scan database again to find missed frequent patterns
- H. Toivonen. *Sampling large databases for association rules.* In *VLDB’96*
Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
 - Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Generating Association Rules
Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
 - Breadth-first (i.e., level-wise) search
 - Scan DB multiple times
 - Candidate generation and test
 - Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD’ 00)
 - Depth-first search
 - Avoid explicit candidate generation
Major philosophy

- Grow long patterns from short ones using local frequent items only
 - “abc” is a frequent pattern
 - Get all transactions having “abc”, i.e., project DB on abc:
 \[DB | abc \]
 - “d” is a local frequent item in \[DB | abc \] \(\rightarrow \) abcd is a frequent pattern
FP-Growth Algorithm Sketch

• Construct FP-tree (frequent pattern-tree)
 • Compress the DB into a tree
• Recursively mine FP-tree by FP-Growth
 • Construct conditional pattern base from FP-tree
 • Construct conditional FP-tree from conditional pattern base
• Until the tree has a single path or empty
Construct FP-tree from a Transaction Database

1. **Scan** DB once, find frequent 1-itemset (single item pattern)

2. **Sort** frequent items in frequency descending order, **f-list**

3. **Scan** DB again, construct FP-tree

F-list = f-c-a-b-m-p

Header Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

min_support = 3

```plaintext
TID | Items bought (ordered) frequent items
---|----------------------------------------
100 | {f, a, c, d, g, i, m, p}               | {f, c, a, m, p} |
200 | {a, b, c, f, l, m, o}                  | {f, c, a, b, m} |
300 | {b, f, h, j, o, w}                    | {f, b}          |
400 | {b, c, k, s, p}                       | {c, b, p}       |
500 | {a, f, c, e, l, p, m, n}               | {f, c, a, m, p} |
```
Frequent patterns can be partitioned into subsets according to f-list

- F-list = f-c-a-b-m-p
- Patterns containing p
- Patterns having m but no p
- ...
- Patterns having c but no a nor b, m, p
- Pattern f

Completeness and non-redundency
Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item \(p \)
- Accumulate all of transformed prefix paths of item \(p \) to form \(p \)'s conditional pattern base

Header Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(p)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Conditional pattern bases

<table>
<thead>
<tr>
<th>Item</th>
<th>Cond. Pattern Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>(f:3)</td>
</tr>
<tr>
<td>(a)</td>
<td>(fc:3)</td>
</tr>
<tr>
<td>(b)</td>
<td>(fca:1, f:1, c:1)</td>
</tr>
<tr>
<td>(m)</td>
<td>(fca:2, fcab:1)</td>
</tr>
<tr>
<td>(p)</td>
<td>(fcam:2, cb:1)</td>
</tr>
</tbody>
</table>
From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Header Table

<table>
<thead>
<tr>
<th>Item</th>
<th>frequency</th>
<th>head</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

m-conditional pattern base:

- \{fca:2, fcab:1\}

All frequent patterns relate to m

- \{\}
 - \{\}
 - \{\}
 - \{\}
 - \{\}
 - \{\}

m-conditional FP-tree

Don’t forget to add back \(m \)!
Recursion: Mining Each Conditional FP-tree

Cond. pattern base of “am”: (fc:3)

m-conditional FP-tree

Cond. pattern base of “cm”: (f:3)

am-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

cam-conditional FP-tree
Another Example: FP-Tree Construction

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{a,b}</td>
</tr>
<tr>
<td>2</td>
<td>{b,c,d}</td>
</tr>
<tr>
<td>3</td>
<td>{a,c,d,e}</td>
</tr>
<tr>
<td>4</td>
<td>{a,d,e}</td>
</tr>
<tr>
<td>5</td>
<td>{a,b,c}</td>
</tr>
<tr>
<td>6</td>
<td>{a,b,c,d}</td>
</tr>
<tr>
<td>7</td>
<td>{a}</td>
</tr>
<tr>
<td>8</td>
<td>{a,b,c}</td>
</tr>
<tr>
<td>9</td>
<td>{a,b,d}</td>
</tr>
<tr>
<td>10</td>
<td>{b,c,e}</td>
</tr>
</tbody>
</table>

Transaction Database

Header table

<table>
<thead>
<tr>
<th>Item</th>
<th>Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Pointers are used to assist frequent itemset generation
Mining Sub-tree Ending with e

• Conditional pattern base for e: \{acd:1; ad:1; bc:1\}
• Conditional FP-tree for e:

 ![Conditional FP-tree for e](image)

 • Conditional pattern base for de: \{ac:1; a:1\}
 • Conditional FP-tree for de:
 • Frequent patterns for de: \{ade:2, de:2\}
 • Conditional pattern base for ce: \{a:1\}
 • Conditional FP-tree for ce: empty
 • Frequent patterns for ce: \{ce:2\}
 • Conditional pattern base for ae: \{\emptyset\}
 • Conditional FP-tree for ae: empty
 • Frequent patterns for ae: \{ae:2\}

• Therefore, all frequent patterns with e are: \{ade:2, de:2, ce:2, ae:2, e:3\}
A Special Case: Single Prefix Path in FP-tree

• Suppose a (conditional) FP-tree \(T \) has a shared single prefix-path \(P \)

• Mining can be decomposed into two parts

\[
\begin{align*}
\{\} \\
\text{a}_1:n_1 \\
\text{a}_2:n_2 \\
\text{a}_3:n_3
\end{align*}
\]

• Reduction of the single prefix path into one node

• Concatenation of the mining results of the two parts

\[
\begin{align*}
\{\} \\
r_1 = \\
\text{a}_1:n_1 \\
\text{a}_2:n_2 \\
\text{a}_3:n_3 \\
\text{b}_1:m_1 \\
\text{c}_1:k_1 \\
\text{c}_2:k_2 \\
\text{c}_3:k_3
\end{align*}
\]

\[
\begin{align*}
\text{r}_1 = \\
\text{b}_1:m_1 \\
\text{c}_1:k_1 \\
\text{c}_2:k_2 \\
\text{c}_3:k_3
\end{align*}
\]
Benefits of the FP-tree Structure

• Completeness
 • Preserve complete information for frequent pattern mining
 • Never break a long pattern of any transaction

• Compactness
 • Reduce irrelevant info—infrequent items are gone
 • Items in frequency descending order: the more frequently occurring, the more likely to be shared
 • Never be larger than the original database (not count node-links and the count field)
Scaling FP-growth by Database Projection

• What about if FP-tree cannot fit in memory?
 • DB projection

• First partition a database into a set of projected DBs
• Then construct and mine FP-tree for each projected DB
• Parallel projection vs. partition projection techniques
 • Parallel projection
 • Project the DB in parallel for each frequent item
 • Parallel projection is space costly
 • All the partitions can be processed in parallel
 • Partition projection
 • Partition the DB based on the ordered frequent items
 • Passing the unprocessed parts to the subsequent partitions
FP-Growth vs. Apriori: Scalability With the Support Threshold

Data set T25I20D10K

Run time (sec.)

Support threshold (%)

D1 FP-growth runtime
D1 Apriori runtime
Advantages of the Pattern Growth Approach

- Divide-and-conquer:
 - Decompose both the mining task and DB according to the frequent patterns obtained so far
 - Lead to focused search of smaller databases

- Other factors
 - No candidate generation, no candidate test
 - Compressed database: FP-tree structure
 - No repeated scan of entire database
 - Basic ops: counting local freq items and building sub FP-tree, no pattern search and matching
Further Improvements of Mining Methods

- AFOPT (Liu, et al. @ KDD’03)
 - A “push-right” method for mining condensed frequent pattern (CFP) tree
- Carpenter (Pan, et al. @ KDD’03)
 - Mine data sets with small rows but numerous columns
 - Construct a row-enumeration tree for efficient mining
- FPgrowth+ (Grahne and Zhu, FIMI’03)
 - Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
- TD-Close (Liu, et al, SDM’06)
Extension of Pattern Growth Mining Methodology

- Mining closed frequent itemsets and max-patterns
 - CLOSET (DMKD’00), FPclose, and FPMax (Grahne & Zhu, Fimi’03)
- Mining sequential patterns
 - PrefixSpan (ICDE’01), CloSpan (SDM’03), BIDE (ICDE’04)
- Mining graph patterns
 - gSpan (ICDM’02), CloseGraph (KDD’03)
- Constraint-based mining of frequent patterns
 -Convertible constraints (ICDE’01), gPrune (PAKDD’03)
- Computing iceberg data cubes with complex measures
 - H-tree, H-cubing, and Star-cubing (SIGMOD’01, VLDB’03)
- Pattern-growth-based Clustering
 - MaPle (Pei, et al., ICDM’03)
- Pattern-Growth-Based Classification
 - Mining frequent and discriminative patterns (Cheng, et al, ICDE’07)
Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
 - Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Generating Association Rules
ECLAT: Mining by Exploring Vertical Data Format

- Vertical format: $t(AB) = \{T_{11}, T_{25}, \ldots\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving frequent patterns based on vertical intersections
 - $t(X) = t(Y)$: X and Y always happen together
 - $t(X) \subset t(Y)$: transaction having X always has Y
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}$, $t(XY) = \{T_1, T_3\}$
 - Diffset $(XY, X) = \{T_2\}$
- Eclat (Zaki et al. @KDD’97)

Similar idea for inverted index in storing text
Scalable Frequent Itemset Mining Methods

• Apriori: A Candidate Generation-and-Test Approach
 • Improving the Efficiency of Apriori
• FPGrowth: A Frequent Pattern-Growth Approach
• ECLAT: Frequent Pattern Mining with Vertical Data Format
• Generating Association Rules
Generating Association Rules

• Strong association rules
 • Satisfying minimum support and minimum confidence
 • Recall: \(\text{Confidence}(A \Rightarrow B) = P(B|A) = \frac{\text{support}(A \cup B)}{\text{support}(A)} \)

• Steps of generating association rules from frequent pattern \(l \):
 • Step 1: generate all nonempty subsets of \(l \)
 • Step 2: for every nonempty subset \(s \), calculate the confidence for rule \(s \Rightarrow (l - s) \)
Example

• $X = \{I_1, I_2, I_5\}:2$
 • Nonempty subsets of X are:
 $\{I_1, I_2\}: 4$, $\{I_1, I_5\}: 2$, $\{I_2, I_5\}: 2$, $\{I_1\}: 6$, $\{I_2\}: 7$, and $\{I_5\}: 2$
 • Association rules are:

\[
\begin{align*}
\{I_1, I_2\} & \Rightarrow I_5, & \text{confidence} = \frac{2}{4} = 50\% \\
\{I_1, I_5\} & \Rightarrow I_2, & \text{confidence} = \frac{2}{2} = 100\% \\
\{I_2, I_5\} & \Rightarrow I_1, & \text{confidence} = \frac{2}{2} = 100\% \\
I_1 & \Rightarrow \{I_2, I_5\}, & \text{confidence} = \frac{2}{6} = 33\% \\
I_2 & \Rightarrow \{I_1, I_5\}, & \text{confidence} = \frac{2}{7} = 29\% \\
I_5 & \Rightarrow \{I_1, I_2\}, & \text{confidence} = \frac{2}{2} = 100\%
\end{align*}
\]
Chapter 6: Mining Frequent Patterns, Association and Correlations

• Basic Concepts

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

• Summary
Misleading Strong Association Rules

- Not all strong association rules are interesting

<table>
<thead>
<tr>
<th></th>
<th>Basketball</th>
<th>Not basketball</th>
<th>Sum (row)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereal</td>
<td>2000</td>
<td>1750</td>
<td>3750</td>
</tr>
<tr>
<td>Not cereal</td>
<td>1000</td>
<td>250</td>
<td>1250</td>
</tr>
<tr>
<td>Sum(col.)</td>
<td>3000</td>
<td>2000</td>
<td>5000</td>
</tr>
</tbody>
</table>

- Shall we target people who play basketball for cereal ads? *play basketball ⇒ eat cereal* [40%, 66.7%]
- Hint: What is the overall probability of people who eat cereal?
 - 3750/5000 = 75% > 66.7%!
- Confidence measure of a rule could be misleading
Other Measures

- From association to correlation
 - Lift
 - χ^2
 - All_confidence
 - Max_confidence
 - Kulczynski
 - Cosine
Interestingness Measure: Correlations
(Lift)

• play basketball ⇒ eat cereal [40%, 66.7%] is misleading
 • The overall % of students eating cereal is 75% > 66.7%.

• play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence

• Measure of dependent/correlated events: lift

\[
lift = \frac{P(A \cup B)}{P(A)P(B)}
\]

\[
lift(B,C) = \frac{2000/5000}{3000/5000 \times 3750/5000} = 0.89
\]

\[
lift(B, \neg C) = \frac{1000/5000}{3000/5000 \times 1250/5000} = 1.33
\]

1: independent
>1: positively correlated
<1: negatively correlated
Correlation Analysis (Nominal Data)

• χ^2 (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

• Independency test between two attributes
 • The larger the χ^2 value, the more likely the variables are related

• The cells that contribute the most to the χ^2 value are those whose actual count is very different from the expected count under independence assumption

• Correlation does not imply causality
 • # of hospitals and # of car-theft in a city are correlated
 • Both are causally linked to the third variable: population
When Do We Need Chi-Square Test?

• Considering two attributes A and B
 • A: a nominal attribute with c distinct values, a_1, \ldots, a_c
 • E.g., Grades of Math
 • B: a nominal attribute with r distinct values, b_1, \ldots, b_r
 • E.g., Grades of Science
• Question: Are A and B related?
How Can We Run Chi-Square Test?

• Constructing contingency table
 • Observed frequency o_{ij}: number of data objects taking value b_i for attribute B and taking value a_j for attribute A

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>...</th>
<th>a_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td>o_{11}</td>
<td>o_{12}</td>
<td>...</td>
<td>o_{1c}</td>
</tr>
<tr>
<td>b_2</td>
<td>o_{21}</td>
<td>o_{22}</td>
<td>...</td>
<td>o_{2c}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>b_r</td>
<td>o_{r1}</td>
<td>o_{r2}</td>
<td>...</td>
<td>o_{rc}</td>
</tr>
</tbody>
</table>

• Calculate expected frequency $e_{ij} = \frac{\text{count}(B=b_i) \times \text{count}(A=a_j)}{n}$
 • Null hypothesis: A and B are independent
The Pearson χ^2 statistic is computed as:

$$X^2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

It follows a Chi-squared distribution with degrees of freedom $(r - 1) \times (c - 1)$.

![Chi-squared distribution graphs](image)
Chi-Square Calculation: An Example

<table>
<thead>
<tr>
<th></th>
<th>Play chess</th>
<th>Not play chess</th>
<th>Sum (row)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Like science fiction</td>
<td>250(90)</td>
<td>200(360)</td>
<td>450</td>
</tr>
<tr>
<td>Not like science fiction</td>
<td>50(210)</td>
<td>1000(840)</td>
<td>1050</td>
</tr>
<tr>
<td>Sum(col.)</td>
<td>300</td>
<td>1200</td>
<td>1500</td>
</tr>
</tbody>
</table>

• χ^2 (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250-90)^2}{90} + \frac{(50-210)^2}{210} + \frac{(200-360)^2}{360} + \frac{(1000-840)^2}{840} = 507.93$$

• It shows that like_science_fiction and play_chess are correlated in the group
 • Degree of freedom = $(2-1)(2-1) = 1$
 • P-value = $P(\chi^2 > 507.93) = 0.0$
 • Reject the null hypothesis => A and B are dependent
Are \textit{lift} and χ^2 Good Measures of Correlation?

- Lift and χ^2 are affected by null-transaction
 - E.g., number of transactions that do not contain milk nor coffee
- All_confidence
 - $\text{all}_\text{conf}(A,B) = \min\{P(A|B), P(B|A)\}$
- Max_confidence
 - $\text{max}_\text{conf}(A, B) = \max\{P(A|B), P(B|A)\}$
- Kulczynski
 - $Kulc(A, B) = \frac{1}{2} (P(A|B) + P(B|A))$
- Cosine
 - $\text{cosine}(A, B) = \sqrt{P(A|B) \times P(B|A)}$
Comparison of Interestingness Measures

- Null-(transaction) invariance is crucial for correlation analysis
- Lift and χ^2 are not null-invariant
- 5 null-invariant measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Definition</th>
<th>Range</th>
<th>Null-Invariant</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2(a, b)$</td>
<td>$\sum_{i,j=0,1} \frac{(e(a_i, b_j) - o(a_i, b_j))^2}{e(a_i, b_j)}$</td>
<td>$[0, \infty]$</td>
<td>No</td>
</tr>
<tr>
<td>Lift(a, b)</td>
<td>$\frac{P(ab)}{P(a)P(b)}$</td>
<td>$[0, \infty]$</td>
<td>No</td>
</tr>
<tr>
<td>AllConf(a, b)</td>
<td>$\frac{\sup(ab)}{\max{{\sup(a),\sup(b)}}}$</td>
<td>$[0, 1]$</td>
<td>Yes</td>
</tr>
<tr>
<td>Coherence(a, b)</td>
<td>$\frac{\sup(ab)}{\sup(a)+\sup(b)-\sup(ab)}$</td>
<td>$[0, 1]$</td>
<td>Yes</td>
</tr>
<tr>
<td>Cosine(a, b)</td>
<td>$\frac{\sup(ab)}{\sqrt{\sup(a)\sup(b)}}$</td>
<td>$[0, 1]$</td>
<td>Yes</td>
</tr>
<tr>
<td>Kulc(a, b)</td>
<td>$\frac{\sup(ab)}{2} \left(\frac{1}{\sup(a)} + \frac{1}{\sup(b)} \right)$</td>
<td>$[0, 1]$</td>
<td>Yes</td>
</tr>
<tr>
<td>MaxConf(a, b)</td>
<td>$\max{\frac{\sup(ab)}{\sup(a)}, \frac{\sup(ab)}{\sup(b)}}$</td>
<td>$[0, 1]$</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Null-transactions w.r.t. m and c

Kulczynski measure (1927)

Null-invariant

Table 2. Example data sets.

Table 3. Interestingness measure definitions.
Recent DB conferences, removing balanced associations, low sup, etc.

<table>
<thead>
<tr>
<th>ID</th>
<th>Author a</th>
<th>Author b</th>
<th>sup(ab)</th>
<th>sup(a)</th>
<th>sup(b)</th>
<th>Coherence</th>
<th>Cosine</th>
<th>Kulc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hans-Peter Kriegel</td>
<td>Martin Ester</td>
<td>28</td>
<td>146</td>
<td>54</td>
<td>0.163 (2)</td>
<td>0.315 (7)</td>
<td>0.355 (9)</td>
</tr>
<tr>
<td>2</td>
<td>Michael Carey</td>
<td>Miron Livny</td>
<td>26</td>
<td>104</td>
<td>58</td>
<td>0.191 (1)</td>
<td>0.335 (4)</td>
<td>0.349 (10)</td>
</tr>
<tr>
<td>3</td>
<td>Hans-Peter Kriegel</td>
<td>Joerg Sander</td>
<td>24</td>
<td>146</td>
<td>36</td>
<td>0.152 (3)</td>
<td>0.331 (5)</td>
<td>0.416 (8)</td>
</tr>
<tr>
<td>4</td>
<td>Christos Faloutsos</td>
<td>Spiros Papadimitriou</td>
<td>20</td>
<td>162</td>
<td>26</td>
<td>0.119 (7)</td>
<td>0.308 (10)</td>
<td>0.446 (7)</td>
</tr>
<tr>
<td>5</td>
<td>Hans-Peter Kriegel</td>
<td>Martin Pfeifle</td>
<td>18</td>
<td>146</td>
<td>18</td>
<td>0.123 (6)</td>
<td>0.351 (2)</td>
<td>0.562 (2)</td>
</tr>
<tr>
<td>6</td>
<td>Hector Garcia-Molina</td>
<td>Wilbur Labio</td>
<td>16</td>
<td>144</td>
<td>18</td>
<td>0.110 (9)</td>
<td>0.314 (8)</td>
<td>0.500 (4)</td>
</tr>
<tr>
<td>7</td>
<td>Divyakant Agrawal</td>
<td>Wang Hsiung</td>
<td>16</td>
<td>120</td>
<td>16</td>
<td>0.133 (5)</td>
<td>0.365 (1)</td>
<td>0.567 (1)</td>
</tr>
<tr>
<td>8</td>
<td>Elke Rundensteiner</td>
<td>Murali Mani</td>
<td>16</td>
<td>104</td>
<td>20</td>
<td>0.148 (4)</td>
<td>0.351 (3)</td>
<td>0.477 (6)</td>
</tr>
<tr>
<td>9</td>
<td>Divyakant Agrawal</td>
<td>Oliver Po</td>
<td>12</td>
<td>120</td>
<td>12</td>
<td>0.100 (10)</td>
<td>0.316 (6)</td>
<td>0.550 (3)</td>
</tr>
<tr>
<td>10</td>
<td>Gerhard Weikum</td>
<td>Martin Theobald</td>
<td>12</td>
<td>106</td>
<td>14</td>
<td>0.111 (8)</td>
<td>0.312 (9)</td>
<td>0.485 (5)</td>
</tr>
</tbody>
</table>

Table 5. Experiment on DBLP data set.

- Advisor-advisee relation: Kulc: high, coherence: low, cosine: middle

- Tianyi Wu, Yuguo Chen and Jiawei Han, “Association Mining in Large Databases: A Re-Examination of Its Measures”, Proc. 2007 Int. Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD'07), Sept. 2007
Which Null-Invariant Measure Is Better?

- IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications

\[
IR(A, B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)}
\]

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D\(_4\) through D\(_6\)
 - D\(_4\) is balanced & neutral
 - D\(_5\) is imbalanced & neutral
 - D\(_6\) is very imbalanced & neutral

<table>
<thead>
<tr>
<th>Data</th>
<th>mc</th>
<th>(\bar{mc})</th>
<th>(mc)</th>
<th>(\bar{mc})</th>
<th>all_conf.</th>
<th>max_conf.</th>
<th>Kulc.</th>
<th>cosine</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(_1)</td>
<td>10,000</td>
<td>1,000</td>
<td>1,000</td>
<td>100,000</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.0</td>
</tr>
<tr>
<td>D(_2)</td>
<td>10,000</td>
<td>1,000</td>
<td>1,000</td>
<td>100</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.0</td>
</tr>
<tr>
<td>D(_3)</td>
<td>100</td>
<td>1,000</td>
<td>1,000</td>
<td>100,000</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.0</td>
</tr>
<tr>
<td>D(_4)</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>100,000</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>D(_5)</td>
<td>1,000</td>
<td>100</td>
<td>10,000</td>
<td>100,000</td>
<td>0.09</td>
<td>0.91</td>
<td>0.5</td>
<td>0.29</td>
<td>0.89</td>
</tr>
<tr>
<td>D(_6)</td>
<td>1,000</td>
<td>10</td>
<td>100,000</td>
<td>100,000</td>
<td>0.01</td>
<td>0.99</td>
<td>0.5</td>
<td>0.10</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Chapter 6: Mining Frequent Patterns, Association and Correlations

• Basic Concepts

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

• Summary
Summary

- Basic concepts
 - Frequent pattern, association rules, support-confident framework, closed and max-patterns
- Scalable frequent pattern mining methods
 - Apriori
 - FPgrowth
 - Vertical format approach (ECLAT)
- Which patterns are interesting?
 - Pattern evaluation methods
Ref: Basic Concepts of Frequent Pattern Mining

- **Association Rules** R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93.

- **Max-pattern** R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98.

- **Sequential pattern** R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95
Ref: Apriori and Its Improvements

Ref: Depth-First, Projection-Based FP Mining

- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD’ 00.
- J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projection. KDD'02.
- J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without Minimum Support. ICDM'02.
- J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. KDD'03.
- G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
Ref: Mining Correlations and Interesting Rules

- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02.
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE’03.
- T. Wu, Y. Chen and J. Han, “Association Mining in Large Databases: A Re-Examination of Its Measures”, PKDD'07
Ref: Freq. Pattern Mining Applications

• T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining Database Structure; or How to Build a Data Quality Browser. SIGMOD'02.

• K. Wang, S. Zhou, J. Han. Profit Mining: From Patterns to Actions. EDBT’02.