CS6220: DATA MINING TECHNIQUES

Mining Graph/Network Data

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

March 16, 2016

Methods to Learn

	Matrix Data	Text Data	Set Data	Sequence Data	Time Series	Graph & Network	Images
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN			НММ		Label Propagation*	Neural Network
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means*	PLSA				SCAN*; Spectral Clustering	
Frequent Pattern Mining			Apriori; FP-growth	GSP; PrefixSpan			
Prediction	Linear Regression				Autoregression	Recommenda tion	
Similarity Search					DTW	P-PageRank	
Ranking						PageRank	

Mining Graph/Network Data

Introduction to Graph/Network Data

- PageRank
- Proximity Definition in Graphs
- Clustering
- Summary

Graph, Graph, Everywhere

Aspirin

Yeast protein interaction network

Why Graph Mining?

- Graphs are ubiquitous
 - Chemical compounds (Cheminformatics)
 - Protein structures, biological pathways/networks (Bioinformactics)
 - Program control flow, traffic flow, and workflow analysis
 - XML databases, Web, and social network analysis
- Graph is a general model
 - Trees, lattices, sequences, and items are degenerated graphs
- Diversity of graphs
 - Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted, with angles & geometry (topological vs. 2-D/3-D)
- Complexity of algorithms: many problems are of high complexity

Representation of a Graph

- $G = \langle V, E \rangle$
 - $V = \{u_1, ..., u_n\}$: node set
 - $E \subseteq V \times V$: edge set
- Adjacency matrix
 - $A = \{a_{ij}\}, i, j = 1, ..., N$
 - $a_{ij} = 1, if < u_i, u_j > \in E$
 - $a_{ij} = 0$, if $\langle u_i, u_j \rangle \notin E$
 - Undirected graph vs. Directed graph
 - $A = A^{\mathrm{T}} vs. A \neq A^{\mathrm{T}}$
 - Weighted graph
 - Use W instead of A, where w_{ij} represents the weight of edge $< u_i, u_j >$

Example

Adjacency matrix A

Mining Graph/Network Data

Introduction to Graph/Network Data

Personalized PageRank

Summary

The History of PageRank

- PageRank was developed by Larry Page (hence the name Page-Rank) and Sergey Brin.
- It is first as part of a research project about a new kind of search engine. That project started in 1995 and led to a functional prototype in 1998.
- Shortly after, Page and Brin founded Google.

Ranking web pages

- Web pages are not equally "important"
 - <u>www.cnn.com</u> vs. a personal webpage
- Inlinks as votes
 - The more inlinks, the more important
- Are all inlinks equal?
 - Higher ranked inlink should play a more important role
 - Recursive question!

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- If page P with importance x has n outlinks, each link gets x/n votes
- Page P's own importance is the sum of the votes on its inlinks

Matrix formulation

- Matrix M has one row and one column for each web y a m
- Suppose page j has n outlinks
 - If j -> i, then $M_{ij}=1/n$
 - Else M_{ij}=0

- M is a column stochastic matrix
 - Columns sum to 1
- Suppose r is a vector with one entry per web page
 - r_i is the importance score of page i
 - Call it the rank vector
 - $|\mathbf{r}| = 1$ (i.e., $r_1 + r_2 + \dots + r_N = 1$)

Eigenvector formulation

The flow equations can be written

r = *Mr*

- So the rank vector is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1

Example

$$\begin{array}{ccccccc} y & a & m \\ y & 1/2 & 1/2 & 0 \\ a & 1/2 & 0 & 1 \\ m & 0 & 1/2 & 0 \end{array}$$

Power Iteration method

- Simple iterative scheme
- Suppose there are N web pages
 - Initialize: $\mathbf{r}^0 = [1/N,...,1/N]^T$
 - Iterate: $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
 - Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \varepsilon$
 - $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean

Power Iteration Example

 $\boldsymbol{r}_0 \quad \boldsymbol{r}_1 \quad \boldsymbol{r}_2 \quad \boldsymbol{r}_3 \quad \dots$

 r^*

Random Walk Interpretation

- Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time t+1, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely
- Let p(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - **p**(t) is a probability distribution on pages

The stationary distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random
 - p(t+1) = Mp(t)
- Suppose the random walk reaches a state such that p(t+1) = Mp(t) = p(t)
 - Then **p**(t) is called a stationary distribution for the random walk
- Our rank vector r satisfies r = Mr
 - So it is a stationary distribution for the random surfer

Existence and Uniqueness

A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0.

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

Microsoft becomes a spider trap

Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1-β, jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta = 0.8$)

----> : teleport links from "Yahoo"

Random teleports ($\beta = 0.8$)

Matrix formulation

- Suppose there are N pages
 - Consider a page j, with set of outlinks O(j)
 - We have $M_{ij} = 1/|O(j)|$ when j->i and $M_{ij} = 0$ otherwise
 - The random teleport is equivalent to
 - adding a teleport link from j to every other page with probability $(1-\beta)/N$
 - reducing the probability of following each outlink from 1/|O(j)| to $\beta/|O(j)|$
 - Equivalent: tax each page a fraction (1- β) of its score and redistribute evenly

PageRank

- Construct the N-by-N matrix A as follows
 - $A_{ij} = \beta M_{ij} + (1-\beta)/N$
- Verify that A is a stochastic matrix
- The page rank vector r is the principal eigenvector of this matrix
 - satisfying **r** = **Ar**
- Equivalently, r is the stationary distribution of the random walk with teleports

Dead ends

- Pages with no outlinks are "dead ends" for the random surfer
 - Nowhere to go on next step

Microsoft becomes a dead end

Dealing with dead-ends

Teleport

- Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly
- Prune and propagate
 - Preprocess the graph to eliminate dead-ends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph

Dealing dead end: teleport

Dealing dead end: reduce graph

Computing PageRank

- Key step is matrix-vector multiplication
 - $\mathbf{r}^{\text{new}} = \mathbf{A}\mathbf{r}^{\text{old}}$
- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

Rearranging the equation

r = **Ar**, where $A_{ii} = \beta M_{ii} + (1 - \beta)/N$ $\mathbf{r}_{i} = \sum_{1 \le i \le N} \mathbf{A}_{ii} \mathbf{r}_{i}$ $r_{i} = \sum_{1 \le i \le N} [\beta M_{ii} + (1 - \beta)/N] r_{i}$ $= \beta \sum_{1 \le i \le N} M_{ii} r_i + (1 - \beta) / N \sum_{1 \le i \le N} r_i$ = $\beta \sum_{1 \le i \le N} M_{ii} r_i + (1-\beta)/N$, since $|\mathbf{r}| = 1$ $\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_{N}$

where $[x]_N$ is an N-vector with all entries x

Sparse matrix formulation

- We can rearrange the page rank equation:
 - $\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_N$
 - $[(1-\beta)/N]_N$ is an N-vector with all entries $(1-\beta)/N$
- M is a sparse matrix!
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $\mathbf{r}^{\text{new}} = \beta \mathbf{M} \mathbf{r}^{\text{old}}$
 - Add a constant value $(1-\beta)/N$ to each entry in \mathbf{r}^{new}

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - say 10N, or 4*10*1 billion = 40GB
 - still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm

- Assume we have enough RAM to fit r^{new}, plus some working memory
 - Store **r**^{old} and matrix **M** on disk

Basic Algorithm:

- Initialize: r^{old} = [1/N]_N
- Iterate:
 - Update: Perform a sequential scan of \mathbf{M} and \mathbf{r}^{old} to update \mathbf{r}^{new}
 - Write out \mathbf{r}^{new} to disk as \mathbf{r}^{old} for next iteration
 - Every few iterations, compute $|\mathbf{r}^{new}-\mathbf{r}^{old}|$ and stop if it is below threshold
 - Need to read in both vectors into memory

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Proximity Definition in Graphs
- Clustering
- Summary

Personalized PageRank

- Query-dependent Ranking
 - For a query webpage u, which webpages are most important to u?
 - We need a measure s(u,v)
 - The relative important webpages to different queries would be different

Calculation of P-PageRank

uth webpage

- Recall PageRank calculation:
 - $r = \beta M r + [(1-\beta)/N]_N \text{ or }$

•
$$\mathbf{r} = \beta \mathbf{Mr} + (1-\beta) r_0$$
, where $r_0 = \begin{pmatrix} 1/N \\ 1/N \\ ... \\ 1/N \end{pmatrix}$

by replacing r_0 with $r_0 = \begin{pmatrix} 0 \\ \dots \\ 1^{\leftarrow} \end{pmatrix}$

39

Common Neighbors

• $s(u, v) = |\Gamma(u) \cap \Gamma(v)|,$ where $\Gamma(u)$ denotes the neighbors of u

Jaccard's Coefficient

•
$$s(u, v) = \frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}$$

Adamic/Adar

•
$$s(u, v) = \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}$$

• A more connected node will be punished
 $s(1,2) = \frac{1}{\log |\Gamma(3)|} + \frac{1}{\log |\Gamma(5)|} = \frac{1}{\log 6} + \frac{1}{\log 6}$
 $= 1.12$ (in the original paper, take e as base)

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Proximity Definition in Graphs
- Clustering 🦊
- Summary

Clustering Graphs and Network Data

- Applications
 - Bi-partite graphs, e.g., customers and products, authors and conferences
 - Web search engines, e.g., click through graphs and Web graphs
 - Social networks, friendship/coauthor graphs

Clustering books about politics [Newman, 2006]

Spectral Clustering

- Reference: ICDM'09 Tutorial by Chris Ding
- Example:
 - Clustering supreme court justices according to

	Ste	Bre	Gin	Sou	O'Co	Ken	Reh	Sca	Tho
Stevens	-	62	66	63	33	36	25	14	15
Breyer	62	_	72	71	55	47	43	25	24
Ginsberg	66	72	_	78	47	49	43	28	26
Souter	63	71	78	_	55	50	44	31	29
O'Connor	- 33	55	47	55	_	67	71	54	54
Kennedy	36	47	49	50	67	_	77	58	59
Rehnquist	25	43	43	44	71	77	_	66	68
Scalia	14	25	28	31	54	58	66	_	79
Thomas	15	24	26	29	54	59	68	79	_

Table 1: From the voting record of Justices 1995 Term – 2004 Term, the number of times two justices voted in agreement (in percentage). (Data source: from July 2, 2005 New York Times. Originally from Legal Affairs; Harvard Law Review)

Example: Continue

- Three groups in the Supreme Court:
 - Left leaning group, center-right group, right leaning group.

Spectral Graph Partition

Min-Cut

• Minimize the # of cut of edges

Objective Function

2-way Spectral Graph Partitioning

Partition membership indicator:
$$q_{i} = \begin{cases} 1 & \text{if } i \in A \\ -1 & \text{if } i \in B \end{cases}$$
$$J = CutSize = \frac{1}{4} \sum_{i,j} w_{ij} [q_{i} - q_{j}]^{2}$$
$$= \frac{1}{4} \sum_{i,j} w_{ij} [q_{i}^{2} + q_{j}^{2} - 2q_{i}q_{j}] = \frac{1}{2} \sum_{i,j} q_{i} [d_{i}\delta_{ij} - w_{ij}]q_{j}$$
$$= \frac{1}{2} q^{T} (D - W)q$$

Relax indicators q_i from discrete values to continuous values, the solution for min J(q) is given by the eigenvectors of

$$(D-W)q = \lambda q$$

(Fiedler, 1973, 1975)

(Pothen, Simon, Liou, 1990)

Algorithm

• Step 1:

- Calculate Laplacian matrix: L = D W
- Step 2:
 - Calculate the second eigvector q
- Step 3:
 - Bisect q (e.g., 0) to get two clusters

$$(D-W)q = \lambda q$$

(Fiedler, 1973, 1975) (Pothen, Simon, Liou, 1990)

*Minimum Cut with Constraints

minimize cutsize without explicit size constraints

But where to cut ?

Need to balance sizes

***New Objective Functions**

• Ratio Cut (Hangen & Kahng, 1992)

$$J_{Rcut}(A,B) = \frac{S(A,B)}{|A|} + \frac{S(A,B)}{|B|}$$

• Normalized Cut (Shi & Malik, 2000)

$$d_A = \sum_{i \in A} d_i$$

 $i \in A \ j \in B$

 $s(A,B) = \sum \sum w_{ij}$

$$J_{Ncut}(A,B) = \frac{s(A,B)}{d_A} + \frac{s(A,B)}{d_B}$$

= $\frac{s(A,B)}{s(A,A) + s(A,B)} + \frac{s(A,B)}{s(B,B) + s(A,B)}$

• Min-Max-Cut (Ding et al, 2001)

$$J_{MMC}(A,B) = \frac{s(A,B)}{s(A,A)} + \frac{s(A,B)}{s(B,B)}$$

Other References

- A Tutorial on Spectral Clustering by U. Luxburg http://www.kyb.mpg.de/fileadmin/user_u
 - pload/files/publications/attachments/Lux
 - burg07 tutorial 4488%5B0%5D.pdf

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Proximity Definition in Graphs
- Clustering

Summary

- Ranking on Graph / Network
 - PageRank
- Proxmities
 - Personalized PageRank, common neighbors, Jaccard's coefficient, Adamic/Adar
- Clustering
 - Spectral clustering