CS6220: DATA MINING TECHNIQUES

Mining Graph/Network Data

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

March 16, 2016

Methods to Learn

Matrix Data	Text Data	Set Data	Sequence Data	Time Series	 Network	Images	
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN			HMM		Label Propagation*	Neural Network
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means*	PLSA					
Frequent			Apriori;				
Pattern							
Mining							

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Proximity Definition in Graphs
- Clustering
- Summary

Graph, Graph, Everywhere

Aspirin

Yeast protein interaction network

Mhy Gramh Mining?

- Graphs are ubiquitous
- Chemical compounds (Cheminformatics)
- Protein structures, biological pathways/networks (Bioinformactics)
- Program control flow, traffic flow, and workflow analysis
- XML databases, Web, and social network analysis
- Graph is a general model
- Trees, lattices, sequences, and items are degenerated graphs
- Diversity of graphs
- Directed vs. undirected, labeled vs. unlabeled (edges \& vertices), weighted, with angles \& geometry (topological vs. 2-D/3-D)
- Complexity of algorithms: many problems are of high complexity

Representation of a Graph

- $G=<V, E>$
- $V=\left\{u_{1}, \ldots, u_{n}\right\}$: node set
- $E \subseteq V \times V$: edge set
- Adjacency matrix
- $A=\left\{a_{i j}\right\}, i, j=1, \ldots, N$
- $a_{i j}=1, i f<u_{i}, u_{j}>\in E$
- $a_{i j}=0, i f<u_{i}, u_{j}>\notin E$
- Undirected graph vs. Directed graph
- $A=A^{\mathrm{T}}$ vs. $A \neq A^{\mathrm{T}}$
- Weighted graph
- Use W instead of A, where $w_{i j}$ represents the weight of edge $<u_{i}, u_{j}>$

Example

Adjacency matrix A

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Personalized PageRank
-Summary

The History of PageRank

- PageRank was developed by Larry Page (hence the name Page-Rank) and Sergey Brin.
- It is first as part of a research project about a new kind of search engine. That project started in 1995 and led to a functional prototype in 1998.
- Shortly after, Page and Brin founded Google.

Ranking web pages

-Web pages are not equally "important"

- www.cnn.com vs. a personal webpage
- Inlinks as votes
- The more inlinks, the more important - Are all inlinks equal?
- Higher ranked inlink should play a more important role
- Recursive question!

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- If page P with importance x has n outlinks, each link gets x / n votes
- Page P's own importance is the sum of the votes on its inlinks

Matrix formulation

- Matrix \mathbf{M} has one row and one column for each web page

| - Suppose page j has n outlinks | y | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| - If j -> i , then $\mathrm{M}_{\mathrm{ij}}=1 / \mathrm{n}$ | a | 1 | 0 | |
| 1 | | | | |
| - Else $\mathrm{M}_{\mathrm{ij}}=0$ | m | 0 | 1 | 0 |

- \mathbf{M} is a column stochastic matrix
- Columns sum to 1
- Suppose \mathbf{r} is a vector with one entry per web page
- r_{i} is the importance score of page i
- Call it the rank vector
- $|\mathbf{r}|=1$ (i.e., $r_{1}+r_{2}+\cdots+r_{N}=1$)

Eigenvector formulation

-The flow equations can be written

$$
r=M r
$$

- So the rank vector is an eigenvector of the stochastic web matrix
- In fact, its first or principal eigenvector, with corresponding eigenvalue 1

Example

$$
\begin{aligned}
& y=y / 2+a / 2 \\
& a=y / 2+m
\end{aligned}
$$

$$
m=a / 2
$$

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

Power Iteration method

-Simple iterative scheme

- Suppose there are N web pages
- Initialize: $\mathbf{r}^{0}=[1 / \mathbf{N}, \ldots ., 1 / \mathrm{N}]^{\mathrm{T}}$
- Iterate: $\mathbf{r}^{\mathrm{k}+1}=\mathbf{M r}^{\mathrm{k}}$
- Stop when $\left|\mathbf{r}^{\mathrm{k}+1}-\mathrm{r}^{\mathrm{k}}\right|_{1}<\varepsilon$
- $|\mathbf{x}|_{1}=\sum_{1 \leq i \leq N}\left|x_{i}\right|$ is the L_{1} norm
- Can use any other vector norm e.g., Euclidean

Power Iteration Example

| y | | | | | | |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- | ---: |
| a | | | | | | |
| m | $1 / 3$ | $1 / 3$ | $5 / 12$ | $3 / 8$ | | $2 / 5$ |
| | $1 / 3$ | $1 / 2$ | $1 / 3$ | $11 / 24$ | \ldots | $2 / 5$ |
| $1 / 3$ | $1 / 6$ | $1 / 4$ | $1 / 6$ | | $1 / 5$ | |
| r_{0} | r_{1} | r_{2} | r_{3} | \ldots | r^{*} | |

Random Walk Interpretation

- Imagine a random web surfer
- At any time t, surfer is on some page P
- At time t^{+}, the surfer follows an outlink from P uniformly at random
- Ends up on some page Q linked from P
- Process repeats indefinitely
- Let $\mathbf{p}(\mathrm{t})$ be a vector whose $\mathrm{i}^{\text {th }}$ component is the probability that the surfer is at page i at time t
$\cdot \mathrm{p}(\mathrm{t})$ is a probability distribution on pages

The stationary distribution

-Where is the surfer at time $t+1$?

- Follows a link uniformly at random
- $\mathbf{p}(\mathrm{t}+1)=\mathbf{M p}(\mathrm{t})$
- Suppose the random walk reaches a state such that $\mathbf{p}(\mathrm{t}+1)=\mathbf{M p}(\mathrm{t})=\mathbf{p}(\mathrm{t})$
- Then $\mathbf{p}(t)$ is called a stationary distribution for the random walk
- Our rank vector \mathbf{r} satisfies $\mathbf{r}=\mathbf{M r}$
- So it is a stationary distribution for the random surfer

Existence and Uniqueness

A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t
$=0$.

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
- Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

Microsoft becomes a spider trap

Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
- With probability β, follow a link at random
- With probability $1-\beta$, jump to some page uniformly at random
- Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta=0.8$)

0.8 \begin{tabular}{|ccc|}
\hline $1 / 2$ \& $1 / 2$ \& 0

$1 / 2$ \& 0 \& 0

0 \& $1 / 2$ \& 1

$|\quad+0.2|$

$1 / 3$ \& $1 / 3$ \& $1 / 3$

$1 / 3$ \& $1 / 3$ \& $1 / 3$

$1 / 3$ \& $1 / 3$ \& $1 / 3$
\end{tabular}

-----> : teleport links from "Yahoo"

	$7 / 15$	$7 / 15$	$1 / 15$
a	$7 / 15$	$1 / 15$	$1 / 15$
m	$1 / 15$	$7 / 15$	$13 / 15$

Random teleports ($\beta=0.8$)

Matrix formulation

- Suppose there are N pages
- Consider a page j , with set of outlinks $\mathrm{O}(\mathrm{j})$
- We have $\mathrm{M}_{\mathrm{ij}}=1 /|\mathrm{O}(\mathrm{j})|$ when j ->i and $\mathrm{M}_{\mathrm{ij}}=0$ otherwise
- The random teleport is equivalent to
- adding a teleport link from j to every other page with probability (1- β)/N
- reducing the probability of following each outlink from $1 /|O(j)|$ to $\beta /|O(j)|$
- Equivalent: tax each page a fraction (1- β) of its score and redistribute evenly

PageRank

- Construct the N -by- N matrix A as follows
- $\mathrm{A}_{\mathrm{ij}}=\beta \mathrm{M}_{\mathrm{ij}}+(1-\beta) / \mathrm{N}$
- Verify that \mathbf{A} is a stochastic matrix
-The page rank vector \mathbf{r} is the principal eigenvector of this matrix
- satisfying $\mathrm{r}=\mathrm{Ar}$
- Equivalently, \mathbf{r} is the stationary distribution of the random walk with teleports

Dead ends

- Pages with no outlinks are "dead ends" for the random surfer
- Nowhere to go on next step

Microsoft becomes a dead end

$$
0.8 \begin{array}{|ccc|}
\hline 1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0
\end{array} \quad+0.2 \begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}
$$

Dealing with dead-ends

- Teleport

- Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly
- Prune and propagate
- Preprocess the graph to eliminate dead-ends
- Might require multiple passes
- Compute page rank on reduced graph
- Approximate values for deadends by propagating values from reduced graph

Dealing dead end: teleport

Dealing dead end: reduce graph

Computing PageRank

- Key step is matrix-vector multiplication
- $\mathbf{r}^{\text {new }}=A r^{\text {old }}$
- Easy if we have enough main memory to hold A, rold, $\mathbf{r}^{\text {new }}$
- Say N = 1 billion pages
- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has \mathbf{N}^{2} entries
- 10^{18} is a large number!

Rearranging the equation

$r=A r$, where
$A_{i j}=\beta M_{i j}+(1-\beta) / N$
$r_{i}=\sum_{1 \leq j \leq N} A_{i j} r_{j}$
$r_{i}=\sum_{1 \leq j \leq N}\left[\beta M_{i j}+(1-\beta) / N\right] r_{j}$
$=\beta \sum_{1 \leq j \leq N} M_{i j} r_{j}+(1-\beta) / N \sum_{1 \leq j \leq N} r_{j}$
$=\beta \sum_{1 \leq j \leq N} M_{i j} r_{j}+(1-\beta) / N$, since $|r|=1$
$\mathbf{r}=\beta \mathbf{M r}+[(1-\beta) / \mathrm{N}]_{N}$
where $[\mathrm{x}]_{\mathrm{N}}$ is an N -vector with all entries x

Sparse matrix formulation

- We can rearrange the page rank equation:
- $\mathbf{r}=\beta \mathbf{M r}+[(1-\beta) / \mathbf{N}]_{N}$
- $[(1-\beta) / \mathrm{N}]_{\mathrm{N}}$ is an N -vector with all entries $(1-\beta) / \mathrm{N}$
- \mathbf{M} is a sparse matrix!
- 10 links per node, approx 10 N entries
- So in each iteration, we need to:
- Compute $\mathbf{r}^{\text {new }}=\beta \mathbf{M r}^{\text {old }}$
- Add a constant value ($1-\beta$)/N to each entry in $\mathbf{r}^{\text {new }}$

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
- Space proportional roughly to number of links
- say 10 N , or $4 * 10 * 1$ billion $=40 \mathrm{~GB}$
- still won’t fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	$1,5,7$
1	5	$17,64,113,117,245$
2	2	13,23

Basic Algorithm

- Assume we have enough RAM to fit $\mathbf{r}^{\text {new }}$, plus some working memory
- Store $\mathbf{r}^{\text {old }}$ and matrix \mathbf{M} on disk

Basic Algorithm:

- \quad Initialize: $r^{\text {old }}=[1 / \mathrm{N}]_{N}$
- Iterate:
- Update: Perform a sequential scan of \mathbf{M} and $\mathbf{r}^{\text {old }}$ to update $\mathbf{r}^{\text {new }}$
- Write out $\mathbf{r}^{\text {new }}$ to disk as $\mathbf{r}^{\text {old }}$ for next iteration
- Every few iterations, compute $\left|\mathrm{r}^{\text {new }-r^{\text {old }}}\right|$ and stop if it is below threshold
- Need to read in both vectors into memory

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Proximity Definition in Graphs

- Clustering
- Summary

Personalized PageRank

- Query-dependent Ranking
- For a query webpage u, which webpages are most important to u?
- We need a measure $s(u, v)$
- The relative important webpages to different queries would be different

Calculation of P-PageRank

- Recall PageRank calculation:
- $\mathbf{r}=\beta \mathbf{M r}+[(1-\beta) / \mathrm{N}]_{\mathrm{N}}$ or
$\cdot \mathrm{r}=\beta \mathbf{M r}+(1-\beta) r_{0}$, where $r_{0}=\left(\begin{array}{c}1 / N \\ 1 / N \\ \ldots \\ 1 / N\end{array}\right)$
- For P-PageRank, $s(u, v)=r(v)$
by replacing r_{0} with $r_{0}=\left(\begin{array}{c}0 \\ 0 \\ \ldots \\ 1 \\ \ldots \\ 0\end{array}\right)$ uth webpage

Common Neighbors

- $s(u, v)=|\Gamma(u) \cap \Gamma(v)|$, where $\Gamma(u)$ denotes the neighbors of u

Jaccard's Coefficient

$\cdot s(u, v)=\frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}$

Adamic/Adar

$$
s(u, v)=\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}
$$

- A more connected node will be punished

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Proximity Definition in Graphs
- Clustering
- Summary

Clustering Graphs and Network Data

- Applications

- Bi-partite graphs, e.g., customers and products, authors and conferences
- Web search engines, e.g., click through graphs and Web graphs
- Social networks, friendship/coauthor graphs

Clustering books about politics [Newman, 2006]

Spectral Clustering

- Reference: ICDM’09 Tutorial by Chris Ding - Example:

- Clustering supreme court justices according to

Number of times (\%) two Justices voted in agreement

	Ste	Bre	Gin	Sou	O'Co $^{\prime}$ O	Ken	Reh	Sca	Tho
Stevens	-	62	66	63	33	36	25	14	15
Breyer	62	-	72	71	55	47	43	25	24
Ginsberg	66	72	-	78	47	49	43	28	26
Souter	63	71	78	-	55	50	44	31	29
O'Connor	33	55	47	55	-	67	71	54	54
Kennedy	36	47	49	50	67	-	77	58	59
Rehnquist	25	43	43	44	71	77	-	66	68
Scalia	14	25	28	31	54	58	66	-	79
Thomas	15	24	26	29	54	59	68	79	-

Table 1: From the voting record of Justices 1995 Term - 2004 Term, the number of times two justices voted in agreement (in percentage). (Data source: from July 2, 2005 New York Times. Originally from Legal Affairs; Harvard Law Review)

Example: Continue

- Three groups in the Supreme Court:
- Left leaning group, center-right group, right leaning group.

Spectral Graph Partition

- Min-Cut
- Minimize the \# of cut of edges

Objective Function

2-way Spectral Graph Partitioning

Partition membership indicator: $\quad q_{i}=\left\{\begin{array}{cc}1 & \text { if } i \in A \\ -1 & \text { if } i \in B\end{array}\right.$

$$
\begin{aligned}
J & =\text { CutSize }=\frac{1}{4} \sum_{i, j} w_{i j}\left[q_{i}-q_{j}\right]^{2} \\
& =\frac{1}{4} \sum_{i, j} w_{i j}\left[q_{i}^{2}+q_{j}^{2}-2 q_{i} q_{j}\right]=\frac{1}{2} \sum_{i, j} q_{i}\left[d_{i} \delta_{i j}-w_{i j}\right] q_{j} \\
& =\frac{1}{2} q^{T}(D-W) q
\end{aligned}
$$

Relax indicators q_{i} from discrete values to continuous values, the solution for $\min J(q)$ is given by the eigenvectors of

$$
\begin{equation*}
(D-W) q=\lambda q \tag{Fiedler,1973,1975}
\end{equation*}
$$

Algorithm

- Step 1:

- Calculate Laplacian matrix: $L=D-W$
- Step 2:
- Calculate the second eigvector q
- Step 3:
- Bisect q (e.g., 0) to get two clusters

$$
(D-W) q=\lambda q
$$

(Fiedler, 1973, 1975)
(Pothen, Simon, Liou, 1990)

*Minimum Cut with Constraints

minimize cutsize without explicit size constraints
But where to cut?

Need to balance sizes

- Ratio Cut (Hangen \& Kahng, 1992)

$$
s(A, B)=\sum_{i \in A} \sum_{j \in B} w_{i j}
$$

$$
J_{\text {Rcut }}(A, B)=\frac{s(A, B)}{|A|}+\frac{s(A, B)}{|B|}
$$

- Normalized Cut (Shi \& Malik, 2000)

$$
\begin{aligned}
J_{\text {Nout }}(A, B) & =\frac{s(A, B)}{d_{A}}+\frac{s(A, B)}{d_{B}} \\
& =\frac{s(A, B)}{s(A, A)+s(A, B)}+\frac{s(A, B)}{s(B, B)+s(A, B)}
\end{aligned}
$$

- Min-Max-Cut (Ding et al, 2001)

$$
J_{M M C}(A, B)=\frac{s(A, B)}{s(A, A)}+\frac{s(A, B)}{s(B, B)}
$$

Other References

- A Tutorial on Spectral Clustering by U. Luxburg http://www.kyb.mpg.de/fileadmin/user u pload/files/publications/attachments/Lux burg07 tutorial 4488\%5B0\%5D.pdf

Mining Graph/Network Data

- Introduction to Graph/Network Data
- PageRank
- Proximity Definition in Graphs
- Clustering
- Summary

Summary

- Ranking on Graph / Network
- PageRank
- Proxmities
- Personalized PageRank, common neighbors, Jaccard's coefficient, Adamic/Adar
- Clustering
- Spectral clustering

