CS6220: DATA MINING TECHNIQUES

Recommender Systems

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

March 22, 2016

Methods to Learn

	Matrix Data	Text Data	Set Data	Sequence Data	Time Series	Graph & Network	Images
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; kNN			НММ		Label Propagation*	Neural Network
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means*	PLSA				SCAN*; Spectral Clustering	
Frequent Pattern Mining			Apriori; FP-growth	GSP; PrefixSpan			
Prediction	Linear Regression				Autoregression	Recommend ation	
Similarity Search					DTW	P-PageRank	
Ranking						PageRank	

Recommender Systems

• What is Recommender System?

- Collaborative Filtering
- Content-based Recommendation

- Evaluation Metrics
- Summary

Recommender Systems

Application areas

You may also like

£21.00 Free delivery & returns

You may also like

☆☆☆☆☆ (53)

ALTERNATIVE PRODUCTS

Beko Washing Machine Code: WMB81431LW

Zanussi Washing Machine

Blomberg Washing Machine

Code: ZWH6130P

Code: WNF6221

£269.99

£269.99

£299.99

☆☆☆☆☆ (33)

Related hotels...

Hotel 41 00000 1.170 Reviews

London, England

Show Prices

30

There Is Almost No Gold In The х Olympic Gold Medal

How to Break NRA's Grip on Politics: Michael R.

Growth in U.S. Slows as Consumers Restrain

In the Social Web

Jobs yo	u may be interested in ^{Beta}	Email Alerts See More :
	Technical Sales Manager - Europe Thermal Transfer Products - Home office	×
Johnson Controls	Senior Program Manager (f/m) Johnson Controls - Germany-NW-Burscheid	×
Groups	You May Like More »	
a sta	 Advances in Preference Handling Join 	
7	 FP7 Information and Communication Technologies (ICT) Join 	
The second	 The Blakemore Foundation Join 	
Pica: Empfohle	SQ [™] -Webalben Startseite Meine Fotos Erkunden ne Fotos Alle anzeigen	1. Hochladen

>>

Why using Recommender Systems?

- Value for the customer
 - Find things that are interesting
 - Narrow down the set of choices
 - Help me explore the space of options
 - Discover new things
 - Entertainment
 - •

...

- Value for the provider
 - Additional and probably unique personalized service for the customer
 - Increase trust and customer loyalty
 - Increase sales, click trough rates, conversion etc.
 - Opportunities for promotion, persuasion
 - Obtain more knowledge about customers

Representation

Sparse Matrix

• Explicit Feedback

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Users	Moviel	Movie2	Movie3	Movie4	Movie5	Movie6	•••
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	User1	?	?	4	?	1	?	•••
User3 ? ? 5 3 2 4 $\cdot \cdot$ User4 1 ? ? 4 ? ? $\cdot \cdot$ User5 2 3 ? ? ? ? $\cdot \cdot$	User2	2	5	2	?	?	2	•••
User4 1 ? ? 4 ? ? User5 2 3 ? ? ? ?	User3	?	?	5	3	2	4	•••
User5 2 3 ? ? ? ? .	User4	1	?	?	4	?	?	•••
	User5	2	3	?	?	?	?	•••
···· ··· ··· ··· ··· ··· ···								•••

• Implicit Feedback

	Items									
Users	Alice	1	1	0	0					
CSCIS	Bob	0	0	1	1					
	Corey	1	0	1	0					

A Network Point of View

Link prediction problem

Methods

- Collaborative filtering
- Content-based recommendation
- Hybrid methods

Recommender Systems

- What is Recommender System?
- Collaborative Filtering 🛛 🦊
- Content-based Recommendation
- Evaluation Metrics
- Summary

Collaborative Filtering (CF)

- The most prominent approach to generate recommendations
 - used by large, commercial e-commerce sites
 - well-understood, various algorithms and variations exist
 - applicable in many domains (book, movies, DVDs, ..)

Approach

- use the "wisdom of the crowd" to recommend items
- Basic assumption and idea
 - Users give ratings to catalog items (implicitly or explicitly)
 - Customers who had similar tastes in the past, will have similar tastes in the future

User-based Collaborative Filtering

- Define similarity between users according to the history matrix
- 2. Decide how many "peers" to consider
- 3. Use peers' ratings to predict the rating between an active user and an item

	ltem1	ltem2	ltem3	ltem4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

(1) Define Similarities between Users

Pearson correlation between user a and b

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

- *r_{a,p}*: *rating of user a to item p*
- P: a set of items that are rated by both a and b
- $\overline{r_a}$, $\overline{r_b}$: average rating of user a and b

• Or,
$$sim(a, b) = \frac{cov(r_a, r_b)}{\sigma(r_a)\sigma(r_b)}$$

- $cov(r_a, r_b)$: covariance between a and b
- $\sigma(r_a)$, $\sigma(r_b)$: standard deviation of a and b

Example

•
$$sim(Alice, User1)$$

• $\overline{r_{Alice}} = \frac{5+3+4+4}{4} = 4; \sigma(Alice) = 0.707$
• $\overline{r_{User1}} = \frac{3+1+2+3}{4} = 2.25; \sigma(User1) = 0.9574$
• $cov(Alice, User1) = 0.6667;$

• => $sim(Alice, User1) = \frac{0.6667}{0.707*0.9574} = 0.8528$

	ltem1	Item2	Item3	Item4	ltem5	
Alice	5	3	4	4	?	sim = 0.85
User1	3	1	2	3	3	sim = 0.70 sim = -0.79
User2	4	3	4	3	5	
User3	3	3	1	5	4	
User4	1	5	5	2	1	•

(2) Decide how many peers to use

- Usually only use top K most similar users for prediction
 - i.e., based on top-K most similar users' rating for an item

(3) Predict the rating

• A common prediction function:

$$pred(a, p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a, b) * (r_{b, p} - \overline{r_b})}{\sum_{b \in N} sim(a, b)}$$

- Calculate, whether the neighbors' ratings for the unseen item *i* are higher or lower than their average
- Combine the rating differences use the similarity as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Example

- Use top-2 neighbor for prediction
 - Alice's top-2 neighbor are User1 and User2
 - $pred(Alice, Item5) = \overline{r_{Alice}} + \frac{sim(Alice, User1)(r_{User1, Item5} \overline{r_{User1}}) + sim(Alice, User2)(r_{User2, Item5} \overline{r_{User2}})}{sim(Alice, User1) + sim(Alice, User2)}$

$$= 4 + \frac{0.85*(3-2.25)+0.70*(5-3.5)}{0.85+0.70} = 5.0887$$

	ltem1	ltem2	Item3	Item4	ltem5	
Alice	5	3	4	4	?	sim = 0.85
User1	3	1	2	3	3	sim = 0.70
User2	4	3	4	3	5 🖣	
User3	3	3	1	5	4	
User4	1	5	5	2	1	

Model-based Collaborative Filtering

- User-based CF is said to be "memory-based"
 - the rating matrix is directly used to find neighbors / make predictions
 - does not scale for most real-world scenarios
 - large e-commerce sites have tens of millions of customers and millions of items

Model-based approaches

- based on an offline pre-processing or "model-learning" phase
- at run-time, only the learned model is used to make predictions
- models are updated / re-trained periodically
- large variety of techniques used
- model-building and updating can be computationally expensive

Matrix Factorization for Recommendation

Map users and items into the same latent space

Now users and items are comparable

 Recommendation: find items that are close to users in the new space

Procedure

Training stage

• Use existing matrix to learn the latent feature vector for both users and items by matrix factorization

Recommendation stage

• Predict the score for unknown (user, item) pairs

Training Stage

- • r_{ui} : the rating from u to i
- p_u : the latent feature vector for user u
- q_i : the latent feature vector for item I
- \hat{r}_{ui} : score function for (u,i), $\hat{r}_{ui} = q_i^T p_u$
- Objective function:

23

Learning Algorithm

- Stochastic gradient descent
- For each rating (u, i):
 - update $p_u: p_u \leftarrow p_u + \eta \cdot ((r_{ui} \hat{r}_{ui})q_i \lambda p_u)$
 - update $q_i: q_i \leftarrow q_i + \eta \cdot \left((r_{ui} \hat{r}_{ui}) p_u \lambda q_i \right)$
 - Where η is the learning rate

Prediction Stage

• For an unseen pair (u, i)

$$\cdot \hat{r}_{ui} = q_i^T p_u = p_u^T q_i$$

• Example:

• $r_{AW} = p_A^T q_W = 1.2 * 1.5 + 0.8 * 1.7 = 3.16$

Issues of CF

- Cold Start: There needs to be enough other users already in the system to find a match.
- Sparsity: If there are many items to be recommended, even if there are many users, the user/ratings matrix is sparse, and it is hard to find users that have rated the same items.
- First Rater: Cannot recommend an item that has not been previously rated.
 - New items
 - Esoteric items
- Popularity Bias: Cannot recommend items to someone with unique tastes.
 - Tends to recommend popular items.

Recommender Systems

- What is Recommender System?
- Collaborative Filtering
- Content-based Recommendation
- Evaluation Metrics
- Summary

Content-based recommendation

- Collaborative filtering does NOT require any information about the items,
 - However, it might be reasonable to exploit such information
 - E.g. recommend fantasy novels to people who liked fantasy novels in the past
- What do we need:
 - Some information about the available items such as the genre ("content")
 - Some sort of user profile describing what the user likes (the preferences)
- The task:
 - Learn user preferences
 - Locate/recommend items that are "similar" to the user preferences

Content representation and item similarities

Title	Genre	Author	Type	Price	Keywords
The Night o the Gun	Memoir f	David Carr	Paperback	29.90	Press and jour- nalism, drug addiction, per- sonal memoirs, New York
The Lace Reader	e Fiction, Mystery	Brunonia Barry	Hardcover	49.90	American contem- porary fiction, de- tective, historical
Into the Fire	e Romance, Suspense	Suzanne Brock- mann	Hardcover	45.90	American fic- tion, Murder, Neo-nazism
		mann			Neo-nazism
Title	Genre	Author	Type	Price	Keywords
	Fiction, Suspense	Brunonia Barry, Ken	Paperback	25.65	detective, murde New York

User profile

Item

Simple approach •

Compute the similarity of an unseen item with the user profile based on the • keyword overlap (e.g. using the Dice coefficient)

Follet. ..

- $sim(b_i, b_j) = \frac{2 * |keywords(b_i) \cap keywords(b_j)|}{|keywords(b_i)| + |keywords(b_j)|}$
- Other advanced similarity measure •

Recommender Systems

- What is Recommender System?
- Collaborative Filtering
- Content-based Recommendation
- Evaluation Metrics

• Summary

Accuracy measures

- Datasets with items rated by users
 - MovieLens datasets 100K-10M ratings
 - Netflix 100M ratings
- Historic user ratings constitute ground truth
- Metrics measure error rate
 - Mean Absolute Error (*MAE*) computes the deviation between predicted ratings and actual ratings

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

• Root Mean Square Error (*RMSE*) is similar to *MAE*, but places more emphasis on larger deviation $RMSE = \frac{1}{n}\sum_{k=1}^{n} (p_i - r_i)^2$

Precision and Recall

- Precision: a measure of exactness, determines the fraction of relevant items retrieved out of all items retrieved
 - E.g. the proportion of recommended movies that are actually good

$$Precision = \frac{tp}{tp + fp} = \frac{|good movies recommended|}{|all recommendations|}$$

- Recall: a measure of completeness, determines the fraction of relevant items retrieved out of all relevant items
 - E.g. the proportion of all good movies recommended

 $Recall = \frac{tp}{tp + fn} = \frac{|good movies recommended|}{|all good movies|}$

Recommender Systems

- What is Recommender System?
- Collaborative Filtering
- Content-based Recommendation
- Evaluation Metrics

Summary

- Recommendation
 - User-based CF, matrix factorization-based CF
 - Content-based recommendation
 - Evaluation

References

- <u>http://ijcai13.org/files/tutorial_slides/td3.</u>
 <u>pdf</u>
- <u>http://research.microsoft.com/pubs/1153</u>
 <u>96/EvaluationMetrics.TR.pdf</u>
- https://datajobs.com/data-sciencerepo/Recommender-Systems-[Netflix].pdf