09: Vector Data: Clustering Basics

Instructor: Yizhou Sun
yzsun@cs.ucla.edu

October 27, 2017
Methods to Learn

<table>
<thead>
<tr>
<th></th>
<th>Vector Data</th>
<th>Set Data</th>
<th>Sequence Data</th>
<th>Text Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Logistic Regression; Decision Tree; KNN SVM; NN</td>
<td></td>
<td></td>
<td>Naïve Bayes for Text</td>
</tr>
<tr>
<td>Clustering</td>
<td>K-means; hierarchical clustering; DBSCAN; DBSCAN; Mixture Models</td>
<td></td>
<td></td>
<td>PLSA</td>
</tr>
<tr>
<td>Prediction</td>
<td>Linear Regression GLM*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequent Pattern Mining</td>
<td>Apriori; FP growth</td>
<td></td>
<td>GSP; PrefixSpan</td>
<td></td>
</tr>
<tr>
<td>Similarity Search</td>
<td></td>
<td></td>
<td></td>
<td>DTW</td>
</tr>
</tbody>
</table>
Vector Data: Clustering Basics

• Clustering Analysis: Basic Concepts
• Partitioning methods
• Hierarchical Methods
• Density-Based Methods
• Summary
What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms
Applications of Cluster Analysis

- Data reduction
 - Summarization: Preprocessing for regression, PCA, classification, and association analysis
 - Compression: Image processing: vector quantization
- Prediction based on groups
 - Cluster & find characteristics/patterns for each group
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection: Outliers are often viewed as those “far away” from any cluster
Clustering: Application Examples

- **Biology**: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- **Information retrieval**: document clustering
- **Land use**: Identification of areas of similar land use in an earth observation database
- **Marketing**: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- **City-planning**: Identifying groups of houses according to their house type, value, and geographical location
- **Earth-quake studies**: Observed earth quake epicenters should be clustered along continent faults
- **Climate**: understanding earth climate, find patterns of atmospheric and ocean
Vector Data: Clustering Basics

• Clustering Analysis: Basic Concepts

• Partitioning methods

• Hierarchical Methods

• Density-Based Methods

• Summary
Partitioning Algorithms: Basic Concept

• **Partitioning method:** Partitioning a dataset D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_j is the centroid or medoid of cluster C_j)

$$J = \sum_{j=1}^{k} \sum_{c(i)=j} d(x_i, c_j)^2$$

• Given k, find a partition of k clusters that optimizes the chosen partitioning criterion

 • Global optimal: exhaustively enumerate all partitions

 • Heuristic methods: *k-means* and *k-medoids* algorithms

 • *k-means* (MacQueen’67, Lloyd’57/’82): Each cluster is represented by the center of the cluster

 • *k-medoids* or PAM (Partition around medoids) (Kaufman & Rousseeuw’87): Each cluster is represented by one of the objects in the cluster
The K-Means Clustering Method

- Given \(k \), the \(k \)-means algorithm is implemented in four steps:
 - Step 0: Partition objects into \(k \) nonempty subsets
 - Step 1: Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., *mean point*, of the cluster)
 - Step 2: Assign each object to the cluster with the nearest seed point
 - Step 3: Go back to Step 1, stop when the assignment does not change
An Example of *K-Means* Clustering

- Partition objects into \(k \) nonempty subsets
- Repeat
 - Compute centroid (i.e., mean point) for each partition
 - Assign each object to the cluster of its nearest centroid
- Until no change

The initial data set

K=2
 Arbitrarily partition objects into \(k \) groups

Update the cluster centroids

Loop if needed

Reassign objects

Update the cluster centroids
Theory Behind K-Means

• Objective function
 \[J = \sum_{j=1}^{k} \sum_{C(i)=j} ||x_i - c_j||^2 \]

• Re-arrange the objective function
 \[J = \sum_{j=1}^{k} \sum_i w_{ij} ||x_i - c_j||^2 \]
 • \(w_{ij} \in \{0,1\} \)
 • \(w_{ij} = 1, \text{if } x_i \text{ belongs to cluster } j; w_{ij} = 0, \text{otherwise} \)

• Looking for:
 • The best assignment \(w_{ij} \)
 • The best center \(c_j \)
Solution of K-Means

- **Iterations**

 - **Step 1:** Fix centers c_j, find assignment w_{ij} that minimizes J
 - $w_{ij} = 1$, if $||x_i - c_j||^2$ is the smallest

 - **Step 2:** Fix assignment w_{ij}, find centers that minimize J
 - first derivative of $J = 0$
 - $\frac{\partial J}{\partial c_j} = -2 \sum_i w_{ij} (x_i - c_j) = 0$
 - $c_j = \frac{\sum_i w_{ij} x_i}{\sum_i w_{ij}}$
 - Note $\sum_i w_{ij}$ is the total number of objects in cluster j

$$J = \sum_{j=1}^{k} \sum_i w_{ij} ||x_i - c_j||^2$$
Comments on the *K-Means* Method

- **Strength:** *Efficient: O*(tkn)*, where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.

- **Comment:** Often terminates at a *local optimal*

- **Weakness**

 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify k, the *number* of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
 - Sensitive to noisy data and *outliers*
 - Not suitable to discover clusters with *non-convex shapes*
Variations of the *K-Means* Method

• Most of the variants of the *k-means* which differ in
 • Selection of the initial *k* means
 • Dissimilarity calculations
 • Strategies to calculate cluster means

• Handling categorical data: *k-modes*
 • Replacing means of clusters with *modes*
 • Using new dissimilarity measures to deal with categorical objects
 • Using a *frequency*-based method to update modes of clusters
 • A mixture of categorical and numerical data: *k-prototype* method
What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster
PAM: A Typical K-Medoids Algorithm*

Do loop
Until no change

Swapping \(O \) and \(O_{\text{random}} \)
If quality is improved.
The K-Medoid Clustering Method*

- **K-Medoids Clustering**: Find *representative* objects (medoids) in clusters
 - *PAM* (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)
 - Starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - *PAM* works effectively for small data sets, but does not scale well for large data sets (due to the computational complexity)
- Efficiency improvement on PAM
 - *CLARA* (Kaufmann & Rousseeuw, 1990): PAM on samples
 - *CLARANS* (Ng & Han, 1994): Randomized re-sampling
Vector Data: Clustering Basics

• Clustering Analysis: Basic Concepts
• Partitioning methods
• Hierarchical Methods
• Density-Based Methods
• Summary
Hierarchical Clustering

- Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition.
AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical packages, e.g., Splus
- Use the **single-link** method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster
Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram.

A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.
DIANA (Divisive Analysis)

• Introduced in Kaufmann and Rousseeuw (1990)
• Implemented in statistical analysis packages, e.g., Splus
• Inverse order of AGNES
• Eventually each node forms a cluster on its own
Distance between Clusters

- **Single link:** smallest distance between an element in one cluster and an element in the other, i.e., \(\text{dist}(K_i, K_j) = \min \text{dist}(t_{ip}, t_{jq}) \)
- **Complete link:** largest distance between an element in one cluster and an element in the other, i.e., \(\text{dist}(K_i, K_j) = \max \text{dist}(t_{ip}, t_{jq}) \)
- **Average:** avg distance between an element in one cluster and an element in the other, i.e., \(\text{dist}(K_i, K_j) = \text{avg dist}(t_{ip}, t_{jq}) \)
- **Centroid:** distance between the centroids of two clusters, i.e., \(\text{dist}(K_i, K_j) = \text{dist}(C_i, C_j) \)
- **Medoid:** distance between the medoids of two clusters, i.e., \(\text{dist}(K_i, K_j) = \text{dist}(M_i, M_j) \)
 - Medoid: a chosen, centrally located object in the cluster
Centroid, Radius and Diameter of a Cluster (for numerical data sets)

• Centroid: the “middle” of a cluster

\[C_i = \frac{\sum_{p=1}^{N_i} (t_{ip})}{N_i} \]

• Radius: square root of average distance from any point of the cluster to its centroid

\[R_i = \sqrt{\frac{\sum_{p=1}^{N_i} (t_{ip} - c_i)^2}{N_i}} \]

• Diameter: square root of average mean squared distance between all pairs of points in the cluster

\[D_i = \sqrt{\frac{\sum_{p=1}^{N_i} \sum_{q=1}^{N_i} (t_{ip} - t_{iq})^2}{N_i(N_i-1)}} \]
Example: Single Link vs. Complete Link

(a) Data set

(b) Clustering using single linkage

(c) Clustering using complete linkage
Extensions to Hierarchical Clustering

- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - Do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects

- Integration of hierarchical & distance-based clustering
 - \textbf{BIRCH (1996)}: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - \textbf{CHAMELEON (1999)}: hierarchical clustering using dynamic modeling
Vector Data: Clustering Basics

• Clustering Analysis: Basic Concepts
• Partitioning methods
• Hierarchical Methods
• Density-Based Methods
• Summary
Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points

- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition

- Several interesting studies:
 - **DBSCAN**: Ester, et al. (KDD’96)
 - **DENCLUE**: Hinneburg & D. Keim (KDD’98)
 - **CLIQUE**: Agrawal, et al. (SIGMOD’98) (more grid-based)
DBSCAN: Basic Concepts

- Two parameters:
 - Eps: Maximum radius of the neighborhood
 - $MinPts$: Minimum number of points in an Eps-neighborhood of that point

- $N_{Eps}(q)$: \{p belongs to D \mid dist(p,q) \leq Eps\}

- Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. Eps, $MinPts$ if
 - p belongs to $N_{Eps}(q)$
 - q is a core point, core point condition: $|N_{Eps}(q)| \geq MinPts$

MinPts = 5
Eps = 1 cm
Density-Reachable and Density-Connected

- **Density-reaching**:
 - A point p is density-reachable from a point q w.r.t. Eps, $MinPts$ if there is a chain of points p_1, \ldots, p_n, $p_1 = q$, $p_n = p$ such that p_{i+1} is directly density-reachable from p_i.

- **Density-connected**:
 - A point p is density-connected to a point q w.r.t. Eps, $MinPts$ if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and $MinPts$.
DBSCAN: Density-Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points.
- Noise: object not contained in any cluster is noise.
- Discovers clusters of arbitrary shape in spatial databases with noise.

Eps = 1cm
MinPts = 5
If a spatial index is used, the computational complexity of DBSCAN is $O(n \log n)$, where n is the number of database objects. Otherwise, the complexity is $O(n^2)$.
DBSCAN: Sensitive to Parameters

DBSCAN online Demo:

Questions about Parameters

• Fix Eps, increase MinPts, what will happen?
• Fix MinPts, decrease Eps, what will happen?
Vector Data: Clustering Basics

- Clustering Analysis: Basic Concepts
- Partitioning methods
- Hierarchical Methods
- Density-Based Methods
- Summary
Summary

- Cluster analysis groups objects based on their similarity and has wide applications; Measure of similarity can be computed for various types of data
- K-means and K-medoids algorithms are popular partitioning-based clustering algorithms
- AGNES and DIANA are interesting hierarchical clustering algorithms
- DBSCAN, OPTICS*, and DENCLUE* are interesting density-based algorithms
References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering", KDD'02
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. VLDB’98.
- V. Ganti, J. Gehrke, R. Ramakrishnan. CACTUS Clustering Categorical Data Using Summaries. KDD'99.
References (2)

• E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB’98.
References (3)

- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.
- L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A Review, SIGKDD Explorations, 6(1), June 2004
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition,
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB’98.
- A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based Clustering in Large Databases, ICDT'01.
- A. K. H. Tung, J. Hou, and J. Han. Spatial Clustering in the Presence of Obstacles, ICDE'01
- Xiaoxin Yin, Jiawei Han, and Philip Yu, “LinkClus: Efficient Clustering via Heterogeneous Semantic Links”, in Proc. 2006 Int. Conf. on Very Large Data Bases (VLDB'06), Seoul, Korea, Sept. 2006.