Text Data: Topic Model

Instructor: Yizhou Sun
yzsun@cs.ucla.edu

December 4, 2017
Methods to be Learnt

<table>
<thead>
<tr>
<th></th>
<th>Vector Data</th>
<th>Set Data</th>
<th>Sequence Data</th>
<th>Text Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Logistic Regression; Decision Tree; KNN; SVM; NN</td>
<td></td>
<td></td>
<td>Naïve Bayes for Text</td>
</tr>
<tr>
<td>Clustering</td>
<td>K-means; hierarchical clustering; DBSCAN; DBSCAN; Mixture Models</td>
<td></td>
<td></td>
<td>PLSA</td>
</tr>
<tr>
<td>Prediction</td>
<td>Linear Regression GLM*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequent Pattern Mining</td>
<td>Apriori; FP growth</td>
<td>GSP; PrefixSpan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similarity Search</td>
<td></td>
<td></td>
<td></td>
<td>DTW</td>
</tr>
</tbody>
</table>
Text Data: Topic Models

• Text Data and Topic Models

• Revisit of Mixture Model

• Probabilistic Latent Semantic Analysis (pLSA)

• Summary
Text Data

- Word/term
- Document
 - A sequence of words
- Corpus
 - A collection of documents
Represent a Document

- **Most common way: Bag-of-Words**
 - Ignore the order of words
 - keep the count

<table>
<thead>
<tr>
<th>Document</th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
<th>c5</th>
<th>m1</th>
<th>m2</th>
<th>m3</th>
<th>m4</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **c1**: Human machine interface for Lab ABC computer applications
- **c2**: A survey of user opinion of computer system response time
- **c3**: The EPS user interface management system
- **c4**: System and human system engineering testing of EPS
- **c5**: Relation of user-perceived response time to error measurement

- **m1**: The generation of random, binary, unordered trees
- **m2**: The intersection graph of paths in trees
- **m3**: Graph minors IV: Widths of trees and well-quasi-ordering
- **m4**: Graph minors: A survey

Vector space model
Topics

• Topic

• A topic is represented by a word distribution

• Relate to an issue
Topic Models

- Topic modeling
- Get topics automatically from a corpus
- Assign documents to topics automatically
- Most frequently used topic models
 - pLSA
 - LDA

<table>
<thead>
<tr>
<th>“Arts”</th>
<th>“Budgets”</th>
<th>“Children”</th>
<th>“Education”</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>MILLION</td>
<td>CHILDREN</td>
<td>SCHOOL</td>
</tr>
<tr>
<td>FILM</td>
<td>TAX</td>
<td>WOMEN</td>
<td>STUDENTS</td>
</tr>
<tr>
<td>SHOW</td>
<td>PROGRAM</td>
<td>PEOPLE</td>
<td>SCHOOLS</td>
</tr>
<tr>
<td>MUSIC</td>
<td>BUDGET</td>
<td>CHILD</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>MOVIE</td>
<td>BILLION</td>
<td>YEARS</td>
<td>TEACHERS</td>
</tr>
<tr>
<td>PLAY</td>
<td>FEDERAL</td>
<td>FAMILIES</td>
<td>HIGH</td>
</tr>
<tr>
<td>MUSICAL</td>
<td>YEAR</td>
<td>WORK</td>
<td>PUBLIC</td>
</tr>
<tr>
<td>BEST</td>
<td>SPENDING</td>
<td>PARENTS</td>
<td>TEACHER</td>
</tr>
<tr>
<td>ACTOR</td>
<td>NEW</td>
<td>SAYS</td>
<td>BENNETT</td>
</tr>
<tr>
<td>FIRST</td>
<td>STATE</td>
<td>FAMILY</td>
<td>MANIGAT</td>
</tr>
<tr>
<td>YORK</td>
<td>PLAN</td>
<td>WELFARE</td>
<td>NAMPHY</td>
</tr>
<tr>
<td>OPERA</td>
<td>MONEY</td>
<td>MEN</td>
<td>STATE</td>
</tr>
<tr>
<td>THEATER</td>
<td>PROGRAMS</td>
<td>PERCENT</td>
<td>PRESIDENT</td>
</tr>
<tr>
<td>ACTRESS</td>
<td>GOVERNMENT</td>
<td>CARE</td>
<td>ELEMENTARY</td>
</tr>
<tr>
<td>LOVE</td>
<td>CONGRESS</td>
<td>LIFE</td>
<td>HAITI</td>
</tr>
</tbody>
</table>

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $400,000 each. The Juilliard School, where music and the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000 donation, too.
Text Data: Topic Models

• Text Data and Topic Models

• Revisit of Mixture Model

• Probabilistic Latent Semantic Analysis (pLSA)

• Summary
Mixture Model-Based Clustering

- A set C of k probabilistic clusters C_1, \ldots, C_k
 - probability density/mass functions: f_1, \ldots, f_k
 - Cluster prior probabilities: w_1, \ldots, w_k, $\sum_j w_j = 1$
- Joint Probability of an object i and its cluster C_j is:
 - $P(x_i, z_i = C_j) = w_j f_j(x_i)$
 - z_i: hidden random variable
- Probability of i is:
 - $P(x_i) = \sum_j w_j f_j(x_i)$
• Since objects are assumed to be generated independently, for a data set \(D = \{x_1, \ldots, x_n\} \), we have,

\[
P(D) = \prod_i P(x_i) = \prod_i \sum_j w_j f_j(x_i)
\]

\[
\Rightarrow \log P(D) = \sum_i \log P(x_i) = \sum_i \log \sum_j w_j f_j(x_i)
\]

• Task: Find a set \(C \) of \(k \) probabilistic clusters s.t. \(P(D) \) is maximized
Gaussian Mixture Model

- Generative model
 - For each object:
 - Pick its cluster, i.e., a distribution component:
 \[Z \sim \text{Multinoulli}(w_1, \ldots, w_k) \]
 - Sample a value from the selected distribution:
 \[X | Z \sim \mathcal{N}(\mu_Z, \sigma_Z^2) \]
 - Overall likelihood function
 \[L(D | \theta) = \prod_i \sum_j w_j \rho(x_i | \mu_j, \sigma_j^2) \]
 s.t. \(\sum_j w_j = 1 \) and \(w_j \geq 0 \)
Multinomial Mixture Model

- For documents with bag-of-words representation
 - \(x_d = (x_{d1}, x_{d2}, \ldots, x_{dN}) \), \(x_{dn} \) is the number of words for nth word in the vocabulary

- Generative model
 - For each document
 - Sample its cluster label \(z \sim \text{Multinoulli}(\pi) \)
 - \(\pi = (\pi_1, \pi_2, \ldots, \pi_K) \), \(\pi_k \) is the proportion of kth cluster
 - \(p(z = k) = \pi_k \)
 - Sample its word vector \(x_d \sim \text{multinomial}(\beta_z) \)
 - \(\beta_z = (\beta_{z1}, \beta_{z2}, \ldots, \beta_{zN}) \), \(\beta_{zn} \) is the parameter associate with nth word in the vocabulary
 - \(p(x_d | z = k) = \frac{(\sum_n x_{dn})!}{\prod_n x_{dn}!} \prod_n \beta_{kn}^{x_{dn}} \propto \prod_n \beta_{kn}^{x_{dn}} \)
Likelihood Function

For a set of M documents

$$L = \prod_{d} p(x_d) = \prod_{d} \sum_{k} p(x_d, z = k)$$

$$= \prod_{d} \sum_{k} p(x_d | z = k)p(z = k)$$

$$\propto \prod_{d} \sum_{k} p(z = k) \prod_{n} \beta_{kn}^{x_{dn}}$$
Mixture of Unigrams

• For documents represented by a sequence of words
 \[w_d = (w_{d1}, w_{d2}, \ldots, w_{dN_d}) \], \(N_d \) is the length of document \(d \), \(w_{dn} \) is the word at the nth position of the document

• Generative model
 • For each document
 • Sample its cluster label \(z \sim \text{Multinoulli}(\pi) \)
 • \(\pi = (\pi_1, \pi_2, \ldots, \pi_K) \), \(\pi_k \) is the proportion of kth cluster
 • \(p(z = k) = \pi_k \)
 • For each word in the sequence
 • Sample the word \(w_{dn} \sim \text{Multinoulli}(\beta_z) \)
 • \(p(w_{dn}|z = k) = \beta_{kw_{dn}} \)
Likelihood Function

• For a set of M documents

\[L = \prod_d \sum_k p(w_d) = \prod_d \sum_k p(w_d, z = k) \]

\[= \prod_k \sum_d p(w_d | z = k) p(z = k) \]

\[= \prod_k \sum_d \sum_n \beta_{k w d n} \]
Question

• Are multinomial mixture model and mixture of unigrams model equivalent? Why?
Text Data: Topic Models

• Text Data and Topic Models

• Revisit of Mixture Model

• Probabilistic Latent Semantic Analysis (pLSA)

• Summary
Notations

- Word, document, topic
 - w, d, z
- Word count in document
 - $c(w, d)$
- Word distribution for each topic (β_z)
 - $\beta_{zw}: p(w | z)$
- Topic distribution for each document (θ_d)
 - $\theta_{dz}: p(z | d)$ (Yes, soft clustering)
Issues of Mixture of Unigrams

• All the words in the same documents are sampled from the same topic

• In practice, people switch topics during their writing
Illustration of pLSA

<table>
<thead>
<tr>
<th>“Arts”</th>
<th>“Budgets”</th>
<th>“Children”</th>
<th>“Education”</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>MILLION</td>
<td>CHILDREN</td>
<td>SCHOOL</td>
</tr>
<tr>
<td>FILM</td>
<td>TAX</td>
<td>WOMEN</td>
<td>STUDENTS</td>
</tr>
<tr>
<td>SHOW</td>
<td>PROGRAM</td>
<td>PEOPLE</td>
<td>SCHOOLS</td>
</tr>
<tr>
<td>MUSIC</td>
<td>BUDGET</td>
<td>CHILD</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>MOVIE</td>
<td>BILLION</td>
<td>YEARS</td>
<td>TEACHERS</td>
</tr>
<tr>
<td>PLAY</td>
<td>FEDERAL</td>
<td>FAMILIES</td>
<td>HIGH</td>
</tr>
<tr>
<td>MUSICAL</td>
<td>YEAR</td>
<td>WORK</td>
<td>PUBLIC</td>
</tr>
<tr>
<td>BEST</td>
<td>SPENDING</td>
<td>PARENTS</td>
<td>TEACHER</td>
</tr>
<tr>
<td>ACTOR</td>
<td>NEW</td>
<td>SAYS</td>
<td>BENNETT</td>
</tr>
<tr>
<td>FIRST</td>
<td>STATE</td>
<td>FAMILY</td>
<td>MANIGAT</td>
</tr>
<tr>
<td>YORK</td>
<td>PLAN</td>
<td>WELFARE</td>
<td>NAMPHY</td>
</tr>
<tr>
<td>OPERA</td>
<td>MONEY</td>
<td>MEN</td>
<td>STATE</td>
</tr>
<tr>
<td>THEATER</td>
<td>PROGRAMS</td>
<td>PERCENT</td>
<td>PRESIDENT</td>
</tr>
<tr>
<td>ACTRESS</td>
<td>GOVERNMENT</td>
<td>CARE</td>
<td>ELEMENTARY</td>
</tr>
<tr>
<td>LOVE</td>
<td>CONGRESS</td>
<td>LIFE</td>
<td>HAITI</td>
</tr>
</tbody>
</table>

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $400,000 each. The Juilliard School, where music and the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000 donation, too.
Generative Model for pLSA

- Describe how a document is generated probabilistically
 - For each position in d, $n = 1, ..., N_d$
 - Generate the topic for the position as $z_n \sim \text{Multinoulli}(\theta_d)$, i.e., $p(z_n = k) = \theta_{dk}$
 (Note, 1 trial multinomial, i.e., categorical distribution)
 - Generate the word for the position as $w_n \sim \text{Multinoulli}(\beta_{z_n})$, i.e., $p(w_n = w) = \beta_{z_nw}$
Note: Sometimes, people add parameters such as θ and β into the graphical model
The Likelihood Function for a Corpus

- **Probability of a word**
 \[
 p(w|d) = \sum_k p(w, z = k|d) = \sum_k p(w|z = k)p(z = k|d) = \sum_k \beta_{kw}\theta_{dk}
 \]

- **Likelihood of a corpus**
 \[
 \prod_{d=1} P(w_1, \cdots, w_{N_d}, d|\theta, \beta, \pi)
 = \prod_{d=1} P(d) \left\{ \prod_{n=1}^{N_d} \left(\sum_k P(z_n = k|d, \theta_d)P(w_n|\beta_k) \right) \right\}
 = \prod_{d=1} \pi_d \left\{ \prod_{n=1}^{N_d} \left(\sum_k \theta_{dk}\beta_{kw_n} \right) \right\}
 \]

\(\pi_d\) is usually considered as uniform, i.e., \(1/M\)
Re-arrange the Likelihood Function

• Group the same word from different positions together

\[
\max \log L = \sum_{dw} c(w, d) \log \sum_{z} \theta_{dz} \beta_{zw}
\]

\[
s.t. \sum_{z} \theta_{dz} = 1 \text{ and } \sum_{w} \beta_{zw} = 1
\]
Optimization: EM Algorithm

- Repeat until converge
 - **E-step:** for each word in each document, calculate its conditional probability belonging to each topic
 \[
 p(z|w, d) \propto p(w|z, d)p(z|d) = \beta_{zw}\theta_{dz} \quad (i.e., \, p(z|w, d))
 \]
 \[
 = \frac{\beta_{zw}\theta_{dz}}{\sum_{z'} \beta_{z'w}\theta_{dz'}}
 \]
 - **M-step:** given the conditional distribution, find the parameters that can maximize the expected likelihood
 \[
 \beta_{zw} \propto \sum_d p(z|w, d)c(w, d) \quad (i.e., \, \beta_{zw} = \frac{\sum_d p(z|w, d)c(w, d)}{\sum_{w'} c(w', d)p(z|w', d)})
 \]
 \[
 \theta_{dz} \propto \sum_w p(z|w, d)c(w, d) \quad (i.e., \, \theta_{dz} = \frac{\sum_w p(z|w, d)c(w, d)}{N_d})
 \]
Example

- Two documents, two topics
 - Vocabulary: \{data, mining, frequent, pattern, web, information, retrieval\}
 - At some iteration of EM algorithm, E-step

| word (w) | word count in Document 1 \((c(w, d_1))\) | \(p(z = 1|w, d_1)\) |
|------------|--|---------------------|
| data | 5 | 0.8 |
| mining | 4 | 0.8 |
| frequent | 3 | 0.6 |
| pattern | 2 | 0.8 |
| web | 2 | 0.5 |
| information| 1 | 0.2 |

| word (w) | word count in Document 2 \((c(w, d_2))\) | \(p(z = 1|w, d_2)\) |
|----------------|--|---------------------|
| information | 5 | 0.2 |
| retrieval | 4 | 0.2 |
| web | 3 | 0.1 |
| mining | 3 | 0.5 |
| frequent | 2 | 0.6 |
| data | 2 | 0.5 |
Example (Continued)

• M-step

\[\beta_{11} = \frac{0.8 \times 5 + 0.5 \times 2}{11.8 + 5.8} = \frac{5}{17.6} \]

\[\beta_{12} = \frac{0.8 \times 4 + 0.5 \times 3}{11.8 + 5.8} = \frac{4.7}{17.6} \]

\[\beta_{13} = \frac{3}{17.6} \]

\[\beta_{14} = \frac{1.6}{17.6} \]

\[\beta_{15} = \frac{1.3}{17.6} \]

\[\beta_{16} = \frac{1.2}{17.6} \]

\[\beta_{17} = \frac{0.8}{17.6} \]

\[\theta_{11} = \frac{11.8}{17} \]

\[\theta_{12} = \frac{5.2}{17} \]
Text Data: Topic Models

• Text Data and Topic Models

• Revisit of Mixture Model

• Probabilistic Latent Semantic Analysis (pLSA)

• Summary
Summary

• Basic Concepts
 • Word/term, document, corpus, topic

• Mixture of unigrams

• pLSA
 • Generative model
 • Likelihood function
 • EM algorithm
Quiz

• Q1: Is Multinomial Naïve Bayes a linear classifier?
• Q2: In pLSA, For the same word in different positions in a document, do they have the same conditional probability $p(z|w, d)$?