CS249: ADVANCED DATA MINING

Decision Trees, Regression Trees, and Random Forest

Instructor: Yizhou Sun
yzsun@cs.ucla.edu

April 12, 2017

Announcements

-Course Project

- Team formation due today
- Homework 1
- Be out around tomorrow
-PTE will be decided by this weekend - Office hour for TA (Jae LEE):
- 3-5 PM on Tuesdays @BH 2432

Methods to Learn: Last Lecture

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline & \text { Vector Data } & \text { Text Data } & \begin{array}{l}\text { Recommender } \\
\text { System }\end{array} & \text { Graph \& Network } \\
\hline \text { Classification } & \begin{array}{l}\text { Decision Tree; Naïve } \\
\text { Bayes; Logistic } \\
\text { Regression } \\
\text { SVM; NN }\end{array} & & & \text { Label Propagation } \\
\hline \text { Clustering } & \begin{array}{l}\text { K-means; hierarchical } \\
\text { clustering; DBSCAN; } \\
\text { Mixture Models; } \\
\text { kernel k-means }\end{array} & \begin{array}{l}\text { PLSA; } \\
\text { LDA }\end{array} & & \text { Matrix Factorization }\end{array}
$$ \begin{array}{l}SCAN; Spectral

Clustering\end{array}\right]\)| Prediction |
| :--- |
| Linear Regression |
| GLM |

Methods to Learn

	Vector Data	Text Data	Recommender System	Graph \& Network
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; NN			Label Propagation
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means	$\begin{aligned} & \text { PLSA; } \\ & \text { LDA } \end{aligned}$	Matrix Factorization	SCAN; Spectral Clustering
Prediction	Linear Regression GLM		Collaborative Filtering	
Ranking				PageRank
Feature Representation		Word embedding		Network embedding

Vector Data: Trees

-Tree-based Prediction and Classification \gtrless

- Classification Trees
- Regression Trees
-Random Forest
-Summary

Tree-based Models

- Use trees to partition the data into different regions and make predictions

Easy to Interpret

- A path from root to a leaf node corresponds to a rule
- E.g., if age<=30 and student=no then target value $=$ no

Vector Data: Trees

- Tree-based Prediction and Classification
- Classification Trees
- Regression Trees
-Random Forest
-Summary

Decision Tree Induction: An Example

- Training data set: Buys_xbox
\square The data set follows an example of Quinlan's ID3 (Playing Tennis)
\square Resulting tree:

How to choose attributes?

Q: Which attribute is better for the task?

Brief Review of Entropy

- Entropy (Information Theory)

- A measure of uncertainty (impurity) associated with a random variable
- Calculation: For a discrete random variable Y taking m distinct values $\left\{y_{1}, \ldots, y_{m}\right\}$,
- $H(Y)=-\sum_{i=1}^{m} p_{i} \log \left(p_{i}\right)$, where $p_{i}=P\left(Y=y_{i}\right)$
- Interpretation:
- Higher entropy $=>$ higher uncertainty $\sum_{0} 0.5$
- Lower entropy => lower uncertainty

Conditional Entropy

- How much uncertainty of Y if we know an attribute X ?
- $H(Y \mid X)=\sum_{x} p(x) H(Y \mid X=x)$

Weighted average of entropy at each branch!

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_{i} be the probability that an arbitrary tuple in D belongs to class C_{i}, estimated by $\left|C_{i, \mathrm{D}}\right| /|\mathrm{D}|$
- Expected information (entropy) needed to classify a tuple in D:

$$
\operatorname{Info}(D)=-\sum_{i=1}^{m} p_{i} \log _{2}\left(p_{i}\right)
$$

- Information needed (after using A to split D into v partitions) to classify D (conditional entropy):

$$
\operatorname{Info}_{A}(D)=\sum_{j=1}^{v} \frac{\left|D_{j}\right|}{|D|} \times \operatorname{Info}\left(D_{j}\right)
$$

- Information gained by branching on attribute A

$$
\operatorname{Gain}(A)=\operatorname{Info}(D)-\operatorname{Info}_{A}(D)
$$

Attribute Selection: Information Gain

$\begin{aligned} & \text { Class P: buys_xbox = "yes" } \\ & \text { Class N: buys_xbox = "no" } \end{aligned}$					$I n f o_{\text {age }}(D)=\frac{5}{14} I(2,3)+\frac{4}{14} I(4,0)$
$\operatorname{Info}(D)=I(9,5)=-\frac{9}{14} \log _{2}\left(\frac{9}{14}\right)-\frac{5}{14} \log _{2}\left(\frac{5}{14}\right)=0.940$					$+\frac{5}{14} I(3,2)=0.694$
age	p_{i}	n_{i}	$\mathrm{l}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}}\right)$	5	
<=30	2	3	0.971	14	e $<=30$ has 5 out of
31... 40	4	0	0		14 samples, with 2 yes'es a
>40	3	2	0.971		nos. Hence

age	income	student	credit_rating	buys_xbox
$<=30$	high	no	fair	no
$<=30$	high	no	excellent	no
$31 \ldots 40$	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
$31 \ldots 40$	low	yes	excellent	yes
$<=30$	medium	no	fair	no
$<=30$	low	yes	fair	yes
>40	medium	yes	fair	yes
$<=30$	medium	yes	excellent	yes
$31 \ldots 40$	medium	no	excellent	yes
$31 \ldots 40$	high	yes	fair	yes
>40	medium	no	excellent	no

$\operatorname{Gain}(\operatorname{age})=\operatorname{Info}(D)-\operatorname{Info}_{\text {age }}(D)=0.246$
Similarly,

$$
\begin{aligned}
& \text { Gain }(\text { income })=0.029 \\
& \text { Gain }(\text { student })=0.151 \\
& \text { Gain }(\text { credit_rating })=0.048
\end{aligned}
$$

Attribute Selection for a Branch

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
- Tree is constructed in a top-down recursive divide-and-conquer manner
- At start, all the training examples are at the root
- Attributes are categorical (if continuous-valued, they are discretized in advance)
- Examples are partitioned recursively based on selected attributes
- Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
- All samples for a given node belong to the same class
- There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
- There are no samples left - use majority voting in the parent partition

Computing Information-Gain for Continuous-Valued Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
- Sort the value A in increasing order
- Typically, the midpoint between each pair of adjacent values is considered as a possible split point
- $\left(a_{i}+a_{i+1}\right) / 2$ is the midpoint between the values of a_{i} and a_{i+1}
- The point with the minimum expected information requirement for A is selected as the split-point for A
- Split:
- D 1 is the set of tuples in D satisfying $\mathrm{A} \leq$ split-point, and D 2 is the set of tuples in D satisfying $\mathrm{A}>$ split-point

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$
\operatorname{SplitInfo}_{A}(D)=-\sum_{j=1}^{v} \frac{\left|D_{j}\right|}{|D|} \times \log _{2}\left(\frac{\left|D_{j}\right|}{|D|}\right)
$$

- GainRatio(A) $=$ Gain(A)/SplitInfo(A)
- Ex.

$$
\text { SplitInfo }_{\text {income }}(D)=-\frac{4}{14} \times \log _{2}\left(\frac{4}{14}\right)-\frac{6}{14} \times \log _{2}\left(\frac{6}{14}\right)-\frac{4}{14} \times \log _{2}\left(\frac{4}{14}\right)=1.557
$$

- gain_ratio(income) $=0.029 / 1.557=0.019$
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gini Index (CART, IBM IntelligentMiner)

- If a data set D contains examples from n classes, gini index, gini(D) is defined as

$$
\operatorname{gini}(D)=1-\sum_{j=1}^{v} p_{j}^{2}
$$

where p_{j} is the relative frequency of class j in D

- If a data set D is split on A into two subsets D_{1} and D_{2}, the gini index $\operatorname{gini}(D)$ is defined as

$$
\operatorname{gini}_{A}(D)=\frac{\left|D_{1}\right|}{|D|} \operatorname{gini}\left(D_{1}\right)+\frac{\left|D_{2}\right|}{|D|} \operatorname{gini}\left(D_{2}\right)
$$

- Reduction in Impurity:

$$
\Delta g \operatorname{ini}(A)=\operatorname{gini}(D)-\operatorname{gini}_{A}(D)
$$

- The attribute provides the smallest gini $_{\text {split }}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Computation of Gini Index

- Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$
\operatorname{gini}(D)=1-\left(\frac{9}{14}\right)^{2}-\left(\frac{5}{14}\right)^{2}=0.459
$$

- Suppose the attribute income partitions D into 10 in D_{1} : \{low, medium $\}$ and 4 in D_{2} : \{high\}

$$
\begin{aligned}
& \text { gini }_{\text {income } \in\{l o w, \text { medium }\}}(D)=\left(\frac{10}{14}\right) \operatorname{Gini}\left(D_{1}\right)+\left(\frac{4}{14}\right) \operatorname{Gini}\left(D_{2}\right) \\
= & \frac{10}{14}\left(1-\left(\frac{7}{10}\right)^{2}-\left(\frac{3}{10}\right)^{2}\right)+\frac{4}{14}\left(1-\left(\frac{2}{4}\right)^{2}-\left(\frac{2}{4}\right)^{2}\right) \\
= & 0.443 \\
= & \operatorname{Gini}_{\text {income } \in\left\{\text { high }^{2}(D) .\right.}
\end{aligned}
$$

$\operatorname{Gini}_{\{l o w, \text { high }\}}$ is $0.458 ;$ Gini $_{\{\text {medium, high }\}}$ is 0.450 . Thus, split on the \{low, medium\} (and \{high\}) since it has the lowest Gini index

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
- Information gain:
- biased towards multivalued attributes
- Gain ratio:
- tends to prefer unbalanced splits in which one partition is much smaller than the others (why?)
- Gini index:
- biased to multivalued attributes

*Other Attribute Selection Measures

- CHAID: a popular decision tree algorithm, measure based on χ^{2} test for independence
- C-SEP: performs better than info. gain and gini index in certain cases
- G-statistic: has a close approximation to χ^{2} distribution
- MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
- The best tree as the one that requires the fewest \# of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- Multivariate splits (partition based on multiple variable combinations)
- CART: finds multivariate splits based on a linear comb. of attrs.
- Which attribute selection measure is the best?
- Most give good results, none is significantly superior than others

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
- Too many branches, some may reflect anomalies due to noise or outliers
- Poor accuracy for unseen samples
- Two approaches to avoid overfitting
- Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
- Difficult to choose an appropriate threshold
- Postpruning: Remove branches from a "fully grown" tree-get a sequence of progressively pruned trees
- Use validation dataset to decide which is the "best pruned tree"

Vector Data: Trees

-Tree-based Prediction and Classification

- Classification Trees
- Regression Trees \vDash
-Random Forest
-Summary

From Classification to Regression

- Target variable
- From categorical variable to continuous variable
- Attribute selection criterion
- Measure the purity of continuous target variable in each partition
- Leaf node
- A simple model for that partition, e.g., average

Attribute Selection

- Reduction of Variance

- For attribute A, weighted average variance

$$
\begin{gathered}
\operatorname{Var}_{A}(D)=\sum_{j=1}^{v} \frac{\left|D_{j}\right|}{|D|} \times \operatorname{Var}\left(D_{j}\right) \\
\operatorname{Var}\left(D_{j}\right)=\sum_{y \in D_{j}}(y-\bar{y})^{2} /\left|D_{j}\right| \\
\text { where } \bar{y}=\sum_{y \in D_{j}} y /\left|D_{j}\right|
\end{gathered}
$$

- Pick the attribute with the lowest weighted average variance

Leaf Node Model

- Take the average of the partition for leave node I

$$
\text { - } \widehat{y_{l}}=\sum_{y \in D_{l}} y /\left|D_{l}\right|
$$

Example: Predict Baseball Player Salary

-Dataset: (years, hits)=>Salary

- Colors indicate value of salary (blue: low, red: high)

A Regression Tree Built

A Different Angle to View the Tree

- A leaf is corresponding to a box in the plane

Trees vs. Linear Models

Ground Truth:
Linear Boundary

Fitted Model:
Trees

Vector Data: Trees

-Tree-based Prediction and Classification

- Classification Trees
- Regression Trees
-Random Forest \vDash
-Summary

A Single Tree or a Set of Trees?

- Limitation of single tree
- Accuracy is not very high
- Overfitting
- A set of trees
- The idea of ensemble

The Idea of Bagging

-Bagging: Bootstrap Aggregating

Why It Works?

- Each classifier produces the prediction - $f_{i}(x)$
- The error will be reduced if we use the average of multiple classifiers
- $\operatorname{var}\left(\frac{\sum_{i} f_{i}(x)}{t}\right)=\operatorname{var}\left(f_{i}(x)\right) / t$

Random Forest

- Sample t times data collection: random sample with replacement for objects, $n^{\prime} \leq n$
- Sample \boldsymbol{p}^{\prime} variables: Select a subset of variables for each data collection, e.g., $p^{\prime}=$ \sqrt{p}
- Construct t trees for each data collection using selected subset of variables
- Aggregate the prediction results for new data
- Majority voting for classification
- Average for prediction

Properties of Random Forest

- Strengths

- Good accuracy for classification tasks
- Can handle large-scale of dataset
- Can handle missing data to some extent
- Weaknesses
- Not so good for predictions tasks
- Lack of interpretation

Vector Data: Trees

- Tree-based Prediction and Classification
- Classification Trees
- Regression Trees
- Random Forest
-Summary \vDash

Summary

- Classification Trees
- Predict categorical labels, information gain, tree construction
- Regression Trees
- Predict numerical variable, variance reduction
- Random Forest
- A set of trees, bagging

