CS249: ADVANCED DATA MINING

Probabilistic Classifiers and Naïve Bayes

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

April 24, 2017

Announcements

- Homework 1
- Due end of the day of this Friday (11:59pm)
- Reminder of late submission policy
- original score * $\mathbf{1}(t<=24) e^{-(\ln (2) / 12) * t}$
- E.g., if you are $t=12$ hours late, maximum of half score will be obtained; if you are 24 hours late, 0 score will be given.

Methods to Learn: Last Lecture

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline & \text { Vector Data } & \text { Text Data } & \begin{array}{l}\text { Recommender } \\
\text { System }\end{array} & \text { Graph \& Network } \\
\hline \text { Classification } & \begin{array}{l}\text { Decision Tree; Naïve } \\
\text { Bayes; Logistic } \\
\text { Regression } \\
\text { SVM; NN }\end{array} & & & \text { Label Propagation } \\
\hline \text { Clustering } & \begin{array}{l}\text { K-means; hierarchical } \\
\text { clustering; DBSCAN; } \\
\text { Mixture Models; } \\
\text { kernel k-means }\end{array} & \begin{array}{l}\text { PLSA; } \\
\text { LDA }\end{array} & & \text { Matrix Factorization }\end{array}
$$ \begin{array}{l}SCAN; Spectral

Clustering\end{array}\right]\)| Prediction |
| :--- |
| |
| Linear Regression
 GLM |
| Ranking |

Methods to Learn

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline & \text { Vector Data } & \text { Text Data } & \begin{array}{l}\text { Recommender } \\
\text { System }\end{array} & \text { Graph \& Network } \\
\hline \text { Classification } & \begin{array}{l}\text { Decision Tree; Naïve } \\
\text { Bayes; Logistic } \\
\text { Regression } \\
\text { SVM; NN }\end{array} & & & \text { Label Propagation } \\
\hline \text { Clustering } & \begin{array}{l}\text { K-means; hierarchical } \\
\text { clustering; DBSCAN; } \\
\text { Mixture Models; } \\
\text { kernel k-means }\end{array} & \begin{array}{l}\text { PLSA; } \\
\text { LDA }\end{array} & & \text { Matrix Factorization }\end{array}
$$ \begin{array}{l}SCAN; Spectral

Clustering\end{array}\right]\)| Prediction |
| :--- |
| |
| Linear Regression
 GLM |
| Ranking |

Probabilistic Classifiers and Naïve Bayes

-Probabilistic Classifiers \Downarrow

- Naïve Bayes
- Bayesian Network
-Summary

Basic Probability Review

- Have two dice h_{1} and h_{2}
- The probability of rolling an i given die h_{1} is denoted $\mathrm{P}\left(\mathrm{i} \mid \mathrm{h}_{1}\right)$. This is a conditional probability
- Pick a die at random with probability $P\left(h_{j}\right), j=1$ or 2 . The probability for picking die h_{j} and rolling an i with it is called joint probability and is $\mathrm{P}\left(\mathrm{i}, \mathrm{h}_{\mathrm{j}}\right)=\mathrm{P}\left(\mathrm{h}_{\mathrm{j}}\right) \mathrm{P}\left(\mathrm{i} \mid \mathrm{h}_{\mathrm{j}}\right)$.
- If we know $\mathrm{P}\left(\mathrm{i} \mid \mathrm{h}_{\mathrm{j}}\right)$, then the so-called marginal probability $\mathrm{P}(\mathrm{i})$ can be computed as: $P(i)=\sum_{j} P\left(i, h_{j}\right)$
- For any X and $Y, P(X, Y)=P(X \mid Y) P(Y)$

Bayes' Theorem: Basics

- Bayes' Theorem: $P(h \mid \mathbf{X})=\frac{P(\mathbf{X} \mid h) P(h)}{P(\mathbf{X})}$
- Let \mathbf{X} be a data sample ("evidence")
- Let h be a hypothesis that X belongs to class C
- $\mathrm{P}(\mathrm{h})$ (prior probability): the initial probability
- E.g., \mathbf{X} will buy computer, regardless of age, income, ...
- $\mathbf{P}(\mathbf{X} \mid \mathrm{h})$ (likelihood): the probability of observing the sample \mathbf{X}, given that the hypothesis holds
- E.g., Given that \mathbf{X} will buy computer, the prob. that X is $31 . .40$, medium income
- $\mathrm{P}(\mathbf{X})$: marginal probability that sample data is observed
- $P(X)=\sum_{h} P(X \mid h) P(h)$
$-\mathrm{P}(\mathrm{h} \mid \mathrm{X})$, (i.e., posterior probability): the probability that the hypothesis holds given the observed data sample \mathbf{X}

Classification: Choosing Hypotheses

- Maximum Likelihood (maximize the likelihood):

$$
h_{M L}=\underset{h-H}{\arg \max } P(X \mid h)
$$

- Maximum a posteriori (maximize the posterior):
- Useful observation: it does not depend on the denominator $\mathbf{P}(\mathrm{X})$

$$
h_{M A P}=\underset{h \in H}{\arg \max } P(h \mid X)=\underset{h \in H}{\arg \max } P(X \mid h) P(h)
$$

Classification by Maximum A Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an p-D attribute vector $X=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$
- Suppose there are m classes $Y \in\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$
- Classification is to derive the maximum posteriori, i.e., the maximal $\mathrm{P}\left(\mathrm{Y}=\mathrm{C}_{\mathrm{j}} \mid \mathbf{X}\right)$
- This can be derived from Bayes' theorem $P\left(Y=C_{j} \mid \mathbf{X}\right)=\frac{P\left(\mathbf{X} \mid Y=C_{j}\right) P\left(Y=C_{j}\right)}{P(\mathbf{X})}$
- Since $\mathrm{P}(\mathbf{X})$ is constant for all classes, only $P(y, \mathbf{X})=P(\mathbf{X} \mid y) P(y)$ needs to be maximized

Example: Cancer Diagnosis

- A patient takes a lab test and the result comes back positive. It is known that
- a correct positive result in only 98% of the cases
- $\mathrm{P}($ test $=+\mid$ cancer $)=.98$
- a correct negative result in only 97% of the cases
- P (test $=-\mid \neg$ cancer $)=.97$
- only 0.008 of the entire population has this disease
- $\mathrm{P}($ cancer $)=.008$

1. What is the probability that this patient has cancer?
2. What is the probability that he does not have cancer?
3. What is the diagnosis?

Solution

P (cancer) $=.008$
$\mathrm{P}($ test $=+\mid$ cancer $)=.98$
P(test $=+\mid \neg$ cancer $)=.03$
Using Bayes Formula:

$$
\begin{aligned}
& \mathrm{P}(\neg \text { cancer })=.992 \\
& \mathrm{P}(\text { test }=-\mid \text { cancer })=.02 \\
& \mathrm{P} \text { (test }=-\mid \neg \text { cancer })=.97
\end{aligned}
$$

$\mathrm{P}($ cancer \mid test $=+$) $=\mathrm{P}($ test $=+\mid$ cancer $) \times \mathrm{P}($ cancer $) / \mathrm{P}($ test $=+$)
$=0.98 \times 0.008 / \mathrm{P}($ test $=+)=.00784 / \mathrm{P}($ test $=+$)
$\mathrm{P}(\neg$ cancer \mid test $=+$) $=\mathrm{P}$ (test $=+\mid \neg$ cancer $) \times \mathrm{P}(\neg$ cancer $) / \mathrm{P}$ (test $=+$)
$=0.03 \times 0.992 / \mathrm{P}($ test $=+)=.0298 / \mathrm{P}($ test $=+)$

So, the patient most likely does not have cancer.

Probabilistic Classifiers and Naïve Bayes

- Probabilistic Classifiers
- Naïve Bayes
- Bayesian Network
-Summary

Naïve Bayes Classifier

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an p -D attribute vector $\mathbf{X}=\left(\mathrm{x}_{1}\right.$, $\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}$)
- Suppose there are m classes $Y \in\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$
- Goal: Find Y $\max _{Y} P(Y \mid \boldsymbol{X})=P(Y, \boldsymbol{X}) / P(\boldsymbol{X}) \propto P(\boldsymbol{X} \mid Y) P(Y)$
- A simplified assumption: attributes are conditionally independent given the class (class conditional independency):
- $P(X \mid Y)=\prod_{k} P\left(x_{k} \mid Y\right)$

Conditional independence Assumption

- Graphical model illustration

Estimate Parameters by MLE

- Given a dataset $D=\left\{\left(\boldsymbol{X}^{(i)}, Y^{(i)}\right)\right\}$, the goal is to
- Find the best estimators $P\left(C_{j}\right)$ and $P\left(X_{k}=x_{k} \mid C_{j}\right)$, for every $j=1, \ldots, m$ and $k=1, \ldots, p$
- that maximizes the likelihood of observing D :

$$
\begin{aligned}
& L=\prod_{i} P\left(\boldsymbol{X}^{(i)}, Y^{(i)}\right)=\prod_{i} P\left(\boldsymbol{X}^{(i)} \mid Y^{(i)}\right) P\left(Y^{(i)}\right) \\
& =\prod_{i}\left(\prod_{k} P\left(X_{k}^{(i)} \mid Y^{(i)}\right)\right) P\left(Y^{(i)}\right)
\end{aligned}
$$

- Estimators of Parameters:
- $P\left(C_{j}\right)=\left|C_{j, D}\right| /|D|\left(\left|C_{j, D}\right|=\#\right.$ of tuples of C_{j} in D) (why?)
- $P\left(X_{k}=x_{k} \mid C_{j}\right): X_{k}$ can be either discrete or numerical

Discrete and Continuous Attributes

- If X_{k} is discrete, with V possible values
$\cdot \mathrm{P}\left(\mathrm{x}_{\mathrm{k}} \mid \mathrm{C}_{j}\right)$ is the \# of tuples in C_{j} having value x_{k} for X_{k} divided by $\left|\mathrm{C}_{\mathrm{j}, \mathrm{D}}\right|$
- If X_{k} is continuous, with observations of real values
- $\mathrm{P}\left(\mathrm{x}_{\mathrm{k}} \mid \mathrm{C}_{\mathrm{j}}\right)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ
- Estimate (μ, σ^{2}) according to the observed X in the category of C_{j}
- Sample mean and sample variance
- $\mathrm{P}\left(\mathrm{x}_{\mathrm{k}} \mid \mathrm{C}_{\mathrm{j}}\right)$ is then $P\left(X_{k}=x_{k} \mid C_{j}\right)=f\left(X_{k} \mid \mu_{c_{j}}, \sigma_{C_{j}}\right)$

Gaussian density function

Naïve Bayes Classifier: Training Dataset

Class:
C1:buys_xbox = 'yes'
C2:buys_xbox = 'no'

Data to be classified:
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)

age	income	studentcredit_ratingys_xb		
$<=30$	high	no	fair	no
$<=30$	high	no	excellent	no
$31 \ldots 40$	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
$31 \ldots 40$	low	yes	excellent	yes
$<=30$	medium	no	fair	no
$<=30$	low	yes	fair	yes
>40	medium	yes	fair	yes
$<=30$	medium	yes	excellent	yes
$31 \ldots 40$	medium	no	excellent	yes
$31 \ldots 40$	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

- $P\left(C_{i}\right): P($ buys_xbox $=$ "yes" $)=9 / 14=0.643$

$$
\text { P(buys_xbox = "no") = 5/14= } 0.357
$$

- Compute $\mathrm{P}\left(\mathrm{X} \mid \mathrm{C}_{\mathrm{i}}\right)$ for each class

$$
\begin{aligned}
& \mathrm{P}(\text { age }=\text { "<=30" | buys_xbox = "yes") }=2 / 9=0.222 \\
& \text { P(age = "<= 30" | buys_xbox ="no") = 3/5=0.6 } \\
& \text { P(income ="medium" | buys_xbox }=\text { "yes") }=4 / 9=0.444 \\
& \mathrm{P}(\text { income }=\text { "medium" } \mid \text { buys_xbox }=" n o ")=2 / 5=0.4 \\
& \mathrm{P}(\text { student }=\text { "yes" } \mid \text { buys_xbox }=\text { "yes })=6 / 9=0.667 \\
& \text { P(student = "yes" | buys_xbox ="no") }=1 / 5=0.2 \\
& \text { P(credit_rating = "fair" | buys_xbox ="yes") }=6 / 9=0.667 \\
& \text { P(credit_rating = "fair" | buys_xbox = "no") }=2 / 5=0.4
\end{aligned}
$$

age	income	studentleredit_ratingys_xb		
$<=30$	high	no	fair	no
$<=30$	high	no	excellent	no
$31 \ldots 40$	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
$31 \ldots 40$	low	yes	excellent	yes
$<=30$	medium	no	fair	no
$<=30$	low	yes	fair	yes
>40	medium	yes	fair	yes
$<=30$	medium	yes	excellent	yes
$31 \ldots 40$	medium	no	excellent	yes
$31 \ldots 40$	high	yes	fair	yes
>40	medium	no	excellent	no

- $\mathrm{X}=$ (age <= $\mathbf{3 0}$, income = medium, student = yes, credit_rating = fair)
$\mathbf{P}\left(\mathbf{X} \mid \mathbf{C}_{\mathbf{i}}\right): \mathbf{P}(\mathbf{X} \mid$ buys_xbox $=$ "yes" $)=0.222 \times 0.444 \times 0.667 \times 0.667=0.044$
$P(X \mid$ buys_xbox $=$ "no" $)=0.6 \times 0.4 \times 0.2 \times 0.4=0.019$
$\mathbf{P}\left(\mathbf{X} \mid \mathbf{C}_{\mathbf{i}}\right)^{*} \mathbf{P}\left(\mathrm{C}_{\mathbf{i}}\right): \mathrm{P}\left(\mathrm{X} \mid\right.$ buys_xbox = "yes") ${ }^{*} \mathrm{P}($ buys_xbox $=$ "yes" $)=0.028$ $P(X \mid$ buys_xbox $=$ "no" $) ~ * ~ P\left(b u y s _x b o x=" n o "\right)=0.007$
Therefore, X belongs to class ("buys_xbox = yes")

Avoiding the Zero-Probability Problem

- Naïve Bayesian prediction requires each conditional prob. be nonzero. Otherwise, the predicted prop. will be zero

$$
P(X \mid C j)=\prod_{k=1}^{p} P\left(x_{k} \mid C j\right)
$$

- Use Laplacian correction (or Laplacian smoothing)
- Adding 1 to each case
- $P\left(x_{k}=v \mid C_{j}\right)=\frac{n_{j k, v}+1}{\left|C_{j, D}\right|+V}$ where $n_{j k, v}$ is \# of tuples in C_{j} having value $x_{k}=\mathrm{v}$,

V is the total number of values that can be taken

- Ex. Suppose a training dataset with 1000 tuples, for category "buys_xbox = yes", income=low (0), income= medium (990), and income = high (10)
Prob(income = low|buys_xbox = "yes") = 1/1003
Prob(income = medium|buys_xbox = "yes") = 991/1003
Prob(income $=$ high \mid buys_xbox $=" y e s ")=11 / 1003$
- The "corrected" prob. estimates are close to their "uncorrected" counterparts

A Generative Model View

- For each data point
- Draw $Y \sim \operatorname{Discrete}(\theta)$, i.e., $P\left(Y=C_{j}\right)=$ θ_{j}
- For each attribute X_{k}
- Draw $X_{k} \sim p\left(X_{k} \mid \beta_{k}, Y\right)$
- Likelihood
- $L=\prod_{i} p\left(x^{(i)}, y^{(i)} \mid \theta, \beta\right)$
$=\prod_{i} p\left(x^{(i)} \mid y^{(i)}, \beta\right) p\left(y^{(i)} \mid \theta\right)$
$=\prod_{i} \prod_{k} p\left(x_{k}^{(i)} \mid y^{(i)}, \beta\right) p\left(y^{(i)} \mid \theta\right)$

Smoothing and Prior on Attribute Distribution

- Discrete distribution: $X_{k} \mid Y=C_{j} \sim \boldsymbol{\beta}$ (short for $\boldsymbol{\beta}_{\boldsymbol{k}}^{\boldsymbol{j}}$)
- $P\left(X_{k}=v \mid C_{j}, \boldsymbol{\beta}\right)=\boldsymbol{\beta}_{v}$
- Put prior to $\boldsymbol{\beta}$
- In discrete case, the prior can be chosen as symmetric Dirichlet distribution: $\boldsymbol{\beta} \sim \operatorname{Dir}(\alpha)$, i.e., $P(\boldsymbol{\beta}) \propto \prod_{v} \boldsymbol{\beta}_{v}^{\alpha-1}$
- posterior distribution:
- $P\left(\boldsymbol{\beta} \mid X_{1 k}, \ldots, X_{n k}, Y=C_{j}\right) \propto P\left(X_{1 k}, \ldots, X_{n k} \mid C_{j}, \boldsymbol{\beta}\right) P(\boldsymbol{\beta})$, another Dirichlet distribution, with new parameter $\left(\alpha+c_{1}, \ldots, \alpha+\right.$ $c_{v}, \ldots, \alpha+c_{V}$)
- c_{v} is the number of observations taking value v
- Inference: $P\left(X_{k}=v \mid X_{1 k}, \ldots, X_{n k}, C_{j_{j}}\right)_{\alpha}=\int P\left(X_{k}=\right.$ $v \mid \boldsymbol{\beta}) P\left(\boldsymbol{\beta} \mid X_{1 k}, \ldots, X_{n k}, C_{j}\right) \mathrm{d} \boldsymbol{\beta}=\frac{\boldsymbol{c}_{v}+\boldsymbol{\alpha}}{\sum \boldsymbol{c}_{v}+\boldsymbol{V} \boldsymbol{\alpha}}$
- Equivalent to adding α to each observation value v

Notes on Parameter Learning

- Why the probability of $P\left(X_{k} \mid C_{j}\right)$ is estimated in this way?
- http://www.cs.columbia.edu/ \sim mcollins/em.pdf - http://www.cs.ubc.ca/ ~murphyk/Teaching/CS3 40-Fall06/reading/NB.pdf

Naïve Bayes Classifier: Comments

- Advantages
- Easy to implement
- Good results obtained in most of the cases
- Disadvantages
- Assumption: class conditional independence, therefore loss of accuracy
- Practically, dependencies exist among variables
- E.g., Patients profile: age, family history, etc.; Symptoms: fever, cough etc.; Disease: lung cancer, diabetes, etc.
- Dependencies among these cannot be modeled by Naïve Bayes Classifier
- How to deal with these dependencies? Bayesian Belief Networks

Probabilistic Classifiers and Naïve Bayes

- Probabilistic Classifiers
- Naïve Bayes
- Bayesian Network \vDash
-Summary

Bayesian Belief Networks (BNs)

- Bayesian belief network (also known as Bayesian network, probabilistic network): allows class conditional independencies between subsets of variables
- Two components: (1) A directed acyclic graph (called a structure) and (2) a set of conditional probability tables (CPTs)
- A (directed acyclic) graphical model of causal influence relationships
- Represents dependency among the variables
- Gives a specification of joint probability distribution

- Nodes: random variables
- Links: dependency
$\square X$ and Y are the parents of Z, and Y is the parent of P
- No dependency between Z and P conditional on Y
. Has no cycles

A Bayesian Network and Some of Its CPTs

CPT: Conditional Probability Tables

		F	\square F	
S		. 90	. 01	
\neg S		. 10	. 99	
	F, T	$F, \neg T$	$\neg F, T$	$\neg F, \neg T$
A	. 5	. 99	. 85	. 0001
$\neg \mathrm{A}$. 95	. 01	. 15	. 9999

CPT shows the conditional probability for each possible combination of its parents

Derivation of the probability of a particular combination of values of X, from CPT (joint probability):

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(x_{i}\right)\right)
$$

*Inference in Bayesian Networks

- Infer the probability of values of some variable given the observations of other variables
- E.g., P(Fire = True \mid Report = True, Smoke = True)?
- Computation
- Exact computation by enumeration
- In general, the problem is NP hard
- *Approximation algorithms are needed

*Inference by enumeration

- To compute posterior marginal $P\left(X_{i} \mid E=e\right)$
- Add all of the terms (atomic event probabilities) from the full joint distribution
- If \mathbf{E} are the evidence (observed) variables and \mathbf{Y} are the other (unobserved) variables, then:
$\mathrm{P}(\mathrm{X} \mid \mathrm{e})=\alpha \mathrm{P}(\mathrm{X}, \mathrm{E})=\alpha \sum \mathrm{P}(\mathrm{X}, \mathrm{E}, \mathrm{Y})$
- Each $\mathbf{P}(\mathbf{X}, \mathbf{E}, \mathbf{Y})$ term can be computed using the chain rule
-Computationally expensive!

*Example: Enumeration

- $P(d \mid e)=\alpha \Sigma_{A B C} P(a, b, c, d, e)$
$=\alpha \Sigma_{A B C} P(a) P(b \mid a) P(c \mid a) P(d \mid b, c) P(e \mid c)$
- With simple iteration to compute this expression, there's going to be a lot of repetition (e.g., $\mathrm{P}(\mathrm{e} \mid \mathrm{c}$) has to be recomputed every time we iterate over $\mathrm{C}=$ true)
- *A solution: variable elimination

*How Are Bayesian Networks Constructed?

- Subjective construction: Identification of (direct) causal structure
- People are quite good at identifying direct causes from a given set of variables \& whether the set contains all relevant direct causes
- Markovian assumption: Each variable becomes independent of its non-effects once its direct causes are known
- E.g., $\mathrm{S} \leftrightarrow \mathrm{F} \rightarrow \mathrm{A} \longleftarrow \mathrm{T}$, path $\mathrm{S} \rightarrow \mathrm{A}$ is blocked once we know $\mathrm{F} \rightarrow \mathrm{A}$
- Synthesis from other specifications
- E.g., from a formal system design: block diagrams \& info flow
- Learning from data
- E.g., from medical records or student admission record
- Learn parameters give its structure or learn both structure and parms
- Maximum likelihood principle: favors Bayesian networks that maximize the probability of observing the given data set

*Learning Bayesian Networks: Several Scenarios

- Scenario 1: Given both the network structure and all variables observable: compute only the CPT entries (Easiest case!)
- Scenario 2: Network structure known, some variables hidden: gradient descent (greedy hill-climbing) method, i.e., search for a solution along the steepest descent of a criterion function
- Weights are initialized to random probability values
- At each iteration, it moves towards what appears to be the best solution at the moment, w.o. backtracking
- Weights are updated at each iteration \& converge to local optimum
- Scenario 3: Network structure unknown, all variables observable: search through the model space to reconstruct network topology
- Scenario 4: Unknown structure, all hidden variables: No good algorithms known for this purpose
- D. Heckerman. A Tutorial on Learning with Bayesian Networks. In Learning in Graphical Models, M. Jordan, ed. MIT Press, 1999.

Probabilistic Classifiers and Naïve Bayes

- Probabilistic Classifiers
- Naïve Bayes
- Bayesian Network
-Summary

Summary

- Probabilistic Classifiers

- Classification \Leftrightarrow hypothesis selection in probabilistic models
- Naïve Bayes
- Conditional independence assumption
- MLE for parameters
- Laplace smooth
- Bayesian Networks
- Joint probability computation; CPT

Course Project

- Team Sign-up (Participation)
- Proposal (5\%)
- Presentation (15\%, in class peer review)
- Final Report (15\%)

Proposal

- What to submit: A 2-Page proposal including
- 1. Problem and goal
- What do you want to solve?
- Why do you think it is important?
- What results do you expect?
- 2. Formalization into data mining task
- Which data type?
- Which function? E.g., Frequent pattern mining, classification, and clustering.
-3. Data plan
- What kind of data?
- Where and how do you get the data?
- Make sure get data in time
- 4. Schedule: detailed plan of your project

Collaboration Rules

- Every member in a team gets the same score (encourage teamwork)
- Exception: the team has the right to claim someone as a free rider, and we will lower his/her score
- A table describing your workload distribution

Task	People
1. Collecting and preprocessing data	Student A
2. Implementing Algorithm 1	Student B
3. Implementing Algorithm 2	Student C and D
4. Evaluating and comparing algorithms	Student A
5. Writing report	Student B and C
6. Slides, demo, and Presentation	student A, B

- Peer Evaluation

Past Projects

- Outlier Detection from Clinical Lab Data
-COURSE PLANNER
- Stylometry Classification for Authors
-Price Range Prediction for Real Estate Data
- Student Application Recommendation System

Datasets

- UCI Machine Learning Repository
- http://archive.ics.uci.edu/ml/
- Bibliographic data
- https://aminer.org/citation
- Wikipedia
- https://figshare.com/articles/Wikipedia_Clickst ream/1305770
- https://dumps.wikimedia.org/

Project Ideas

- Wikipedia
- Page classification: Person vs not a person
- Hyperlink prediction
- Are there discriminations in current data mining algorithms
- E.g., decision boundary is unfair for student admission case
- E.g., different words are picked for describing the same concept for different gender

