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Announcements
•Homework 1

• Due end of the day of this Friday (11:59pm)

•Reminder of late submission policy
• original score *

• E.g., if you are t = 12 hours late, maximum of 
half score will be obtained; if you are 24 hours 
late, 0 score will be given. 
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Methods to Learn: Last Lecture
Vector Data Text Data Recommender 

System
Graph & Network

Classification Decision Tree; Naïve 
Bayes; Logistic 
Regression
SVM; NN

Label Propagation

Clustering K-means; hierarchical
clustering; DBSCAN; 
Mixture Models; 
kernel k-means

PLSA;
LDA

Matrix Factorization SCAN; Spectral 
Clustering

Prediction Linear Regression
GLM

Collaborative Filtering

Ranking PageRank

Feature 
Representation

Word embedding Network embedding
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Basic Probability Review
• Have two dice h1 and h2

• The probability of rolling an i given die h1 is denoted 
P(i|h1). This is a conditional probability

• Pick a die at random with probability P(hj), j=1 or 2. The 
probability for picking die hj and rolling an i with it is called 
joint probability and is P(i, hj)=P(hj)P(i| hj). 

• If we know P(i| hj), then the so-called marginal probability
P(i) can be computed as: 𝑃𝑃 𝑖𝑖 = ∑𝑗𝑗 𝑃𝑃(𝑖𝑖, ℎ𝑗𝑗)

• For any X and Y, P(X,Y)=P(X|Y)P(Y)
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Bayes’ Theorem: Basics
• Bayes’ Theorem:

• Let X be a data sample (“evidence”)
• Let h be a hypothesis that X belongs to class C 
• P(h) (prior probability): the initial probability

• E.g., X will buy computer, regardless of age, income, …
• P(X|h) (likelihood): the probability of observing the 

sample X, given that the hypothesis holds
• E.g., Given that X will buy computer, the prob. that X is 31..40, 

medium income
• P(X): marginal probability that sample data is observed 

• 𝑃𝑃 𝑋𝑋 = ∑ℎ 𝑃𝑃 𝑋𝑋 ℎ 𝑃𝑃(ℎ)
• P(h|X), (i.e., posterior probability): the probability that 

the hypothesis holds given the observed data sample X

)(
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Classification: Choosing Hypotheses
• Maximum Likelihood (maximize the likelihood):

• Maximum a posteriori (maximize the posterior):
• Useful observation: it does not depend on the denominator P(X)
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Classification by Maximum A Posteriori
• Let D be a training set of tuples and their associated class 

labels, and each tuple is represented by an p-D attribute vector 
X = (x1, x2, …, xp)

• Suppose there are m classes Y∈{C1, C2, …, Cm}

• Classification is to derive the maximum posteriori, i.e., the 
maximal P(Y=Cj|X)

• This can be derived from Bayes’ theorem

• Since P(X) is constant for all classes, only                                        
needs to be maximized
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Example: Cancer Diagnosis
• A patient takes a lab test and the result comes 

back positive. It is known that
• a correct positive result in only 98% of the cases 

• P(test = +|cancer) = .98
• a correct negative result in only 97% of the cases

• P(test = -| ¬cancer) = .97
• only 0.008 of the entire population has this disease

• P(cancer) = .008

1. What is the probability that this patient has cancer?
2. What is the probability that he does not have cancer?
3. What is the diagnosis?
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Solution
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P(cancer) = .008 P(¬ cancer) = .992
P(test = +|cancer) = .98 P(test = -|cancer) = .02
P(test = +| ¬ cancer) = .03 P(test = -| ¬ cancer) = .97

Using Bayes Formula:
P(cancer|test = +) = P(test = +|cancer)xP(cancer) / P(test = +)
= 0.98 x 0.008/ P(test = +) = .00784 / P(test = +)
P(¬ cancer|test = +) = P(test = +| ¬ cancer)xP(¬ cancer) / P(test 

= +)
= 0.03 x 0.992/P(test = +) = .0298 / P(test = +)

So, the patient most likely does not have cancer.

How do we know these parameters in practice?
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Naïve Bayes Classifier 
• Let D be a training set of tuples and their 
associated class labels, and each tuple is 
represented by an p-D attribute vector X = (x1, 
x2, …, xp)

• Suppose there are m classes Y∈{C1, C2, …, Cm}
• Goal: Find Y 
max
𝑌𝑌

𝑃𝑃 𝑌𝑌 𝑿𝑿 = 𝑃𝑃(𝑌𝑌,𝑿𝑿)/𝑃𝑃(𝑿𝑿) ∝ 𝑃𝑃 𝑿𝑿 𝑌𝑌 𝑃𝑃(𝑌𝑌)
• A simplified assumption: attributes are 
conditionally independent given the class
(class conditional independency):
•𝑃𝑃 𝑿𝑿 𝑌𝑌 = ∏𝑘𝑘 𝑃𝑃(𝑥𝑥𝑘𝑘|𝑌𝑌)
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Presenter
Presentation Notes
log(P(Y=1|X)/P(Y=0|X)) = 



Conditional independence Assumption

•Graphical model illustration
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Estimate Parameters by MLE
• Given a dataset 𝐷𝐷 = {(𝑿𝑿 𝑖𝑖 ,𝑌𝑌(𝑖𝑖))}, the goal is to 

• Find the best estimators 𝑃𝑃(𝐶𝐶𝑗𝑗) and 𝑃𝑃(𝑋𝑋𝑘𝑘 = 𝑥𝑥𝑘𝑘|𝐶𝐶𝑗𝑗), for 
every 𝑗𝑗 = 1, … ,𝑚𝑚 𝑙𝑙𝑙𝑙𝑜𝑜 𝑘𝑘 = 1, … , 𝑝𝑝

• that maximizes the likelihood of observing D: 

𝐿𝐿 = �
𝑖𝑖

𝑃𝑃 𝑿𝑿 𝑖𝑖 ,𝑌𝑌(𝑖𝑖) =�
𝑖𝑖

𝑃𝑃 𝑿𝑿 𝑖𝑖 |𝑌𝑌(𝑖𝑖) 𝑃𝑃(𝑌𝑌(𝑖𝑖))

= �
𝑖𝑖

(�
𝑘𝑘

𝑃𝑃 𝑋𝑋𝑘𝑘
(𝑖𝑖)|𝑌𝑌(𝑖𝑖) )𝑃𝑃(𝑌𝑌(𝑖𝑖))

• Estimators of Parameters:
• 𝑃𝑃 𝐶𝐶𝑗𝑗 = 𝐶𝐶𝑗𝑗,𝐷𝐷 / 𝐷𝐷 (|𝐶𝐶𝑗𝑗,𝐷𝐷|= # of tuples of Cj in D) (why?)
• 𝑃𝑃 𝑋𝑋𝑘𝑘 = 𝑥𝑥𝑘𝑘 𝐶𝐶𝑗𝑗 :𝑋𝑋𝑘𝑘 can be either discrete or numerical
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Discrete and Continuous Attributes
• If 𝑋𝑋𝑘𝑘 is discrete, with 𝑉𝑉 possible values 

• P(xk|Cj) is the # of tuples in Cj having value xk for 
Xk divided by |Cj, D|

• If 𝑋𝑋𝑘𝑘 is continuous, with observations of real 
values
• P(xk|Cj) is usually computed based on Gaussian 
distribution with a mean μ and standard deviation 
σ

• Estimate (μ, 𝜎𝜎2) according to the observed X in 
the category of Cj
• Sample mean and sample variance

• P(xk|Cj) is then 

16

),|()|(
jj CCkkk xfC jxXP σµ==

Gaussian density function



Naïve Bayes Classifier: Training Dataset

Class:
C1:buys_xbox = ‘yes’
C2:buys_xbox = ‘no’

Data to be classified: 
X = (age <=30, 
Income = medium,
Student = yes
Credit_rating = Fair)

age income studentcredit_ratinguys_xbo
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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		age		income		student		credit_rating		buys_xbox

		<=30		high		no		fair		no

		<=30		high		no		excellent		no

		31…40		high		no		fair		yes

		>40		medium		no		fair		yes

		>40		low		yes		fair		yes

		>40		low		yes		excellent		no

		31…40		low		yes		excellent		yes

		<=30		medium		no		fair		no

		<=30		low		yes		fair		yes

		>40		medium		yes		fair		yes

		<=30		medium		yes		excellent		yes

		31…40		medium		no		excellent		yes

		31…40		high		yes		fair		yes

		>40		medium		no		excellent		no







Naïve Bayes Classifier: An Example
• P(Ci):    P(buys_xbox = “yes”)  = 9/14 = 0.643

P(buys_xbox = “no”) = 5/14= 0.357
• Compute P(X|Ci) for each class

P(age = “<=30” | buys_xbox = “yes”)  = 2/9 = 0.222
P(age = “<= 30” | buys_xbox = “no”) = 3/5 = 0.6
P(income = “medium” | buys_xbox = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_xbox = “no”) = 2/5 = 0.4
P(student = “yes” | buys_xbox = “yes) = 6/9 = 0.667
P(student = “yes” | buys_xbox = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_xbox = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_xbox = “no”) = 2/5 = 0.4

• X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_xbox = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_xbox = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_xbox = “yes”) * P(buys_xbox = “yes”) = 0.028

P(X|buys_xbox = “no”) * P(buys_xbox = “no”) = 0.007
Therefore,  X belongs to class (“buys_xbox = yes”)

age income studentcredit_ratinguys_xbo
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Avoiding the Zero-Probability Problem
• Naïve Bayesian prediction requires each conditional prob. be non-

zero.  Otherwise, the predicted prob. will be zero

• Use Laplacian correction (or Laplacian smoothing)
• Adding 1 to each case

• 𝑃𝑃 𝑥𝑥𝑘𝑘 = 𝑣𝑣 𝐶𝐶𝑗𝑗 = 𝑛𝑛𝑗𝑗𝑗𝑗,𝑣𝑣+1
𝐶𝐶𝑗𝑗,𝐷𝐷 +𝑉𝑉

where 𝑙𝑙𝑗𝑗𝑘𝑘,𝑣𝑣 is # of tuples in Cj having value 𝑥𝑥𝑘𝑘 = v, 
V is the total number of values that can be taken 

• Ex. Suppose a training dataset with 1000 tuples, for category “buys_xbox = 
yes”, income=low (0), income= medium (990), and income = high (10)
Prob(income = low|buys_xbox = “yes”) = 1/1003
Prob(income = medium|buys_xbox = “yes”) = 991/1003
Prob(income = high|buys_xbox = “yes”) = 11/1003

• The “corrected” prob. estimates are close to their “uncorrected” 
counterparts

∏
=

=
p

k
C jxkPC jXP

1
)|()|(



A Generative Model View
•
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• For each data point 
• Draw 𝑌𝑌~ 𝐷𝐷𝑖𝑖𝑜𝑜𝐷𝐷𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 𝜃𝜃 , 𝑖𝑖. 𝑙𝑙. ,𝑃𝑃 𝑌𝑌 = 𝐶𝐶𝑗𝑗 =
𝜃𝜃𝑗𝑗

• For each attribute 𝑋𝑋𝑘𝑘
• Draw 𝑋𝑋𝑘𝑘~𝑝𝑝(𝑋𝑋𝑘𝑘|𝛽𝛽𝑘𝑘 ,𝑌𝑌)

• Likelihood
• 𝐿𝐿 = ∏𝑖𝑖 𝑝𝑝 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 |𝜃𝜃,𝛽𝛽

= ∏𝑖𝑖 𝑝𝑝 𝑥𝑥 𝑖𝑖 𝑦𝑦 𝑖𝑖 ,𝛽𝛽 𝑝𝑝(𝑦𝑦 𝑖𝑖 |𝜃𝜃)
= ∏𝑖𝑖∏𝑘𝑘 𝑝𝑝 𝑥𝑥𝑘𝑘

𝑖𝑖 𝑦𝑦 𝑖𝑖 ,𝛽𝛽 𝑝𝑝(𝑦𝑦 𝑖𝑖 |𝜃𝜃)



Smoothing and Prior on Attribute 
Distribution

• 𝐷𝐷𝑖𝑖𝑜𝑜𝐷𝐷𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑣𝑣𝑖𝑖𝑣𝑣𝑑𝑑𝑙𝑙𝑖𝑖𝑜𝑜𝑙𝑙: 𝑋𝑋𝑘𝑘|𝑌𝑌 = 𝐶𝐶𝑗𝑗~ 𝜷𝜷 (short for 𝜷𝜷𝒌𝒌
𝒋𝒋 )

• 𝑃𝑃 𝑋𝑋𝑘𝑘 = 𝑣𝑣 𝐶𝐶𝑗𝑗 ,𝜷𝜷 = 𝜷𝜷𝑣𝑣
• Put prior to 𝜷𝜷

• In discrete case, the prior can be chosen as symmetric Dirichlet 
distribution: 𝜷𝜷 ~𝐷𝐷𝑖𝑖𝑣𝑣 𝛼𝛼 , 𝑖𝑖. 𝑙𝑙. ,𝑃𝑃 𝜷𝜷 ∝ ∏𝑣𝑣𝜷𝜷𝑣𝑣𝛼𝛼−1

• 𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑣𝑣𝑖𝑖𝑜𝑜𝑣𝑣 𝑜𝑜𝑖𝑖𝑜𝑜𝑙𝑙𝑣𝑣𝑖𝑖𝑣𝑣𝑑𝑑𝑙𝑙𝑖𝑖𝑜𝑜𝑙𝑙:
• 𝑃𝑃 𝜷𝜷 𝑋𝑋1𝑘𝑘 , … ,𝑋𝑋𝑛𝑛𝑘𝑘 ,𝑌𝑌 = 𝐶𝐶𝑗𝑗 ∝ 𝑃𝑃 𝑋𝑋1𝑘𝑘 , … ,𝑋𝑋𝑛𝑛𝑘𝑘 𝐶𝐶𝑗𝑗 ,𝜷𝜷 𝑃𝑃 𝜷𝜷 , another 

Dirichlet distribution, with new parameter (𝛼𝛼 + 𝐷𝐷1, … ,𝛼𝛼 +
𝐷𝐷𝑣𝑣 , … ,𝛼𝛼 + 𝐷𝐷𝑉𝑉)

• 𝐷𝐷𝑣𝑣 is the number of observations taking value v
• Inference: 𝑃𝑃 𝑋𝑋𝑘𝑘 = 𝑣𝑣 𝑋𝑋1𝑘𝑘 , … ,𝑋𝑋𝑛𝑛𝑘𝑘 ,𝐶𝐶𝑗𝑗 = ∫ 𝑃𝑃(𝑋𝑋𝑘𝑘 =
𝑣𝑣|𝜷𝜷)𝑃𝑃 𝜷𝜷 𝑋𝑋1𝑘𝑘 , … ,𝑋𝑋𝑛𝑛𝑘𝑘 ,𝐶𝐶𝑗𝑗 d𝜷𝜷 = 𝒄𝒄𝒗𝒗+𝜶𝜶

∑ 𝒄𝒄𝒗𝒗+𝑽𝑽𝜶𝜶
• Equivalent to adding 𝛼𝛼 to each observation value 𝑣𝑣
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Notes on Parameter Learning

•Why the probability of 𝑃𝑃 𝑋𝑋𝑘𝑘 𝐶𝐶𝑗𝑗 is 
estimated in this way?
• http://www.cs.columbia.edu/~mcollins/em.pdf

• http://www.cs.ubc.ca/~murphyk/Teaching/CS3
40-Fall06/reading/NB.pdf
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Naïve Bayes Classifier: Comments

• Advantages 
• Easy to implement 
• Good results obtained in most of the cases

• Disadvantages
• Assumption: class conditional independence, therefore loss of 

accuracy
• Practically, dependencies exist among variables 

• E.g., Patients profile: age, family history, etc.;  Symptoms: 
fever, cough etc.; Disease: lung cancer, diabetes, etc. 

• Dependencies among these cannot be modeled by Naïve 
Bayes Classifier

• How to deal with these dependencies? Bayesian Belief Networks
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Bayesian Belief Networks (BNs)
• Bayesian belief network (also known as Bayesian network, probabilistic 

network): allows class conditional independencies between subsets of variables

• Two components: (1) A directed acyclic graph (called a structure)  and (2) a set 
of conditional probability tables (CPTs)

• A (directed acyclic) graphical model of causal influence relationships

• Represents dependency among the variables 

• Gives a specification of joint probability distribution 

X Y

Z
P

 Nodes: random variables
 Links: dependency
 X and Y are the parents of Z, and Y is the 

parent of P
 No dependency between Z and P conditional 

on Y
 Has no cycles 25
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A Bayesian Network and Some of Its CPTs

Fire (F)

Smoke (S)

Leaving (L)

Tampering (T)

Alarm (A)

Report (R)

CPT: Conditional Probability Tables

∏
=

=
n

i
xParents ixiPxxP n

1
))(|(),...,( 1

CPT shows the conditional probability for 
each possible combination of its parents

Derivation of the probability of a 
particular combination of values of 
X, from CPT (joint probability):

F ¬F

S .90 .01

¬S .10 .99

F, T 𝑭𝑭, ¬𝑻𝑻 ¬𝑭𝑭, T ¬𝑭𝑭, ¬𝑻𝑻

A .5 .99 .85 .0001

¬A .95 .01 .15 .9999



*Inference in Bayesian Networks
• Infer the probability of values of some 
variable given the observations of other 
variables
• E.g., P(Fire = True|Report = True, Smoke = 
True)?

•Computation
• Exact computation by enumeration

• In general, the problem is NP hard
• *Approximation algorithms are needed
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*Inference by enumeration
•To compute posterior marginal P(Xi | E=e)

• Add all of the terms (atomic event 
probabilities) from the full joint distribution

• If E are the evidence (observed) variables and 
Y are the other (unobserved) variables, then:
P(X|e) = α P(X, E) = α ∑ P(X, E, Y)

• Each P(X, E, Y) term can be computed using 
the chain rule

•Computationally expensive!
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*Example: Enumeration

• P (d|e) = α ΣABCP(a, b, c, d, e)
= α ΣABCP(a) P(b|a) P(c|a) P(d|b,c) P(e|c)

• With simple iteration to compute this 
expression, there’s going to be a lot of 
repetition (e.g., P(e|c) has to be recomputed 
every time we iterate over C=true)
• *A solution: variable elimination

a

b                    c

d                 e 

29
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*How Are Bayesian Networks Constructed?

• Subjective construction: Identification of (direct) causal structure
• People are quite good at identifying direct causes from a given set of variables & 

whether the set contains all relevant direct causes

• Markovian assumption: Each variable becomes independent of its non-effects 
once its direct causes are known

• E.g., S ‹— F —› A ‹— T, path S—›A is blocked once we know F—›A 

• Synthesis from other specifications
• E.g., from a formal system design: block diagrams & info flow

• Learning from data
• E.g., from medical records or student admission record

• Learn parameters give its structure or learn both structure and parms

• Maximum likelihood principle: favors Bayesian networks that maximize the 
probability of observing the given data set
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*Learning Bayesian Networks: Several 
Scenarios

• Scenario 1:  Given both the network structure and all variables observable: 
compute only the CPT entries (Easiest case!)

• Scenario 2: Network structure known, some variables hidden: gradient descent
(greedy hill-climbing) method, i.e., search for a solution along the steepest 
descent of a criterion function 
• Weights are initialized to random probability values

• At each iteration, it moves towards what appears to be the best solution at the 
moment, w.o. backtracking

• Weights are updated at each iteration & converge to local optimum

• Scenario 3: Network structure unknown, all variables observable: search 
through the model space to reconstruct network topology 

• Scenario 4: Unknown structure, all hidden variables: No good algorithms 
known for this purpose

• D. Heckerman.  A Tutorial on Learning with Bayesian Networks.  In Learning in 
Graphical Models, M. Jordan, ed. MIT Press, 1999.

http://research.microsoft.com/en-us/um/people/heckerman/tutorial.pdf


Probabilistic Classifiers and Naïve Bayes

•Probabilistic Classifiers

•Naïve Bayes

•Bayesian Network

•Summary
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Summary
• Probabilistic Classifiers

• Classification  hypothesis selection in probabilistic 
models

• Naïve Bayes
• Conditional independence assumption

• MLE for parameters

• Laplace smooth

• Bayesian Networks
• Joint probability computation; CPT
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Course Project
•Team Sign-up (Participation)
•Proposal (5%)
•Presentation (15%, in class peer review)
•Final Report (15%)
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Proposal
• What to submit: A 2-Page proposal including
• 1. Problem and goal

• What do you want to solve?
• Why do you think it is important?
• What results do you expect?

• 2. Formalization into data mining task
• Which data type?
• Which function? E.g., Frequent pattern mining, classification, and 

clustering.
• 3. Data plan

• What kind of data?
• Where and how do you get the data?
• Make sure get data in time

• 4. Schedule: detailed plan of your project
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Collaboration Rules
• Every member in a team gets the same score 
(encourage teamwork)
• Exception: the team has the right to claim someone as a free 

rider, and we will lower his/her score

• A table describing your workload distribution

• Peer Evaluation
36



Past Projects
•Outlier Detection from Clinical Lab Data
•COURSE PLANNER
•Stylometry Classification for Authors
•Price Range Prediction for Real Estate 
Data

•Student Application Recommendation 
System

•……
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Datasets
•UCI Machine Learning Repository

• http://archive.ics.uci.edu/ml/

•Bibliographic data
• https://aminer.org/citation

•Wikipedia
• https://figshare.com/articles/Wikipedia_Clickst
ream/1305770

• https://dumps.wikimedia.org/
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Project Ideas
•Wikipedia

• Page classification: Person vs not a person

• Hyperlink prediction

•Are there discriminations in current data 
mining algorithms
• E.g., decision boundary is unfair for student 
admission case

• E.g., different words are picked for describing 
the same concept for different gender
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