
CS249: ADVANCED DATA MINING

Instructor: Yizhou Sun
yzsun@cs.ucla.edu

April 24, 2017

Support Vector Machine and Neural
Network

mailto:yzsun@cs.ucla.edu

Announcements
•Homework 1

• Due end of the day of this Friday (11:59pm)

•Reminder of late submission policy
• original score *

• E.g., if you are t = 12 hours late, maximum of
half score will be obtained; if you are 24 hours
late, 0 score will be given.

2

Methods to Learn: Last Lecture

3

Vector Data Text Data Recommender
System

Graph & Network

Classification Decision Tree; Naïve
Bayes; Logistic
Regression
SVM; NN

Label Propagation

Clustering K-means; hierarchical
clustering; DBSCAN;
Mixture Models;
kernel k-means

PLSA;
LDA

Matrix Factorization SCAN; Spectral
Clustering

Prediction Linear Regression
GLM

Collaborative Filtering

Ranking PageRank

Feature
Representation

Word embedding Network embedding

Methods to Learn

4

Vector Data Text Data Recommender
System

Graph & Network

Classification Decision Tree; Naïve
Bayes; Logistic
Regression
SVM; NN

Label Propagation

Clustering K-means; hierarchical
clustering; DBSCAN;
Mixture Models;
kernel k-means

PLSA;
LDA

Matrix Factorization SCAN; Spectral
Clustering

Prediction Linear Regression
GLM

Collaborative Filtering

Ranking PageRank

Feature
Representation

Word embedding Network embedding

Support Vector Machine and Neural
Network

•Support Vector Machine

•Neural Network

•Summary

5

Math Review
•Vector

•𝒙𝒙 = x1, x2, … , 𝑥𝑥𝑛𝑛
• Subtracting two vectors: 𝒙𝒙 = 𝒃𝒃 − 𝒂𝒂

•Dot product
•𝒂𝒂 ⋅ 𝒃𝒃 = ∑𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖
• Geometric interpretation: projection

• If 𝒂𝒂 𝑎𝑎𝑎𝑎𝑎𝑎 𝒃𝒃 are orthogonal, 𝒂𝒂 ⋅ 𝒃𝒃 = 0

6

Math Review (Cont.)
•Plane/Hyperplane

•𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑐𝑐
• Line (n=2), plane (n=3), hyperplane (higher
dimensions)

•Normal of a plane
•𝒏𝒏 = 𝑎𝑎1,𝑎𝑎2, … , 𝑎𝑎𝑛𝑛
• a vector which is perpendicular to the surface

7

Math Review (Cont.)
• Define a plane using normal 𝒏𝒏 =
𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and a point (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) in

the plane:
• 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ⋅ 𝑥𝑥0 − 𝑥𝑥,𝑦𝑦0 − 𝑦𝑦, 𝑧𝑧0 − 𝑧𝑧 = 0 ⇒
𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐𝑧𝑧 = 𝑎𝑎𝑥𝑥0 + 𝑏𝑏𝑦𝑦0 + 𝑐𝑐𝑧𝑧0(= 𝑎𝑎)

• Distance from a point (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) to a
plane 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐𝑧𝑧 = d

• 𝑥𝑥0 − 𝑥𝑥,𝑦𝑦0 − 𝑦𝑦, 𝑧𝑧0 − 𝑧𝑧 ⋅ 𝑎𝑎,𝑏𝑏,𝑐𝑐
𝑎𝑎,𝑏𝑏,𝑐𝑐

=
𝑎𝑎𝑥𝑥0+𝑏𝑏𝑦𝑦0+𝑐𝑐𝑧𝑧0−𝑑𝑑

𝑎𝑎2+𝑏𝑏2+𝑐𝑐2

8

Linear Classifier

•Given a training dataset 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1
𝑁𝑁

 A separating hyperplane can be written as a linear combination of
attributes

W ● X + b = 0
where W={w1, w2, …, wn} is a weight vector and b a scalar (bias)

 For 2-D it can be written as
w0 + w1 x1 + w2 x2 = 0

 Classification:
w0 + w1 x1 + w2 x2 > 0 => yi = +1
w0 + w1 x1 + w2 x2 ≤ 0 => yi = –1

9

Simple Linear Classifier: Perceptron

10

Loss function: max{0,−𝑦𝑦𝑖𝑖 ∗ 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖}

Example

11

Can we do better?
•Which hyperplane to choose?

12

13

SVM—Margins and Support Vectors

Support Vectors

Small Margin Large Margin

14

SVM—When Data Is Linearly Separable

m

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples
associated with the class labels yi

There are infinite lines (hyperplanes) separating the two classes but we want to
find the best one (the one that minimizes classification error on unseen data)
SVM searches for the hyperplane with the largest margin, i.e., maximum
marginal hyperplane (MMH)

15

SVM—Linearly Separable

 A separating hyperplane can be written as
W ● X + b = 0

 The hyperplane defining the sides of the margin, e.g.,:
H1: w0 + w1 x1 + w2 x2 ≥ 1 for yi = +1, and
H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1

 Any training tuples that fall on hyperplanes H1 or H2 (i.e., the
sides defining the margin) are support vectors

 This becomes a constrained (convex) quadratic optimization
problem: Quadratic objective function and linear constraints 
Quadratic Programming (QP)  Lagrangian multipliers

Maximum Margin Calculation
•w: decision hyperplane normal vector
•xi: data point i
•yi: class of data point i (+1 or -1)

16

wT x + b = 0

wTxa + b = 1

wTxb + b = -1
ρ

𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎: 𝜌𝜌 =
2

||𝒘𝒘||

Hint: what is the distance between
𝑥𝑥𝑎𝑎 and wTx + b = -1

SVM as a Quadratic Programming
•QP

•A better form

17

Objective: Find w and b such that 𝜌𝜌 = 2
||𝒘𝒘||

is
maximized;

Constraints: For all {(xi , yi)}
wTxi + b ≥ 1 if yi=1;

wTxi + b ≤ -1 if yi = -1

Objective: Find w and b such that Φ(w) =½ wTw is
minimized;

Constraints: for all {(xi ,yi)}: yi (wTxi + b) ≥ 1

Solve QP
• This is now optimizing a quadratic function
subject to linear constraints

• Quadratic optimization problems are a well-
known class of mathematical programming
problem, and many (intricate) algorithms exist
for solving them (with many special ones built
for SVMs)

• The solution involves constructing a dual
problem where a Lagrange multiplier αi is
associated with every constraint in the
primary problem:

18

Lagrange Formulation

19

Primal Form and Dual Form

• More derivations:
http://cs229.stanford.edu/notes/cs229-notes3.pdf

20

Objective: Find w and b such that Φ(w) =½ wTw is
minimized;

Constraints: for all {(xi ,yi)}: yi (wTxi + b) ≥ 1

Objective: Find α1…αn such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and

Constraints
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

Primal

Dual

Equivalent under some conditions: KKT conditions

http://cs229.stanford.edu/notes/cs229-notes3.pdf

The Optimization Problem Solution
• The solution has the form:

• Each non-zero αi indicates that corresponding xi is a support vector.
• Then the classifying function will have the form:

• Notice that it relies on an inner product between the test point x
and the support vectors xi
• We will return to this later.

• Also keep in mind that solving the optimization problem involved
computing the inner products xi

Txj between all pairs of training
points.

21

w =Σαiyixi b= yk- wTxk for any xk such that αk≠ 0

f(x) = Σαiyixi
Tx + b

22

Soft Margin Classification
• If the training data is not

linearly separable, slack
variables ξi can be added to
allow misclassification of
difficult or noisy examples.

• Allow some errors

• Let some points be
moved to where they
belong, at a cost

• Still, try to minimize training
set errors, and to place
hyperplane “far” from each
class (large margin)

ξj

ξi

Sec. 15.2.1

23

Soft Margin Classification
Mathematically

• The old formulation:

• The new formulation incorporating slack variables:

• Parameter C can be viewed as a way to control overfitting
• A regularization term (L1 regularization)

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and ξi ≥ 0 for all i

Sec. 15.2.1

24

Soft Margin Classification – Solution
• The dual problem for soft margin classification:

• Neither slack variables ξi nor their Lagrange multipliers appear in the dual
problem!

• Again, xi with non-zero αi will be support vectors.
• Solution to the dual problem is:

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and
(1) Σαiyi = 0
(2) 0 ≤ αi ≤ C for all αi

w = Σαiyixi
b = yk(1- ξk) - wTxk where k = argmax αk’

k’ f(x) = Σαiyixi
Tx + b

w is not needed explicitly
for classification!

Sec. 15.2.1

25

Classification with SVMs
• Given a new point x, we can score its projection

onto the hyperplane normal:
• I.e., compute score: wTx + b = Σαiyixi

Tx + b
• Decide class based on whether < or > 0

• Can set confidence threshold t.

-1
0

1

Score > t: yes

Score < -t: no

Else: don’t know

Sec. 15.1

26

Linear SVMs: Summary
• The classifier is a separating hyperplane.

• The most “important” training points are the support vectors;
they define the hyperplane.

• Quadratic optimization algorithms can identify which training
points xi are support vectors with non-zero Lagrangian
multipliers αi.

• Both in the dual formulation of the problem and in the
solution, training points appear only inside inner products:

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and
(1) Σαiyi = 0
(2) 0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b

Sec. 15.2.1

27

Non-linear SVMs
• Datasets that are linearly separable (with some noise) work out

great:

• But what are we going to do if the dataset is just too hard?

• How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x

Sec. 15.2.3

28

Non-linear SVMs: Feature spaces
•General idea: the original feature space
can always be mapped to some higher-
dimensional feature space where the
training set is separable:

Φ: x → φ(x)

Sec. 15.2.3

29

The “Kernel Trick”

• The linear classifier relies on an inner product between vectors K(xi,xj)=xi
Txj

• If every data point is mapped into high-dimensional space via some
transformation Φ: x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi) Tφ(xj)
• A kernel function is some function that corresponds to an inner product in

some expanded feature space.
• Example:

2-dimensional vectors x=[x1 x2]; let K(xi,xj)=(1 + xi
Txj)2

,

Need to show that K(xi,xj)= φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2

,= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2=

= [1 xi1
2 √2 xi1xi2 xi2

2 √2xi1 √2xi2]T [1 xj1
2 √2 xj1xj2 xj2

2 √2xj1 √2xj2]

= φ(xi) Tφ(xj) where φ(x) = [1 x1
2 √2 x1x2 x2

2 √2x1 √2x2]

Sec. 15.2.3

30

SVM: Different Kernel functions

 Instead of computing the dot product on the transformed data,
it is math. equivalent to applying a kernel function K(Xi, Xj) to
the original data, i.e., K(Xi, Xj) = Φ(Xi)TΦ(Xj)

 Typical Kernel Functions

 *SVM can also be used for classifying multiple (> 2) classes and
for regression analysis (with additional parameters)

31

Non-linear SVM
• Replace inner-product with kernel functions

• Optimization problem

• Decision boundary

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi,xj) is
maximized and
(1) Σαiyi = 0
(2) 0 ≤ αi ≤ C for all αi

f(x) = ΣαiyiK(xi,xj) + b

Sec. 15.2.1

32

*Scaling SVM by Hierarchical Micro-Clustering

• SVM is not scalable to the number of data objects in terms of training time
and memory usage

• H. Yu, J. Yang, and J. Han, “Classifying Large Data Sets Using SVM with
Hierarchical Clusters”, KDD'03)

• CB-SVM (Clustering-Based SVM)

• Given limited amount of system resources (e.g., memory), maximize the

SVM performance in terms of accuracy and the training speed

• Use micro-clustering to effectively reduce the number of points to be
considered

• At deriving support vectors, de-cluster micro-clusters near “candidate vector”
to ensure high classification accuracy

http://www.cs.uiuc.edu/homes/hanj/pdf/kdd03_scalesvm.pdf

33

*CF-Tree: Hierarchical Micro-cluster

 Read the data set once, construct a statistical summary of the data (i.e.,
hierarchical clusters) given a limited amount of memory

 Micro-clustering: Hierarchical indexing structure
 provide finer samples closer to the boundary and coarser samples

farther from the boundary

34

*Selective Declustering: Ensure High Accuracy

• CF tree is a suitable base structure for selective declustering
• De-cluster only the cluster Ei such that

• Di – Ri < Ds, where Di is the distance from the boundary to the center point of
Ei and Ri is the radius of Ei

• Decluster only the cluster whose subclusters have possibilities to be the
support cluster of the boundary
• “Support cluster”: The cluster whose centroid is a support vector

35

*CB-SVM Algorithm: Outline

• Construct two CF-trees from positive and negative data sets
independently
• Need one scan of the data set

• Train an SVM from the centroids of the root entries
• De-cluster the entries near the boundary into the next level

• The children entries de-clustered from the parent entries are
accumulated into the training set with the non-declustered
parent entries

• Train an SVM again from the centroids of the entries in the
training set

• Repeat until nothing is accumulated

36

*Accuracy and Scalability on Synthetic Dataset

• Experiments on large synthetic data sets shows better accuracy
than random sampling approaches and far more scalable than
the original SVM algorithm

37

SVM Related Links

• SVM Website: http://www.kernel-machines.org/

• Representative implementations

• LIBSVM: an efficient implementation of SVM, multi-class

classifications, nu-SVM, one-class SVM, including also various

interfaces with java, python, etc.

• SVM-light: simpler but performance is not better than LIBSVM,

support only binary classification and only in C

• SVM-torch: another recent implementation also written in C

• From classification to regression and ranking:
• http://www.dainf.ct.utfpr.edu.br/~kaestner/Mineracao/hwanjoyu-

svmtutorial.pdf

http://www.kernel-machines.org/
http://www.dainf.ct.utfpr.edu.br/%7Ekaestner/Mineracao/hwanjoyu-svmtutorial.pdf

Support Vector Machine and Neural
Network

•Support Vector Machine

•Neural Network

•Summary

38

Artificial Neural Networks
• Consider humans:

• Neuron switching time ~.001 second
• Number of neurons ~1010
• Connections per neuron ~104−5
• Scene recognition time ~.1 second
• 100 inference steps doesn't seem like enough -> parallel

computation
• Artificial neural networks

• Many neuron-like threshold switching units
• Many weighted interconnections among units
• Highly parallel, distributed process
• Emphasis on tuning weights automatically

39

Single Unit: Perceptron

40

f

weighted
sum

Input
vector x

output y

Activation
function

weight
vector w

∑

w0

w1

wn

x0

x1

xn

)sign(y

ExampleFor
n

0i
θ+= ∑

=
ii xw

Bias: 𝜃𝜃

• An n-dimensional input vector x is mapped into variable y by means of the scalar
product and a nonlinear function mapping

Perceptron Training Rule

• t: target value (true value)
• o: output value
• 𝜂𝜂: learning rate (small constant)

41

For each training data point:

42

A Multi-Layer Feed-Forward Neural Network

Output layer

Input layer

Hidden layer

Output vector

Input vector: x

A two-layer network

𝒉𝒉 = 𝑓𝑓(𝑊𝑊 1 𝒙𝒙 + 𝑏𝑏(1))

𝒚𝒚 = 𝑚𝑚(𝑊𝑊 2 𝒉𝒉 + 𝑏𝑏(2))

Nonlinear transformation,
e.g. sigmoid transformation

Weight matrix

Bias term

Sigmoid Unit

•𝜎𝜎 𝑥𝑥 = 1
1+𝑒𝑒−𝑥𝑥

is a sigmoid function
• Property:

• Will be used in learning

43

44

45

How A Multi-Layer Neural Network Works

• The inputs to the network correspond to the attributes measured for each
training tuple

• Inputs are fed simultaneously into the units making up the input layer

• They are then weighted and fed simultaneously to a hidden layer

• The number of hidden layers is arbitrary, although usually only one

• The weighted outputs of the last hidden layer are input to units making up
the output layer, which emits the network's prediction

• The network is feed-forward: None of the weights cycles back to an input
unit or to an output unit of a previous layer

• From a math point of view, networks perform nonlinear regression: Given
enough hidden units and enough training samples, they can closely
approximate any continuous function

46

Defining a Network Topology

• Decide the network topology: Specify # of units in the input layer,
of hidden layers (if > 1), # of units in each hidden layer, and # of
units in the output layer

• Normalize the input values for each attribute measured in the
training tuples to [0.0—1.0]

• Output, if for classification and more than two classes, one
output unit per class is used

• Once a network has been trained and its accuracy is
unacceptable, repeat the training process with a different
network topology or a different set of initial weights

47

Learning by Backpropagation

• Backpropagation: A neural network learning algorithm

• Started by psychologists and neurobiologists to develop and test
computational analogues of neurons

• During the learning phase, the network learns by adjusting the
weights so as to be able to predict the correct class label of the
input tuples

• Also referred to as connectionist learning due to the
connections between units

48

Backpropagation
• Iteratively process a set of training tuples & compare the

network's prediction with the actual known target value

• For each training tuple, the weights are modified to minimize the
loss function between the network's prediction and the actual
target value, say mean squared error

• Modifications are made in the “backwards” direction: from the
output layer, through each hidden layer down to the first hidden
layer, hence “backpropagation”

Example of Loss Functions
•Hinge loss
•Logistic loss
•Cross-entropy loss
•Mean square error loss
•Mean absolute error loss

49

A Special Case

50

•Activation function: Sigmoid

𝑂𝑂𝑗𝑗 = 𝜎𝜎(�
𝑖𝑖

𝑤𝑤𝑖𝑖𝑗𝑗 𝑂𝑂𝑖𝑖)

•Loss function: mean square error
𝐽𝐽 =

1
2
�
𝑗𝑗

𝑇𝑇𝑗𝑗 − 𝑂𝑂𝑗𝑗
2 ,

𝑇𝑇𝑗𝑗: 𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡 𝑣𝑣𝑎𝑎𝑣𝑣𝑡𝑡𝑡𝑡 𝑜𝑜𝑓𝑓 𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡 𝑡𝑡𝑎𝑎𝑚𝑚𝑡𝑡 𝑗𝑗;
Oj: output value

Backpropagation Steps to Learn Weights
• Initialize weights to small random numbers, associated with biases

• Repeat until terminating condition meets

• For each training example
• Propagate the inputs forward (by applying activation function)

• For a hidden or output layer unit 𝑗𝑗
• Calculate net input: 𝐼𝐼𝑗𝑗 = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑂𝑂𝑖𝑖 + 𝜃𝜃𝑗𝑗

• Calculate output of unit 𝑗𝑗: 𝑂𝑂𝑗𝑗 = 𝜎𝜎 𝐼𝐼𝑗𝑗 = 1
1+𝑒𝑒−𝐼𝐼𝑗𝑗

• Backpropagate the error (by updating weights and biases)

• For unit 𝑗𝑗 in output layer: 𝐸𝐸𝑚𝑚𝑚𝑚𝑗𝑗 = 𝑂𝑂𝑗𝑗 1 − 𝑂𝑂𝑗𝑗 𝑇𝑇𝑗𝑗 − 𝑂𝑂𝑗𝑗
• For unit 𝑗𝑗 in a hidden layer: : 𝐸𝐸𝑚𝑚𝑚𝑚𝑗𝑗 = 𝑂𝑂𝑗𝑗 1 − 𝑂𝑂𝑗𝑗 ∑𝑘𝑘 𝐸𝐸𝑚𝑚𝑚𝑚𝑘𝑘𝑤𝑤𝑗𝑗𝑘𝑘
• Update weights: 𝑤𝑤𝑖𝑖𝑗𝑗 = 𝑤𝑤𝑖𝑖𝑗𝑗 + 𝜂𝜂𝐸𝐸𝑚𝑚𝑚𝑚𝑗𝑗𝑂𝑂𝑖𝑖
• Update bias: 𝜃𝜃𝑗𝑗 = 𝜃𝜃𝑗𝑗 + 𝜂𝜂𝐸𝐸𝑚𝑚𝑚𝑚𝑗𝑗

• Terminating condition (when error is very small, etc.)
51

More on the hidden layer j
•Chain rule of first derivation

𝜕𝜕𝐽𝐽
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

= �
𝑘𝑘

𝜕𝜕𝐽𝐽
𝜕𝜕𝑂𝑂𝑘𝑘

𝜕𝜕𝑂𝑂𝑘𝑘
𝜕𝜕𝑂𝑂𝑗𝑗

𝜕𝜕𝑂𝑂𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

𝜕𝜕𝐽𝐽
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑘𝑘

𝜕𝜕𝐽𝐽
𝜕𝜕𝑂𝑂𝑘𝑘

𝜕𝜕𝑂𝑂𝑘𝑘
𝜕𝜕𝑂𝑂𝑗𝑗

𝜕𝜕𝑂𝑂𝑗𝑗
𝜕𝜕𝜃𝜃𝑗𝑗

52

Example

53

A multilayer feed-forward neural network

Initial Input, weight, and bias values

Example
• Input forward:

• Error backpropagation and weight update:

54

55

Efficiency and Interpretability
• Efficiency of backpropagation: Each iteration through the training set takes

O(|D| * w), with |D| tuples and w weights, but # of iterations can be
exponential to n, the number of inputs, in worst case

• For easier comprehension: Rule extraction by network pruning
• Simplify the network structure by removing weighted links that have the least

effect on the trained network

• Then perform link, unit, or activation value clustering

• The set of input and activation values are studied to derive rules describing the
relationship between the input and hidden unit layers

• Sensitivity analysis: assess the impact that a given input variable has on a
network output. The knowledge gained from this analysis can be represented
in rules
• E.g., If x decreases 5% then y increases 8%

56

Neural Network as a Classifier
• Weakness

• Long training time

• Require a number of parameters typically best determined empirically,
e.g., the network topology or “structure.”

• Poor interpretability: Difficult to interpret the symbolic meaning
behind the learned weights and of “hidden units” in the network

• Strength
• High tolerance to noisy data

• Successful on an array of real-world data, e.g., hand-written letters

• Algorithms are inherently parallel

• Techniques have recently been developed for the extraction of rules
from trained neural networks

• Deep neural network is powerful

Digits Recognition Example
•Obtain sequence of digits by segmentation

•Recognition (our focus)

57

5

• The architecture of the used neural network

• What each neurons are doing?

Digits Recognition Example

58

0
Input image Activated neurons detecting image parts Predicted number

Towards Deep Learning

59

Deep Learning References
•http://neuralnetworksanddeeplearning.com/
•http://www.deeplearningbook.org/

60

Support Vector Machine and Neural
Network

•Support Vector Machine

•Neural Network

•Summary

61

Summary
•Support Vector Machine

• Linear classifier; support vectors; kernel SVM

•Neural Network
• Feed-forward neural networks; activation
function; loss function; backpropagation

62

	CS249: Advanced Data Mining
	Announcements
	Methods to Learn: Last Lecture
	Methods to Learn
	Support Vector Machine and Neural Network
	Math Review
	Math Review (Cont.)
	Math Review (Cont.)
	Linear Classifier
	Simple Linear Classifier: Perceptron
	Example
	Can we do better?
	SVM—Margins and Support Vectors
	SVM—When Data Is Linearly Separable
	SVM—Linearly Separable
	Maximum Margin Calculation
	SVM as a Quadratic Programming
	Solve QP
	Lagrange Formulation
	Primal Form and Dual Form
	The Optimization Problem Solution
	Soft Margin Classification
	Soft Margin Classification Mathematically
	Soft Margin Classification – Solution
	Classification with SVMs
	Linear SVMs: Summary
	Non-linear SVMs
	Non-linear SVMs: Feature spaces
	The “Kernel Trick”
	SVM: Different Kernel functions
	Non-linear SVM
	*Scaling SVM by Hierarchical Micro-Clustering
	*CF-Tree: Hierarchical Micro-cluster
	*Selective Declustering: Ensure High Accuracy
	*CB-SVM Algorithm: Outline
	*Accuracy and Scalability on Synthetic Dataset
	SVM Related Links
	Support Vector Machine and Neural Network
	Artificial Neural Networks
	Single Unit: Perceptron
	Perceptron Training Rule
	A Multi-Layer Feed-Forward Neural Network
	Sigmoid Unit
	Slide Number 44
	How A Multi-Layer Neural Network Works
	Defining a Network Topology
	Learning by Backpropagation
	Backpropagation
	Example of Loss Functions
	A Special Case
	Backpropagation Steps to Learn Weights
	More on the hidden layer j
	Example
	Example
	Efficiency and Interpretability
	Neural Network as a Classifier
	Digits Recognition Example
	Digits Recognition Example
	Towards Deep Learning
	Deep Learning References
	Support Vector Machine and Neural Network
	Summary

