CS249: ADVANCED DATA MINING Classification Evaluation and Practical Issues

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

April 24, 2017

Announcements

Homework 2 out

• Due May 3rd (11:59pm)

Course project proposal
Due May 8th (11:59pm)

Learnt Prediction and Classification Methods

	Vector Data	Text Data	Recommender System	Graph & Network
Classification	Decision Tree; Naïve Bayes; Logistic Regression SVM; NN			Label Propagation
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models; kernel k-means	PLSA; LDA	Matrix Factorization	SCAN; Spectral Clustering
Prediction	Linear Regression GLM		Collaborative Filtering	
Ranking				PageRank
Feature Representation		Word embedding		Network embedding

Evaluation and Other Practical Issues

- Model Evaluation and Selection
- Bias-Variance Trade-off
- Other issues
- Summary

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy?
 Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁	
C ₁	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Example of Confusion Matrix:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given *m* classes, an entry, *CM*_{i,j} in a confusion matrix indicates # of tuples in class *i* that were labeled by the classifier as class *j*
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	−C	
С	ТР	FN	Ρ
−C	FP	ΤN	Ν
	P'	N'	All

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/All

Error rate: 1 – accuracy, or
 Error rate = (FP + FN)/All

- Class Imbalance Problem:
 - One class may be *rare*, e.g. fraud, or HIV-positive
 - Significant *majority of the negative class* and minority of the positive class
 - Sensitivity: True Positive recognition rate

Sensitivity = TP/P

- Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive $\overline{TP + FP}$ precision Recall: completeness – what % of positive tuples did the classifier label as positive? TPrecall $\overline{TP + FN}$ Perfect score is 1.0 Inverse relationship between precision & recall • F measure (F₁ or F-score): harmonic mean of precision and $2 \times precision \times recall$ recall, precision + recall• F_{β} : weighted measure of precision and recall • assigns ß times as much weight to recall as to precision $F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)	
cancer = yes	90	210 300		30.00 (sensitivity)	
cancer = no	140	9560	9700	98.56 (specificity)	
Total	230	9770	10000	96.50 (<i>accuracy</i>)	

Precision = 90/230 = 39.13%

Recall = 90/300 = 30.00%

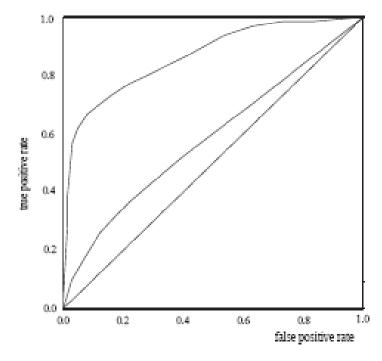
Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- <u>Random sampling</u>: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into *k mutually exclusive* subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: *k* folds where *k* = # of tuples, for small sized data
 - <u>*Stratified cross-validation</u>*: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Model Selection: ROC Curves

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- Area under the curve: the closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model



- Vertical axis represents the true positive rate
- Horizontal axis rep. the false positive rate
- The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

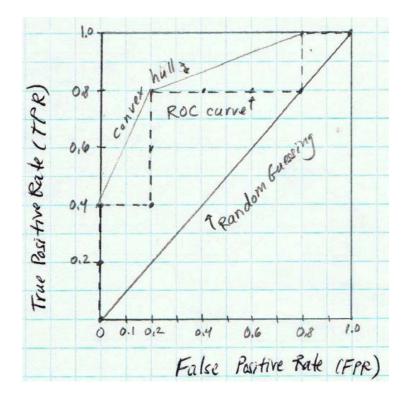
Plotting an ROC Curve

- True positive rate: TPR = TP/P (sensitivity)
- False positive rate: FPR = FP/N (1-specificity)

- Rank tuples according to how likely they will be a positive tuple
 - Idea: when we include more tuples in, we are more likely to make mistakes, that is the trade-off!
 - Nice property: not threshold (cut-off) need to be specified, only rank matters

$Tuple \ \#$	Class	Prob.	TP	FP	TN	FN	TPR	FPR
1	р	0.9	1	0	5	4	0.2	0
2	р	0.8	2	0	5	3	0.4	0
3	n	0.7	2	1	4	3	0.4	0.2
4	р	0.6	3	1	4	2	0.6	0.2
5	р	0.55	4	1	4	1	0.8	0.2
6	n	0.54	4	2	3	1	0.8	0.4
7	n	0.53	4	3	2	1	0.8	0.6
8	n	0.51	4	4	1	1	0.8	0.8
9	р	0.50	5	4	0	1	1.0	0.8
10	n	0.4	5	5	0	0	1.0	1.0

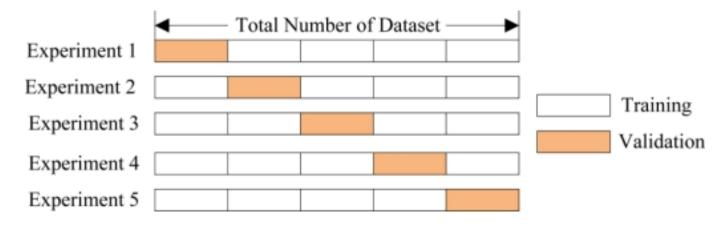
Example



Similar for prediction tasks

Cross-Validation

- Partition the data into K folds
 - Use K-1 fold as training, and 1 fold as testing
 - Calculate the average accuracy best on K training-testing pairs
 - Accuracy on validation/test dataset!
 - Mean square error can again be used: $\sum_{i} (\mathbf{x}_{i}^{T} \widehat{\boldsymbol{\beta}} y_{i})^{2} / n$



AIC & BIC

- AIC and BIC can be used to test the quality of statistical models
 - AIC (Akaike information criterion)
 - $AIC = 2k 2\ln(\hat{L}),$
 - where k is the number of parameters in the model and \hat{L} is the likelihood under the estimated parameter
 - BIC (Bayesian Information criterion)
 - BIC = $kln(n) 2ln(\hat{L})$,
 - Where n is the number of objects

Stepwise Feature Selection

Avoid brute-force selection

• 2^p

- Forward selection
 - Starting with the best single feature
 - Always add the feature that improves the performance best
 - Stop if no feature will further improve the performance

Backward elimination

- Start with the full model
- Always remove the feature that results in the best performance enhancement
- Stop if removing any feature will get worse performance

Evaluation and Other Practical Issues

- Model Evaluation and Selection
- Bias-Variance Trade-off
- Other issues
- Summary

Model Selection Problem

• Basic problem:

- how to choose between competing linear regression models
- Model too simple:
 - "underfit" the data; poor predictions; high bias; low variance
- Model too complex:
 - "overfit" the data; poor predictions; low bias; high variance
- Model just right:
 - balance bias and variance to get good predictions

Bias and Variance

• Bias: $E(\hat{f}(x)) - f(x)$ Estimated predictor $\hat{f}(x): x^T \hat{\beta}$ • How far away is the expectation of the estimator to the true value? The smaller the better.

• Variance:
$$Var\left(\hat{f}(x)\right) = E\left[\left(\hat{f}(x) - E\left(\hat{f}(x)\right)\right)^2\right]$$

- How variant is the estimator? The smaller the better.
- Reconsider mean square error

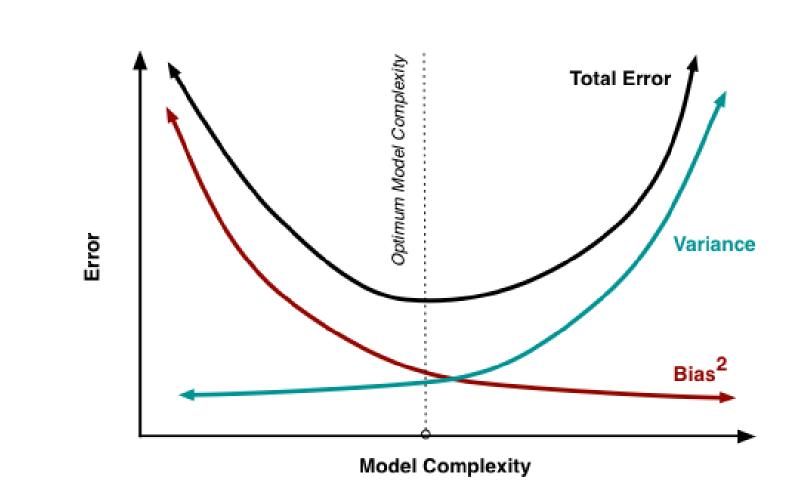
•
$$J(\widehat{\boldsymbol{\beta}})/n = \frac{1}{2} \sum_{i} (\boldsymbol{x}_{i}^{T} \widehat{\boldsymbol{\beta}} - y_{i})^{2}/n$$

• Can be considered as

•
$$E[(\hat{f}(x) - f(x) - \varepsilon)^2] = bias^2 + variance + noise$$

Note $E(\varepsilon) = 0, Var(\varepsilon) = \sigma^2$

Bias-Variance Trade-off



Example: degree d in regression

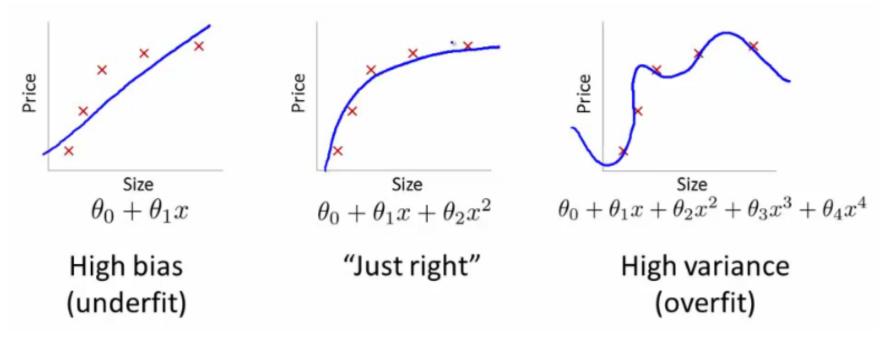
1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

$$\vdots$$

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

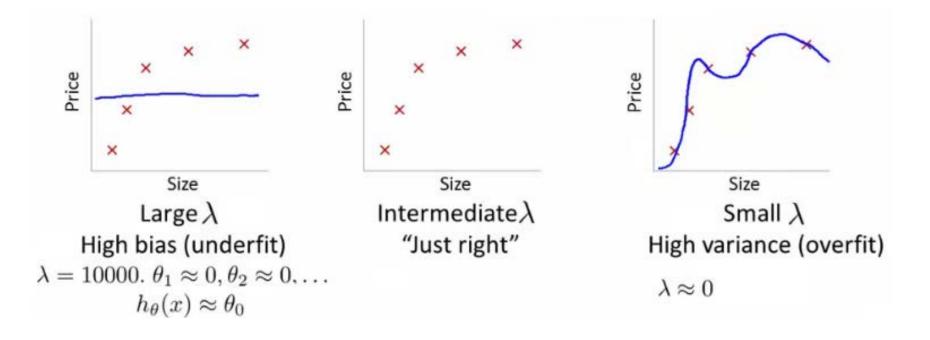


http://www.holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html

Example: regularization term in regression

Linear regression with regularization

Model: $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$ $J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^m \theta_j^2$



Evaluation and Other Practical Issues

- Model Evaluation and Selection
- Bias-Variance Trade-off

Summary

Classification of Class-Imbalanced Data Sets

- Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.
- Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data
- Typical methods for imbalance data in 2-class classification:
 - **Oversampling:** re-sampling of data from positive class
 - Under-sampling: randomly eliminate tuples from negative class
 - **Threshold-moving:** moves the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
 - Ensemble techniques: Ensemble multiple classifiers introduced above
- Still difficult for class imbalance problem on multiclass tasks

Multiclass Classification

- Classification involving more than two classes (i.e., > 2 Classes)
- Method 1. One-vs.-all (OVA): Learn a classifier one at a time
 - Given m classes, train m classifiers: one for each class
 - Classifier j: treat tuples in class j as *positive* & all others as *negative*
 - To classify a tuple **X**, the set of classifiers vote as an ensemble
- Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes
 - Given m classes, construct m(m-1)/2 binary classifiers
 - A classifier is trained using tuples of the two classes
 - To classify a tuple **X**, each classifier votes. X is assigned to the class with maximal vote
- Comparison
 - All-vs.-all tends to be superior to one-vs.-all
 - Problem: Binary classifier is sensitive to errors, and errors affect vote count

Evaluation and Other Practical Issues

- Model Evaluation and Selection
- Bias-Variance Trade-off
- Other issues

Summary

- Model evaluation and selection
 - Evaluation metric and cross-validation
- Bias-Variance Trade-off
 - Error = $bias^2$ + variance + noise
- Other issues
 - Imbalanced classes
 - Multi-class classification