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Community Detection/Clustering
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Community
a.k.a. Group, Cluster, Cohesive 
Subgroup, Module

It is formed by individuals such that 
those within a group interact with 
each other more frequently than 
with those outside the group.
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Community Detection
Discovering groups in a network where individuals’ group memberships are 
not explicitly given.
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Community Detection Applications

- To detect suspicious events in Telecommunication Networks
- Recommendation Systems
- Link Prediction
- Detection of Terrorist Groups in Online Social Networks
- Lung Cancer Detection
- Information Diffusion
- ……
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Methods for Finding Communities
- Minimum-cut method
- Hierarchical clustering
- Girvan–Newman algorithm
- Modularity maximization
- Statistical inference
- Clique-based methods
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https://en.wikipedia.org/wiki/Community_structure#Minimum-cut_method
https://en.wikipedia.org/wiki/Community_structure#Minimum-cut_method
https://en.wikipedia.org/wiki/Community_structure#Hierarchical_clustering
https://en.wikipedia.org/wiki/Community_structure#Hierarchical_clustering
https://en.wikipedia.org/wiki/Community_structure#Girvan.E2.80.93Newman_algorithm
https://en.wikipedia.org/wiki/Community_structure#Girvan.E2.80.93Newman_algorithm
https://en.wikipedia.org/wiki/Community_structure#Modularity_maximization
https://en.wikipedia.org/wiki/Community_structure#Modularity_maximization
https://en.wikipedia.org/wiki/Community_structure#Statistical_inference
https://en.wikipedia.org/wiki/Community_structure#Statistical_inference
https://en.wikipedia.org/wiki/Community_structure#Clique-based_methods
https://en.wikipedia.org/wiki/Community_structure#Clique-based_methods


Modularity Maximization
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Modularity 
The fraction of edges within groups minus the expected fraction of such edges  
in a randomized null model of the network.
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A : adjacency matrix
ki : the degree of vertex i
m : the total number of edges 
in the observed network
δij : the Kronecker delta



Modularity 

Q=0.79
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Q=0.31



Modularity 
The fraction of edges within groups minus the expected fraction of such edges  
in a randomized null model of the network.
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A : adjacency matrix
ki : the degree of vertex i
m : the total number of edges 
in the observed network
δij : the Kronecker delta



Lagrange Multiplier

Lagrange Function:

Stationary Point:  

For n variables: 
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Eigenvector and Eigenvalue
Square matrix: A 

Column vector: v

v : eigenvector

λ : eigenvalue
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Generalized Eigenvector Equation
A generalized eigenvector of an n × n matrix A is a vector which satisfies 
certain criteria which are more relaxed than those for an (ordinary) 
eigenvector.

e.g. 
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Spectral Clustering
Spectral clustering techniques make use of the spectrum (eigenvalues) of the 
similarity matrix of the data to perform dimensionality reduction before 
clustering in fewer dimensions.

Normalized Laplacian:
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Result

D: the diagonal matrix with elements 
equal to the vertex degrees Dii = ki 

S : “Ising spin” variables. 
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L : ‘normalized’ Laplacian of the network



Simple Example
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Simple Example
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Statistical Inference
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Statistical Inference
- Statistical inference is the use of probability 
theory to make inferences about a population 
from sampled data.
e.g. 
- Measure the heights of a random sample of 100 women 
aged 25-29 years 

- Calculate sample mean is 165cms and sample standard 
deviation is 5 cms

-Make conclusions about the heights of all women in this 
population aged 25-29 years 
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Common Forms of Statistical Proposition
The conclusion of a statistical inference is a statistical proposition.

- A point estimate
- An interval estimate
- A credible interval
- Rejection of a hypothesis
- Clustering or classification of data points into groups
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https://en.wikipedia.org/wiki/Logical_consequence
https://en.wikipedia.org/wiki/Logical_consequence
https://en.wikipedia.org/wiki/Proposition


Statistical Inference
-Any statistical inference requires some assumptions.
-A statistical model is a set of assumptions concerning the generation of the 
observed data. 
-Given a hypothesis about a population, for which we wish to draw inferences, 
statistical inference consists of:
1. Selecting a statistical model of the process that generates the data.
2. Deducing propositions from the model.
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Stochastic Block Model (SBM)

-SBM is a random graph model, which tends 
to produce graphs containing communities 
and assigns a probability value to each pair 
i, j (edge) in the network.

- To perform community detection, one can 
fit the model to observed network data 
using a maximum likelihood method.
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Definition of SBM
The stochastic block model studied by Brian, Karrer and M. E. J. Newman:

- G, Aij

-  ωrs: the expected value of the adjacency matrix element Aij  for vertices i  and j  
lying in groups r and s, respectively

- The number of edges between each pair of vertices be independently Poisson 
distributed

Goal: To maximize the Probability (Likelihood) that Graph G is generated by SBM
                                                      

  gi, gj is the group assignment of vertex i, vertex j

24



Drawback of SBM
- While formally elegant, SBM works poorly in practice.

- SBM generates networks whose vertices have a Poisson degree distribution, 
unlike the degree distributions of most real-life networks.

- The model is not a good fit to observed networks for any values of its 
parameters.
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Degree-Corrected Block Model (DCBM)
- DCBM incorporates additional parameters.

- Let the expected value of the adjacency matrix element Aij be  kikjωgigj.

- The likelihood that this network was generated by the degree-corrected 
stochastic block model:

- The desired degrees ki are equal to the actual degrees of the vertices in the 
observed network. 

- The likelihood depends on the assignment of the vertices to the groups. 
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Advantage of DCBM
- DCBM improves the fit to real-world data to the point.

- DCBM appears to give good community inference in practical situations.

Divisions of the karate club network found using the (a) uncorrected and (b) corrected block models
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Optimization Problem 
- In maximum likelihood approach, best assignment of vertices to groups is 

the one that maximizes the likelihood.
- maximize the logarithm of the likelihood:                            

- Assume ωin /ωout for pairs of vertices fall in the same group/ different 
groups:

- Substitute these expressions into the likelihood:
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Using Spectral Method
- Introduce a Lagrange multiplier λ and differentiate:

-  In matrix notation:

- Multiplying on the left by       and making use of                        and                    :

- Simplifies to:                   
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Normalized-cut Graph Partitioning
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What is Graph Partitioning?
Graph partitioning is the problem of dividing a network into a given number of 
parts (denoted with p) of given sizes such that the cut size R, the number of edges 
running between parts is minimized.

p = number of parts to be partitioned into (we will focus on p=2 here)

R = number of edges running between parts
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Graph Partitioning Tolerance
● In the most commonly studied case the parts are taken to be of 

equal size.

● However, in many situations one is willing to tolerate a little 
inequality of sizes if it allows for a better cut.
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Variants of Graph Partitioning - Ratio Cut
Ratio Cut: 

● Minimization objective: R/n1n2 

● n1 and n2 are the sizes (#of vertices) of the two groups

● no more constraint on strictly equal ni , but n1n2 is maximized when n1=n2, 
i.e. group partitions with unequal ni are penalized

● favors divisions of the network where the groups contain equal number 
of vertices
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R=1
n1=3
n2=2

R/n1n2=1/6

R=3
n1=2
n2=3

R/n1n2=3/6

Variants of Graph Partitioning - Ratio Cut



Variants of Graph Partitioning - Normalized Cut
Normalized Cut:

● Minimization objective: R/k1k2 

● k1 and k2 are the sums of the degrees of the vertices  in the two groups

○ Sum of degrees = 2x (#of edges)

● no more constraint on strictly equal ki but k1k2 is maximized when k1=k2, 
i.e. group partitions with unequal ki are penalized

● favors divisions of the network where the groups contain equal number 
of edges
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R=1
k1=10
k2=8

R/k1k2=1/80

R=3
k1=4
k2=10

R/k1k2=3/40

Variants of Graph Partitioning - Normalized Cut



Similar to the previous 2 derivations, we can use si to denote the group 
membership of each vertex, but rather than ±1, we define:
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Using Spectral Method



Again, use k to denote the vector with elements ki,
    use D to denote the diagonal matrix with Dii=ki: 

Also: If i∈1

If i∈2
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(1)

(2)

(3)



Then:
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(4)Combining (1)(2)(3)

(6)Combining (4)(5)

(5)Use k=A1, 1TA1=2m
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Same as the previous 2 problems!

Equivalent
Minimizing Maximizing 

(7)Introducing Lagrange multipliers ᶝ, ᶞ  

(8)Use 1TA=1TD=kT

(9)Use ᶞ = 0 from (1)



Normalized Cut - Reverse Relaxation
Recall:

Si is NOT constant like before

-> optimal cutting point may not necessarily be 0

-> the most correct way is to go through every possible cutting point to          
    find the minimum R/k1k2
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Using the same example, we can get the eigenvector that 
corresponds to the second largest eigenvalue to be:

{-0.770183, -0.848963, -0.525976, 0.931937, 1.000000}
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Normalized Cut - Reverse Relaxation
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Normalized Cut - Reverse Relaxation
Sort vertices by corresponding value in eigenvector:
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Normalized Cut - Reverse Relaxation
Sort vertices by corresponding value in eigenvector: Note that if we were still to use 0 

as the cutting point, it would give 
us the same result.

In practice:

since k1≈ k2, si ≈ ±1

Therefore, 0 is still a good 
cutting point



K-means Clustering
Algorithm:

1. Arbitrarily choose k objects as the initial cluster centers

2. Until no change, do:

● (Re)assign each object to the cluster to which the object is the most 
similar, based on the mean value of the objects in the cluster

● Update the cluster means, i.e., calculate the mean value of the objects for 
each cluster
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K-means Clustering
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● Relatively efficient: O(tkn)

○ n: # objects, k: # clusters, t: # iterations; k, t << n.

● Often terminate at a local optimum 

● Applicable only when mean is defined

● Unable to handle noisy data and outliers 

● Unsuitable to discover non-convex clusters
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K-means Clustering



Spectral clustering vs K-means
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● Spectral Clustering: good for connectivity clustering
● K-means Clustering: good for compactness clustering



Spectral clustering vs K-means
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● Non-convex Sets/Clusters

Convex sets: In Euclidean space, an 
object is convex if for every pair of 
points within the object, every point on 
the straight line segment that joins them 
is also within the object.



K-means will fail to effectively cluster non-convex data sets:

This is because K-means is only good for clusters where vertices are in close 
proximity to each other (in the Euclidean sense).
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K-means will work K-means will NOT work



Using K-means on Non-convex Clusters:
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Data clustering and graph clustering:

We can convert data clustering to graph clustering, where Wij represents the 
weight of the edge between vertex i and j. Wij is greater when the distance 
between i and j is shorter.
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Spectral clustering vs K-means



Spectral clustering vs K-means
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Key Advantages:

● K-means Clustering:
○ Relatively efficient: O(tkn) compared to O(n3) of Spectral Clustering

● Spectral Clustering:
○ Can handle both convex and non-convex data sets



Conclusions
● Modularity Maximization, Statistical Inference and Normalized-cut Graph 

Partitioning are fundamentally/mathematically equivalent.

● Good approximate solutions to these problems can be obtained using 
spectral clustering method.

● Spectral clustering can effectively detect both convex and non-convex 
clusters.

● Computational complexity for spectral clustering is O(n3), which makes it 
less suitable for very large data sets. 
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Questions?
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