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Problem . Maximize modularity Q:

Q =
1

2m

∑
i j

[
Ai j −

kik j

2m

]
δgig j , (1)

where

δgig j =
1
2

(
sis j + 1

)
(2)

and

si =

+1, if vertex i belongs to group 1
−1, if vertex i belongs to group 2

(3)

Solution.

Take δgig j =
1
2

(
sis j + 1

)
to equation (1). Then

Q =
1

4m

∑
i j

[
Ai j −

kik j

2m

] (
sis j + 1

)
. (4)

Define the quantity B, called modularity matrix

Bi j = Ai j −
kik j

2m
. (5)

The sums of all its rows and columns are zero:∑
j

Bi j =
∑

j

Ai j −
∑

j

kik j

2m
(6)

= ki − 2m
ki

2m
(7)

= 0 (8)
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Use substitute Bi j for Ai j:

Q =
1

4m

∑
i j

Bi j

(
sis j + 1

)
. (9)

=
1

4m

∑
i j

Bi jsis j +
1

4m

∑
i j

Bi j (10)

=
1

4m

∑
i j

Bi jsis j (11)

Our task is to maximize Q over the possible choices of the si.
Relax si to any real value:

si ∈ R

Use constrain: ∑
i

kis2
i = 2m, (12)

where
∑

i ki = 2m. The original vector s is mapped to the boundary of a hyper ellipsoid.
To make the problem simple, we define Q′ as the objective function:

Q′ =
∑

i j

Bi jsis j (13)

Based on the theorem of the Lagrange multiplier [P5. Theorem Lagrange multiplier], we define
Lagrange function:

F =
∑

i j

Bi jsis j + λ

2m −
∑

i

kis2
i

 (14)

when all si and λ satisfy  ∂F
∂si
= 0

∂F
∂λ
= 0

(15)

vector s = (s1, s2, ...) will be the stationary point.

∂F
∂si
=
∂

si

∑
i j

Bi jsis j + λ

2m −
∑

i

kis2
i


 = 0 (16)

2
∑

j

Bi js j − 2λkisi = 0 (17)
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Then, ∑
j

Bi js j = λkisi (18)

or, in matrix notation,

Bs = λDs (19)

where D is the diagonal matrix with elements equal to the vertex degrees Dii = ki

Use the adjacency matrix A to substitute modularity matrix B. Then, according to equation (5),

∑
j

(
Ai j −

kik j

2,

)
s j = λkisi (20)

∑
j

Ai js j = ki

λsi +
∑

j

k j

2m
s j

 (21)

or, in matrix notation,

As = D
(
λs +

kT s
2m

1
)

(22)

where 1 = (1, 1, ...).
It can be obvious observed that

A1=D1=k (23)

Also, for that A, D are symmetric matrices, we have:

A = AT D = DT (24)

And for that
∑

i ki = 2m, we have:

kT 1 = 2m (25)

So, equation (22) can be deformed step by step. Let both the left side and right side multiply
1T .

1T As = 1T D
(
λs +

kT s
2m

1
)

(26)

(A1)T s = (D1)T
(
λs +

kT s
2m

1
)

(27)
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kT s = λkT

(
s +

kT s
2m

1
)

(28)

kT s = λkT s +
kT s
2m

kT 1 (29)

kT s = λkT s +
kT s
2m
× 2m (30)

kT s = λkT s + kT s (31)

λkT s = 0 (32)

Since we are assuming there exists a nontrivial eigenvalue value λ > 0, we know that λ , 0.
Hence

kT s = 0 (33)

Equation (22) simplifies to

As = λDs (34)

Obviously, λ = 1 when s = 1 is a solution to this function. But it does not satisfy constrain
equation (33). By Perron-Frobenius theorem, λ = 1 is the most positive eigenvalue. So to maxi-
mize Q, we need to use the second positive eigenvalue.

To make it more simple, define:

u = D1/2s (35)

and use the normalized Laplacian:

L = D−1/2AD−1/2 (36)

equation (34‘) can be deformed as:

Lu = λu (37)

Because the elements of s and u have the same sign correspondingly. So the solution of the
original maximization problem is the sign of eigenvector u, when the eigenvalue is the second
positive one.

�
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Theorem Lagrange multiplier. Maximize f (x, y), subject to g(x, y) = c. We need both f and
g to have continuous first partial derivatives. We introduce a new variable λ called a Lagrange
multiplier and study the Lagrange function (or Lagrangian) defined by

L = f (x, y) − λ (g(x, y) − c)

where the λ term may be either added or subtracted. If f (x0, y0) is a maximum of f (x, y) for the
original constrained problem, then there exists λ0 such that (x0, y0, λ0) is a stationary point for the
Lagrange function (stationary points are those points where the partial derivatives of L are zero).
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