Spectral Method for Modularity Maximization

Yunqi Guo

January 24, 2017

.

Problem . Maximize modularity *Q*:

$$Q = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta_{g_i g_j},\tag{1}$$

where

$$\delta_{g_ig_j} = \frac{1}{2} \left(s_i s_j + 1 \right) \tag{2}$$

and

$$s_i = \begin{cases} +1, & \text{if vertex } i \text{ belongs to group 1} \\ -1, & \text{if vertex } i \text{ belongs to group 2} \end{cases}$$
(3)

Solution.

Take $\delta_{g_ig_j} = \frac{1}{2} (s_i s_j + 1)$ to equation (1). Then

$$Q = \frac{1}{4m} \sum_{ij} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \left(s_i s_j + 1 \right).$$
(4)

Define the quantity *B*, called modularity matrix

$$B_{ij} = A_{ij} - \frac{k_i k_j}{2m}.$$
(5)

The sums of all its rows and columns are zero:

$$\sum_{j} B_{ij} = \sum_{j} A_{ij} - \sum_{j} \frac{k_i k_j}{2m}$$
(6)

$$=k_i - 2m\frac{k_i}{2m} \tag{7}$$

$$=0$$
(8)

Use substitute B_{ij} for A_{ij} :

$$Q = \frac{1}{4m} \sum_{ij} B_{ij} \left(s_i s_j + 1 \right).$$
(9)

$$= \frac{1}{4m} \sum_{ij} B_{ij} s_i s_j + \frac{1}{4m} \sum_{ij} B_{ij}$$
(10)

$$=\frac{1}{4m}\sum_{ij}B_{ij}s_is_j\tag{11}$$

Our task is to maximize Q over the possible choices of the s_i . Relax s_i to any real value:

 $s_i \in \mathbb{R}$

Use constrain:

$$\sum_{i} k_i s_i^2 = 2m,\tag{12}$$

where $\sum_{i} k_i = 2m$. The original vector *s* is mapped to the boundary of a hyper ellipsoid.

To make the problem simple, we define Q' as the objective function:

$$Q' = \sum_{ij} B_{ij} s_i s_j \tag{13}$$

Based on the theorem of the Lagrange multiplier [P5. Theorem Lagrange multiplier], we define Lagrange function:

$$F = \sum_{ij} B_{ij} s_i s_j + \lambda \left(2m - \sum_i k_i s_i^2 \right)$$
(14)

when all s_i and λ satisfy

$$\begin{cases} \frac{\partial F}{\partial s_i} = 0\\ \frac{\partial F}{\partial \lambda} = 0 \end{cases}$$
(15)

vector $\mathbf{s} = (s_1, s_2, ...)$ will be the stationary point.

$$\frac{\partial F}{\partial s_i} = \frac{\partial}{s_i} \left(\sum_{ij} B_{ij} s_i s_j + \lambda \left(2m - \sum_i k_i s_i^2 \right) \right) = 0$$
(16)

$$2\sum_{j}B_{ij}s_j - 2\lambda k_i s_i = 0 \tag{17}$$

Then,

$$\sum_{j} B_{ij} s_j = \lambda k_i s_i \tag{18}$$

or, in matrix notation,

$$\mathbf{Bs} = \lambda \mathbf{Ds} \tag{19}$$

where **D** is the diagonal matrix with elements equal to the vertex degrees $\mathbf{D}_{ii} = k_i$

Use the adjacency matrix A to substitute modularity matrix B. Then, according to equation (5),

$$\sum_{j} \left(A_{ij} - \frac{k_i k_j}{2,} \right) s_j = \lambda k_i s_i \tag{20}$$

$$\sum_{j} A_{ij} s_j = k_i \left(\lambda s_i + \sum_{j} \frac{k_j}{2m} s_j \right)$$
(21)

or, in matrix notation,

$$\mathbf{As} = \mathbf{D} \left(\lambda \mathbf{s} + \frac{\mathbf{k}^T \, \mathbf{s}}{2m} \mathbf{1} \right) \tag{22}$$

where $\mathbf{1} = (1, 1, ...)$.

It can be obvious observed that

$$A1=D1=k$$
(23)

Also, for that **A**, **D** are symmetric matrices, we have:

$$\mathbf{A} = \mathbf{A}^T \qquad \mathbf{D} = \mathbf{D}^T \tag{24}$$

And for that $\sum_i k_i = 2m$, we have:

$$\mathbf{k}^T \mathbf{1} = 2m \tag{25}$$

So, equation (22) can be deformed step by step. Let both the left side and right side multiply $\mathbf{1}^{T}$.

$$\mathbf{1}^{T}\mathbf{A}\mathbf{s} = \mathbf{1}^{T}\mathbf{D}\left(\lambda\mathbf{s} + \frac{\mathbf{k}^{T}\mathbf{s}}{2m}\mathbf{1}\right)$$
(26)

$$(\mathbf{A1})^T \mathbf{s} = (\mathbf{D1})^T \left(\lambda \mathbf{s} + \frac{\mathbf{k}^T \mathbf{s}}{2m} \mathbf{1} \right)$$
(27)

$$\mathbf{k}^T \mathbf{s} = \lambda \mathbf{k}^T \left(\mathbf{s} + \frac{\mathbf{k}^T \mathbf{s}}{2m} \mathbf{1} \right)$$
(28)

$$\mathbf{k}^T \mathbf{s} = \lambda \mathbf{k}^T \mathbf{s} + \frac{\mathbf{k}^T \mathbf{s}}{2m} \mathbf{k}^T \mathbf{1}$$
(29)

$$\mathbf{k}^T \mathbf{s} = \lambda \mathbf{k}^T \mathbf{s} + \frac{\mathbf{k}^T \mathbf{s}}{2m} \times 2m$$
(30)

$$\mathbf{k}^T \mathbf{s} = \lambda \mathbf{k}^T \mathbf{s} + \mathbf{k}^T \mathbf{s}$$
(31)

$$\lambda \mathbf{k}^T \mathbf{s} = 0 \tag{32}$$

Since we are assuming there exists a nontrivial eigenvalue value $\lambda > 0$, we know that $\lambda \neq 0$. Hence

$$\mathbf{k}^T \mathbf{s} = 0 \tag{33}$$

Equation (22) simplifies to

$$\mathbf{As} = \lambda \mathbf{Ds} \tag{34}$$

Obviously, $\lambda = 1$ when $\mathbf{s} = \mathbf{1}$ is a solution to this function. But it does not satisfy constrain equation (33). By Perron-Frobenius theorem, $\lambda = 1$ is the most positive eigenvalue. So to maximize Q, we need to use the second positive eigenvalue.

To make it more simple, define:

$$\mathbf{u} = \mathbf{D}^{1/2} \mathbf{s} \tag{35}$$

and use the normalized Laplacian:

$$\mathcal{L} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \tag{36}$$

equation (34') can be deformed as:

$$\mathcal{L}\mathbf{u} = \lambda \mathbf{u} \tag{37}$$

Because the elements of s and u have the same sign correspondingly. So the solution of the original maximization problem is the sign of eigenvector u, when the eigenvalue is the second positive one.

Theorem Lagrange multiplier. Maximize f(x, y), subject to g(x, y) = c. We need both f and g to have continuous first partial derivatives. We introduce a new variable λ called a Lagrange multiplier and study the Lagrange function (or Lagrangian) defined by

$$\mathcal{L} = f(x, y) - \lambda \left(g(x, y) - c \right)$$

where the λ term may be either added or subtracted. If $f(x_0, y_0)$ is a maximum of f(x, y) for the original constrained problem, then there exists λ_0 such that (x_0, y_0, λ_0) is a stationary point for the Lagrange function (stationary points are those points where the partial derivatives of \mathcal{L} are zero).