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Problem . Maximize modularity Q:
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Solution.

Take 6, = % (sl-sj + 1) to equation (1). Then
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Define the quantity B, called modularity matrix
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The sums of all its rows and columns are zero:
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Use substitute B;; for A;;:
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Our task is to maximize Q over the possible choices of the s;.
Relax s; to any real value:
s; €R

Use constrain:
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where }; k; = 2m. The original vector s is mapped to the boundary of a hyper ellipsoid.
To make the problem simple, we define Q' as the objective function:
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Based on the theorem of the Lagrange multiplier [P5. Theorem Lagrange multiplier], we define
Lagrange function:
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when all s; and A satisfy
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vector s = (s, $2, ...) will be the stationary point.

oF 0
1] i

2ZBijsj_2/lkisi =0 (17)
J



Then,
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or, in matrix notation,
Bs = ADs (19)

where D is the diagonal matrix with elements equal to the vertex degrees D;; = k;
Use the adjacency matrix A to substitute modularity matrix B. Then, according to equation (5),
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or, in matrix notation,
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where 1 = (1,1, ...).
It can be obvious observed that
Al=D1=k (23)

Also, for that A, D are symmetric matrices, we have:
A=A" D=D" (24)
And for that )}, k; = 2m, we have:
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So, equation (22) can be deformed step by step. Let both the left side and right side multiply
17,
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Since we are assuming there exists a nontrivial eigenvalue value 4 > 0, we know that 4 # 0.
Hence

k's=0 (33)

Equation (22) simplifies to

As = ADs (34)

Obviously, 4 = 1 when s = 1 is a solution to this function. But it does not satisfy constrain
equation (33). By Perron-Frobenius theorem, 4 = 1 is the most positive eigenvalue. So to maxi-
mize Q, we need to use the second positive eigenvalue.

To make it more simple, define:

u=D"% (35
and use the normalized Laplacian:
L=D'2AD' (36)
equation (34°) can be deformed as:
Lu=Au 37

Because the elements of s and u have the same sign correspondingly. So the solution of the
original maximization problem is the sign of eigenvector u, when the eigenvalue is the second
positive one.
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Theorem Lagrange multiplier. Maximize f(x,y), subject to g(x,y) = ¢. We need both f and
g to have continuous first partial derivatives. We introduce a new variable A called a Lagrange
multiplier and study the Lagrange function (or Lagrangian) defined by

L= f(x,y)—Agx,y) -0

where the A term may be either added or subtracted. If f(xo,yo) is a maximum of f(x,y) for the
original constrained problem, then there exists A, such that (xg, yo, o) is a stationary point for the
Lagrange function (stationary points are those points where the partial derivatives of £ are zero).



