CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

1: Introduction

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

January 8, 2017

Course Information

- Course homepage: <u>http://web.cs.ucla.edu/~yzsun/classes/2017Wi</u> <u>nter_CS249/index.htmlClass_schedule</u>
 - Slides
 - Papers to read
 - Announcement

••••

• Piazza:

https://piazza.com/ucla/winter2017/comsci24 92/home

Meeting Time and Location

When

- Mondays 10:00-11:50am
- Wednesdays 10:00-11:50am
- Where
 - PAB 1749

Instructor Information

- Instructor: Yizhou Sun
 - Homepage: <u>http://web.cs.ucla.edu/~yzsun/</u>
 - Email: <u>yzsun@cs.ucla.edu</u>
 - Office: BH 3531E
 - Office hour: M/W 1:00-2:00pm

Goal of the Course

The goal of the course is to

- learn the most cutting-edge topics, models and algorithms in information and social network mining, and to solve real problems on real-world large-scale information/social network data using these techniques.
- The students are expected to read and present research papers, and work on a research project related to this topic.
 - Review paper
 - Presentation skills
 - Research ability

Prerequisites

- No official prerequisites
- However, this is a research-driven seminar course
 - The students are expected to have knowledge in data structures, algorithms, basic linear algebra, and basic statistics.
 - It will be highly recommended that you have already had some background in data mining, machine learning, and related courses.

Grading

- Paper reading and presentation: 40%
 - Review 10%
 - Presentation 30%
- Research project: 50%
- Participation: 10%

Grading: Paper Presentation

- Paper Reading and Presentation (40%):
 - Everyone is asked to register 1 research topic
 - Each research topic has 1-3 papers
 - Each topic is covered by 3 students, except "Embedding 4"
 - The students in charge of the research topic need to read all the papers and discuss with each other
 - Write a review about each paper in that topic (submit it on the day of your presentation)
 - Make presentations of all the papers in that topic
 - Answer questions from the audience
 - Lead the discussion
 - The papers are given, but you can choose other papers with my consent two weeks before your presentation

More about Paper Review

- Template
 - 1. Summary of the paper
 - 2. Write pros and cons for each of the following item
 - 1. Problem (novel, rigorous, interesting, useful?)
 - 2. Solution (solid, elegant, breakthrough, reasonable, significant, limitations?)
 - 3. Evaluation (datasets, evaluation tasks and metrics, baselines, support claims?)
 - 4. Related work (adequate, well-organized?)
 - 5. Writing (clear, grammar free, structure reasonable, easy to follow?)

3. Discussions.

- 1. What are the take-home messages?
- 2. What are the alternative solutions?
- 3. What are the open questions left?
- 4. Is there any future work you want to propose?

More about Presentation

- Students in the same topic need to act as a team
- Use one set of slides
- Include all the papers in the same topic into one framework (logic coherence)
 - Background/Preliminary
 - Problem 1 (motivation, problem definition, solution, evaluation)
 - Problem 2 (motivation, problem definition, solution, evaluation)
 - Conclusion and discussion items
- Please provide enough details that everyone can learn and participate in the discussion

- Sign-up for paper reading and presentation due this Wednesday (1/11).
 - A sign-up wiki page will be set up soon
- Presentation starts next Wednesday (1/18)

Grading: Research Project

- Research project: 50%
 - Group project (2-3 people for one group)
 - We now have 40 students
 - It is a research project
 - A new problem?
 - A new method?
 - Improvement of an existing method?
 - You need to
 - Form group (By Jan 18.)
 - Proposal submission (By Feb. 1)
 - Presentation and peer review (Mar. 13/15)
 - Final report (Mar. 20) (hopefully it can be turned to a conference paper submission)

Grading: Participation

- Participation (10%)
 - This is a seminar course, so everyone needs to read or browse the papers in advance and ask questions in class
 - You can also raise and answer questions online (e.g., Piazza)

A Overview of Data Mining

- By data types:
 - matrix data
 - set data
 - sequence data
 - time series
 - graph and network
- By functions:
 - Classification
 - Clustering
 - Frequent pattern mining
 - Prediction
 - Similarity search
 - Ranking

Multi-Dimensional View of Data Mining

Data to be mined

- Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks
- Knowledge to be mined (or: Data mining functions)
 - Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
 - Descriptive vs. predictive data mining
 - Multiple/integrated functions and mining at multiple levels
- <u>Techniques utilized</u>
 - Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.
- <u>Applications adapted</u>
 - Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

Matrix Data

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	М	1	70	50	1	12	1.73
R1002	М	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	М	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	М	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	М	1	69	67	1	12	3.25

Set Data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Sequence Data

SYNTENIC ASSEMBLIES FOR CG15386

MD106	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
NEWC	ATGCTTAGTAATCCTTACTTTAAATCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
W501	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD199	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
C1674	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
SIM4	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD106	CTACGGCCTAATGGTGCTAACAGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
NEWC	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
W501	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD199	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
C1674	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
SIM4	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD106	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
NEWC	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
W501	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD199	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
C1674	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
SIM4	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD106	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
NEWC	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
W501	CTGCAGGAGGCGTCCACCACCACTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
MD199	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
C1674	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
SIM4	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG

Time Series

Weekly U.S. Retail Gasoline Prices, Regular Grade

Source: Energy Information Administration

Graph / Network

Course Overview

- 1. Introduction and Basics of Information/Social Networks (2 lectures)
- 2. Clustering / Community Detection (2)
- 3. Classification / Label Propagation (2)
- 4. Similarity Search (2)
- 5. Network Embedding (4)
- 6. K-Core Subgraph Decomposition and Its Applications (1)
- 7. Diffusion and Influence Maximization (1)
- 8. Recommendation (1)

Information Networks Are Everywhere

Social Networking Websites

Biological Network: Protein Interaction

Research Collaboration Network Product Recommendation Network via Emails

Graph

Social Network

Information Network

Clustering / Community Detection

Dataset: political blog network by Lada Adamic Source: http://allthingsgraphed.com/2014/10/09/visualizing-political-polarization/

Source: http://snap.stanford.edu/agm/

Papers

- Clustering 1
 - Modularity and community structure in networks. (PNAS'06)
 - Fast algorithm for detecting community structure in networks (arxiv'03)
- Clustering 2
 - Spectral methods for network community detection and graph partitioning (arxiv'13)

Classification / Label Propagation

• Source:

http://content.iospress.com/articles/ai-

communications/aic686

Papers

- Classification 1
 - <u>Semi-supervised learning using gaussian fields</u> and harmonic functions. (ICML'03)
 - Graph Regularized Transductive Classification on Heterogeneous Information Networks (ECMLPKDD'10)
- Classification 2
 - Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction (UAI'13)

Similarity Search

• DBLP

• Who are most similar to "Judea Pearl"?

- IMDB
 - Which movies are most similar to "Little Miss Sunshine"?

• E-Commerce

 Which products are most similar to "Kindle"?

Papers

- Similarity Search 1
 - SimRank: a measure of structural-context similarity (KDD'02)
 - Fast Single-Pair SimRank Computation (SDM'10)
- Similarity Search 2
 - (PathSim) "*PathSim: Meta Path-Based Top-K* <u>Similarity Search in Heterogeneous Information</u> <u>Networks</u>" (VLDB'11)
 - Discovering Meta-Paths in Large Heterogeneous Information Networks (WWW'15)

Embedding

Source: nlp.stanford.edu/projects/glove/

Papers

- Embedding 1
 - (Word2Vec) Distributed Representations of Words and Phrases and their Compositionality (NIPS'13)
 - (DeepWalk) DeepWalk: Online Learning of Social Representations (KDD'14)
- Embedding 2
 - GloVe: Global Vectors forWord Representation (EMNLP'14)
 - Node2Vec: node2vec: Scalable Feature Learning for Networks (KDD'16)
- Embedding 3
 - (LINE) <u>LINE: Large-scale Information Network Embedding</u>. (WWW'15)
 - (PTE) <u>PTE: Predictive Text Embedding through Large-scale Heterogeneous</u> <u>Text Networks.</u> (KDD'15)
- Embedding 4
 - (TransE) Translating Embeddings for Modeling Multi-relational Data. (NIPS'13)
 - (TransH) Knowledge Graph Embedding by Translating on Hyperplanes. (AAAI'14)
 - (TransR) Learning Entity and Relation Embeddings for Knowledge Graph Completion. (AAAI'15)

K-Core Decomposition

 Source: Large scale networks fingerprinting and visualization using the k-core decomposition (NIPS'05)

Papers

- Large scale networks fingerprinting and visualization using the k-core decomposition (NIPS'05)
- CoreScope: Graph Mining Using k-Core Analysis (ICDM'16)

Diffusion / Influence maximization

• Source:

http://richardkim.me/influencemaximization/

Papers

- Maximizing the Spread of Influence through a Social Network (KDD'03)
- Efficient Influence Maximization in Social Networks (KDD'09)

Recommendation

• E.g., Movie recommendation

Papers

- M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation in social networks. (KDD'10)
- Personalized Entity Recommendation: A Heterogeneous Information Network Approach (WSDM'14)