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Overview of Information Network 
Analysis

•Network Representation

•Network Properties

•Network Generative Models

•Random Walk and Its Applications
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Networks Are Everywhere
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Representation of a Network: Graph

• 𝐺 =< 𝑉, 𝐸 >
• 𝑉 = {𝑢1, … , 𝑢𝑛}: node set
• 𝐸 ⊆ 𝑉 × 𝑉: edge set

• Adjacency matrix

• 𝐴 = 𝑎𝑖𝑗 , 𝑖, 𝑗 = 1,… ,𝑁

• 𝑎𝑖𝑗 = 1, 𝑖𝑓 < 𝑢𝑖 , 𝑢𝑗 >∈ 𝐸

• 𝑎𝑖𝑗 = 0, 𝑖𝑓 < 𝑢𝑖 , 𝑢𝑗 >∉ 𝐸

• Network types
• Undirected graph vs. Directed graph

• 𝐴 = 𝐴T 𝑣𝑠. 𝐴 ≠ 𝐴T

• Binary graph Vs. Weighted graph
• Use W instead of A, where 𝑤𝑖𝑗 represents the weight of edge
< 𝑢𝑖 , 𝑢𝑗 >
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Example
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Yahoo

M’softAmazon

y   1    1     0

a   1    0     1

m  0    1     0

y    a    m

Adjacency matrix A



Degree of Nodes

• Let a network G = (V, E)

• Undirected Network
• Degree (or degree centrality) of a vertex: d(vi)

• # of edges connected to it, e.g., d(A) = 4, d(H) = 2

• Directed network

• In-degree of a vertex din(vi): 

• # of edges pointing to vi

• E.g., din(A) = 3, din(B) = 2

• Out-degree of a vertex dout(vi):

• # of edges from vi

• E.g., dout(A) = 1, dout(B) = 2

6



Degree Distribution

• Degree sequence of a graph: The list of degrees of the 
nodes sorted in non-increasing order
• E.g., in G1, degree sequence: (4, 3, 2, 2, 1)

• Degree frequency distribution of a graph: Let Nk

denote the # of vertices with degree k
• (N0, N1, …, Nt), t is max degree for a node in G

• E.g., in G1, degree frequency distribution: (0, 1, 2, 1, 1)

• Degree distribution of a graph: 
Probability mass function f for random variable X

• (f(0), f(1), …, f(t), where f(k) = P(X = k) = Nk/n

• E.g., in G1, degree distrib.: (0, 0.2, 0.4, 0.2, 0.2)
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Path

•Path: A sequence of vertices that every 
consecutive pair of vertices in the sequence is 
connected by an edge in the network

• Length of a path: # of edges traversed along 
the path

• Total # of path of length 2 from j to i, via any 
vertex in Nij

(2) is

•Generalizing to path of arbitrary length, we 
have: 
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Radius and Diameter

• Eccentricity: The eccentricity of a node vi is the maximum distance from vi
to any other nodes in the graph
• e(vi) = maxj {d(vi, vj)}

• E.g., e(A) = 1, e(F) = e(B) = e(D) = e(H) = 2

• Radius of a connected graph G: the min eccentricity of any node in G
• r(G) = mini {e(vi)} = mini {maxj {d(vi, vj)}}

• E.g., r(G1) = 1

• Diameter of a connected graph G: the max eccentricity of any node in G
• d(G) = maxi {e(vi)} = maxi, j {d(vi, vj)}

• E.g., d(G1) = 2

• Diameter is sensitive to outliers. Effective diameter: min # of hops for
which a large fraction, typically 90%, of all connected pairs of nodes can
reach each other
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Graph G1



Clustering Coefficient
• Real networks are sparse: Corresponding to a complete graph

• Clustering coefficient of a node vi: A measure of the density of edges in 
the neighborhood of vi

• Let Gi = (Vi, Ei) be the subgraph induced by the neighbors of vertex vi, |Vi| 
= ni (# of neighbors of vi), and |Ei| = mi (# of edges among the neighbors 
of vi)

• Clustering coefficient of vi for undirected network is 

• For directed network, 

• Clustering coefficient of a graph G: 

• Averaging the local clustering coefficient of all the vertices (Watts & Strogatz)
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•Network Generative Models
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More Than a Graph

• A typical network has the following common 
properties:
• Few connected components:

• often only 1 or a small number, independent of network size

• Small diameter:
• often a constant independent of network size (like 6)

• growing only logarithmically with network size or even shrink?

• A high degree of clustering:
• considerably more so than for a random network

• A heavy-tailed degree distribution:
• a small but reliable number of high-degree vertices

• often of power law form
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Sparse

• For complete Graph

• Average degree: N

• For real-world network

• Average degree: 𝑘 = 2𝐸/𝑁 ≪ 𝑁
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Small World Property

• Small world phenomenon (Six degrees of 
separation)

• Stanley Milgram’s experiments (1960s)

• Microsoft Instant Messaging (IM) experiment:  J. 
Leskovec & E. Horvitz (WWW’08)

• 240 M active user accounts: Est. avg. distance 6.6 & est. 
mean median 7

•Why small world?

•

• E.g., 

14



Degree Distribution: Power Law
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From Barabasi 2016 The degree distribution of 
the (a) Internet, (b) 
science collaboration 
network, and (c) protein 
interaction network

Typically 0 < 𝛾 < 2; smaller 
𝛾 gives heavier tail



High Clustering Coefficient

•Clustering effect: a high clustering coefficient 
for graph G

• Friends’ friends are likely friends.

• A lot of triangles

• C(k): avg clustering coefficient for nodes with degree 
k
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Network Generative Models

• All of the network generation models we will study 
are probabilistic or statistical in nature

• They can generate networks of any size
• They often have various parameters that can be 

set:
• size of network generated
• average degree of a vertex
• fraction of long-distance connections

• The models generate a distribution over networks
• Statements are always statistical in nature:
• with high probability, diameter is small
• on average, degree distribution has heavy tail
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Examples
• Erdös-Rényi Random graph model:

• Gives few components and small diameter
• does not give high clustering and heavy-tailed degree 

distributions
• is the mathematically most well-studied and understood 

model
• Watts-Strogatz small world graph model:

• gives few components, small diameter and high clustering
• does not give heavy-tailed degree distributions

• Barabási-Albert Scale-free model:
• gives few components, small diameter and heavy-tailed 

distribution
• does not give high clustering

• Stochastic Block Model
• …
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Erdös-Rényi (ER) Random Graph Model

• Every possible edge occurs independently 
with probability p

• G(N, p): a network of N nodes, each node pair is 
connected with probability of p

• Paul Erdős and Alfréd Rényi: "On Random Graphs” (1959)

• E. N. Gilbert: “Random Graphs” (1959) (proposed 
independently)

• Usually, N is large and p ~ 1/N

• Choices: p = 1/2N, p = 1/N, p = 2/N, p  = 10/N, p = log(N)/N, 
etc.
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Degree Distribution

• The degree distribution of a random (small) 
network follows binomial distribution

•

• When N is large and Np is fixed, approximated by 
Poisson distribution: 
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From Barabasi 2016



Watts–Strogatz small world model

• Interpolates between regular lattice and a 

random network to generate graphs with

• Small-world: short average path lengths 

• High clustering coefficient:
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p: the prob. each link is rewired 
to a randomly chosen node

C(p) : clustering coeff. 

L(p) : average path length



Barabási-Albert Model: Preferential 
Attachment 

• Major limitation of the Watts-Strogatz model 
• It produces graphs that are homogeneous in degree

• Real networks are often inhomogeneous in degree, having hubs 
and a scale-free degree distribution (scale-free networks)

• Scale-free networks are better described by the preferential 
attachment family of models, e.g., the Barabási–Albert (BA) 
model
• “rich-get-richer”:  New edges are more likely to link to nodes with 

higher degrees 

• Preferential attachment: The probability of connecting to a node 
is proportional to the current degree of that node

• This leads to the proposal of a new model: scale-free 
network, a network whose degree distribution follows a 
power law, at least asymptotically
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The History of PageRank

• PageRank was developed by Larry Page (hence the name
Page-Rank) and Sergey Brin.

• It is first as part of a research project about a new kind of
search engine. That project started in 1995 and led to a
functional prototype in 1998.

• Shortly after, Page and Brin founded Google.



Ranking web pages

•Web pages are not equally “important”

• www.cnn.com vs. a personal webpage

• Inlinks as votes

• The more inlinks, the more important

•Are all inlinks equal?

• Higher ranked inlink should play a more 
important role

• Recursive question! 
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http://www.cnn.com/


Simple recursive formulation

• Each link’s vote is proportional to the 
importance of its source page

• If page P with importance x has n outlinks, each 
link gets x/n votes

•Page P’s own importance is the sum of the 
votes on its inlinks

27

Yahoo

M’softAmazon

1/2

1



Matrix formulation

• Matrix M has one row and one column for each web 
page

• Suppose page j has n outlinks

• If j -> i, then Mij=1/n

• Else Mij=0

• M is a column stochastic matrix

• Columns sum to 1

• Suppose r is a vector with one entry per web page

• ri is the importance score of page i

• Call it the rank vector

• |r| = 1 (i.e., 𝑟1 + 𝑟2 +⋯+ 𝑟𝑁 = 1)
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y   1    1     0

a   1    0     1

m  0    1     0

y    a    m

½, 0, 1



Eigenvector formulation

• The flow equations can be written 

r = Mr

• So the rank vector is an eigenvector of the 
stochastic web matrix

• In fact, its first or principal eigenvector, with 
corresponding eigenvalue 1
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Example

Yahoo

M’softAmazon

y   1/2 1/2   0

a    1/2  0    1

m    0  1/2   0

y    a     m

y = y /2 + a /2

a = y /2 + m

m = a /2
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r =   M       *       r

y       1/2 1/2   0     y

a   =  1/2   0    1     a

m       0  1/2   0     m



Power Iteration method

• Simple iterative scheme 

• Suppose there are N web pages

• Initialize: r0 = [1/N,….,1/N]T

• Iterate: rk+1 = Mrk

• Stop when |rk+1 - rk|1 < 

• |x|1 = 1≤i≤N|xi| is the L1 norm 

• Can use any other vector norm e.g., Euclidean
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Power Iteration Example

Yahoo

M’softAmazon

y   1/2 1/2   0

a    1/2  0    1

m    0  1/2   0

y    a     m

y

a    =

m

1/3

1/3

1/3

1/3

1/2

1/6

5/12

1/3

1/4

3/8

11/24

1/6

2/5

2/5

1/5

. . .

𝒓𝟎 𝒓1 𝒓2 𝒓3 … 𝒓∗



Random Walk Interpretation

• Imagine a random web surfer

• At any time t, surfer is on some page P

• At time t+1, the surfer follows an outlink from P 
uniformly at random

• Ends up on some page Q linked from P

• Process repeats indefinitely

• Let p(t) be a vector whose ith component is the 
probability that the surfer is at page i at time t

• p(t) is a probability distribution on pages
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The stationary distribution

•Where is the surfer at time t+1?

• Follows a link uniformly at random

• p(t+1) = Mp(t)

• Suppose the random walk reaches a state such 
that p(t+1) = Mp(t) = p(t)

• Then p(t) is called a stationary distribution for 
the random walk

•Our rank vector r satisfies r = Mr

• So it is a stationary distribution for the random 
surfer
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Existence and Uniqueness

A central result from the theory of random walks (aka Markov 

processes):

For graphs that satisfy certain conditions, the 
stationary distribution is unique and eventually 
will be reached no matter what the initial 
probability distribution at time t = 0.
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Spider traps

•A group of pages is a spider trap if there are no 
links from within the group to outside the 
group

• Random surfer gets trapped

• Spider traps violate the conditions needed for 
the random walk theorem
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Microsoft becomes a spider trap

Yahoo

M’softAmazon

y   1/2 1/2   0

a    1/2  0    0

m    0  1/2   1

y    a     m

y

a    =

m

1/3

1/3

1/3

1/3

1/6

1/2

1/4

1/6

7/12

5/24

1/8

2/3

0

0

1

. . .
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Random teleports

• The Google solution for spider traps

•At each time step, the random surfer has two 
options:

• With probability , follow a link at random

• With probability 1-, jump to some page 
uniformly at random

• Common values for  are in the range 0.8 to 
0.9

• Surfer will teleport out of spider trap within a 
few time steps
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Random teleports ( = 0.8)

Yahoo

M’softAmazon

1/2

1/2

0.8*1/2

0.8*1/2

0.2*1/3

0.2*1/3

0.2*1/3

y   1/2

a    1/2

m    0

y

1/2

1/2

0

y

0.8*

1/3

1/3

1/3

y

+ 0.2*

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2
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: teleport links from “Yahoo”



Random teleports ( = 0.8)

Yahoo

M’softAmazon

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

y

a    =

m

40



Matrix formulation

• Suppose there are N pages

• Consider a page j, with set of outlinks O(j)

• We have Mij = 1/|O(j)| when j->i and Mij = 0 

otherwise

• The random teleport is equivalent to
• adding a teleport link from j to every other page with 

probability (1-)/N

• reducing the probability of following each outlink from 
1/|O(j)| to /|O(j)|

• Equivalent: tax each page a fraction (1-) of its score and 
redistribute evenly 
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PageRank

•Construct the N-by-N matrix A as follows

• Aij = Mij + (1-)/N

•Verify that A is a stochastic matrix

• The page rank vector r is the principal 
eigenvector of this matrix

• satisfying r = Ar

• Equivalently, r is the stationary distribution of 
the random walk with teleports
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Dead ends

•Pages with no outlinks are “dead ends” for the 
random surfer

• Nowhere to go on next step
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Microsoft becomes a dead end

Yahoo

M’softAmazon

y

a    =

m

1/3

1/3

1/3

1/3

0.2

0.2

0

0

0

. . .

1/2 1/2   0

1/2   0    0

0   1/2   0

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15   1/15

0.8 + 0.2

Non-
stochastic!
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Dealing with dead-ends

• Teleport

• Follow random teleport links with probability 1.0 
from dead-ends

• Adjust matrix accordingly

•Prune and propagate

• Preprocess the graph to eliminate dead-ends 
• Might require multiple passes

• Compute page rank on reduced graph

• Approximate values for deadends by 
propagating values from reduced graph
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Dealing dead end: teleport

Yahoo

M’softAmazon

1/2 1/2   0

1/2   0    0

0   1/2   0

0.2*1/3 0.2*1/3 1*1/3

0.2*1/3 0.2*1/3 1*1/3

0.2*1/3 0.2*1/3 1*1/3

y   7/15  7/15   1/3

a   7/15  1/15   1/3

m  1/15  7/15   1/3

0.8 +
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Dealing dead end: reduce graph
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Yahoo

M’softAmazon

Yahoo

Amazon

Yahoo

M’softAmazon

B

Yahoo

M’softAmazon

Yahoo

Amazon

Ex.2: 

Ex.1: 



Computing PageRank

•Key step is matrix-vector multiplication

• rnew = Arold

• Easy if we have enough main memory to hold 
A, rold, rnew

• Say N = 1 billion pages

• We need 4 bytes for each entry (say)

• 2 billion entries for vectors, approx 8GB

• Matrix A has N2 entries
• 1018 is a large number!
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Rearranging the equation

r = Ar, where

Aij = Mij + (1-)/N

ri = 1≤j≤N Aij rj

ri = 1≤j≤N [Mij + (1-)/N] rj

=  1≤j≤N Mij rj + (1-)/N 1≤j≤N rj

=  1≤j≤N Mij rj + (1-)/N, since |r| = 1

r = Mr + [(1-)/N]N

where [x]N is an N-vector with all entries x
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Sparse matrix formulation

• We can rearrange the page rank equation:

• r = Mr + [(1-)/N]N

• [(1-)/N]N is an N-vector with all entries (1-)/N

• M is a sparse matrix!

• 10 links per node, approx 10N entries

• So in each iteration, we need to:

• Compute rnew = Mrold

• Add a constant value (1-)/N to each entry in rnew
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Sparse matrix encoding

• Encode sparse matrix using only nonzero 
entries

• Space proportional roughly to number of links

• say 10N, or 4*10*1 billion = 40GB

• still won’t fit in memory, but will fit on disk

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source
node

degree destination nodes
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Basic Algorithm 

• Assume we have enough RAM to fit rnew, plus some 
working memory
• Store rold and matrix M on disk

Basic Algorithm:

• Initialize: rold = [1/N]N

• Iterate:
• Update: Perform a sequential scan of M and rold to update 

rnew

• Write out rnew to disk as rold for next iteration

• Every few iterations, compute |rnew-rold| and stop if it is 
below threshold

• Need to read in both vectors into memory
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Summary

•Network Representation

•Network Properties

•Network Generative Models

•Random Walk and Its Applications
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Paper Sign-Up

•https://docs.google.com/spreadsheets/d/1Sao
PGP2SsYyaycX82T7mF_efbiueOI53bnZtZS04Bt
Q/edit?usp=sharing

• If you are still on waiting list

• Sign-up for Presenter 4 only
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https://docs.google.com/spreadsheets/d/1SaoPGP2SsYyaycX82T7mF_efbiueOI53bnZtZS04BtQ/edit?usp=sharing


Credits

• This is 4-credit course, please change it if you 
are current enrolled with 2-credit
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Course Project Examples

•Citation graph summary

• Find k papers that can tell the main structure 
evolution of a certain field

•Name disambiguation problem in DBLP

• Different people may share the same name, 
e.g., distinguish “Wei Wang”’s; 

• Same person may have different forms of 
names, e.g., initials, middle names, typos
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•User profile prediction in heterogeneous 
information networks

• Suppose we only know small number of labels 
for people’s ideology, profession, education, can 
we predict the remaining?

• Sentence embedding

• Can we find the most similar sentences or S-V-
O (subject-verb-object) triplets to the given 
one, by converting the text into a network?
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