CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

Overview of Networks

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

January 10, 2017

Overview of Information Network

Analysis

Network Representation

Network Properties

Network Generative Models

Random Walk and Its Applications

Networks Are Everywhere

Aspirin

Yeast protein interaction network

rom H. Jeong et al Nature 411, 41 (2001)

Representation of a Network: Graph

- G = < V, E >
 - $V = \{u_1, ..., u_n\}$: node set
 - $E \subseteq V \times V$: edge set
- Adjacency matrix
 - $A = \{a_{ij}\}, i, j = 1, ..., N$
 - $a_{ij} = 1, if < u_i, u_j > \in E$
 - $a_{ij} = 0$, if $\langle u_i, u_j \rangle \notin E$
- Network types
 - Undirected graph vs. Directed graph
 - $A = A^{\mathrm{T}} vs. A \neq A^{\mathrm{T}}$
 - Binary graph Vs. Weighted graph
 - Use W instead of A, where w_{ij} represents the weight of edge $< u_i, u_j >$

Example

Adjacency matrix A

Degree of Nodes

- Let a network G = (V, E)
- Undirected Network
 - Degree (or degree centrality) of a vertex: d(v_i)
 - # of edges connected to it, e.g., d(A) = 4, d(H) = 2
- Directed network
 - In-degree of a vertex d_{in}(v_i):
 - # of edges pointing to v_i
 - E.g., d_{in}(A) = 3, d_{in}(B) = 2
 - Out-degree of a vertex d_{out}(v_i):
 - # of edges from v_i
 - E.g., d_{out}(A) = 1, d_{out}(B) = 2

 \mathbf{H}

в

D

Degree Distribution

- Degree sequence of a graph: The list of degrees of the nodes sorted in non-increasing order
 - E.g., in G₁, degree sequence: (4, 3, 2, 2, 1)
- Degree frequency distribution of a graph: Let N_k denote the # of vertices with degree k
 - (N_0 , N_1 , ..., N_t), t is max degree for a node in G
 - E.g., in G₁, degree frequency distribution: (0, 1, 2, 1, 1)
- Degree distribution of a graph:

Probability mass function f for random variable X

- (f(0), f(1), ..., f(t), where $f(k) = P(X = k) = N_k/n$
- E.g., in G₁, degree distrib.: (0, 0.2, 0.4, 0.2, 0.2)

Graph G₁

Path

- Path: A sequence of vertices that every consecutive pair of vertices in the sequence is connected by an edge in the network
- Length of a path: # of edges traversed along the path
- Total # of path of length 2 from *j* to *i*, via any vertex in $N_{ii}^{(2)}$ is

$$N_{ij}^{(2)} = \sum_{k=1}^{n} A_{ik} A_{kj} = [A^2]_{ij}$$

Generalizing to path of arbitrary length, we have:

$$N_{ij}^{(r)} = [A^r]_{ij}$$

Radius and Diameter

- Eccentricity: The eccentricity of a node v_i is the maximum distance from v_i to any other nodes in the graph
 - $e(v_i) = max_j \{d(v_{i_i}, v_j)\}$
 - E.g., e(A) = 1, e(F) = e(B) = e(D) = e(H) = 2
- Radius of a connected graph G: the min eccentricity of any node in G
 - $r(G) = \min_{i} \{e(v_i)\} = \min_{i} \{\max_{j} \{d(v_{i_j}, v_j)\}\}$
 - E.g., $r(G_1) = 1$
- **Diameter** of a connected graph G: the max eccentricity of any node in G
 - $d(G) = \max_{i} \{e(v_i)\} = \max_{i, j} \{d(v_{i, j})\}$
 - E.g., d(G₁) = 2
- Diameter is sensitive to outliers. Effective diameter: min # of hops for which a large fraction, typically 90%, of all connected pairs of nodes can reach each other

D

Graph G₁

F

Clustering Coefficient

- Real networks are sparse: Corresponding to a complete graph
- Clustering coefficient of a node v_i: A measure of the density of edges in the neighborhood of v_i
- Let G_i = (V_i, E_i) be the subgraph induced by the neighbors of vertex v_i, |V_i| = n_i (# of neighbors of v_i), and |E_i| = m_i (# of edges among the neighbors of v_i)
- Clustering coefficient of v_i for undirected network is

• C

$$C(v_i) = \frac{\# \ edges \ in \ G_i}{max \ \# \ edges \ in \ G_i} = \frac{m_i}{\binom{n_i}{2}} = \frac{2 \times m_i}{n_i(n_i - 1)}$$

For directed network,
$$C(v_i) = \frac{\# \ edges \ in \ G_i}{max \ \# \ edges \ in \ G_i} = \frac{m_i}{n_i(n_i - 1)}$$

ustering coefficient of a graph G:
$$C(G) = \frac{1}{n} \sum C(v_i)$$

Averaging the local clustering coefficient of all the vertices (Watts & Strogatz)

Overview of Information Network Analysis

Network Representation

Network Generative Models

Random Walk and Its Applications

More Than a Graph

- A typical network has the following common properties:
 - Few connected components:
 - often only 1 or a small number, independent of network size
 - Small diameter:
 - often a constant independent of network size (like 6)
 - growing only logarithmically with network size or even shrink?
 - A *high* degree of clustering:
 - considerably more so than for a random network
 - A *heavy-tailed* degree distribution:
 - a small but reliable number of high-degree vertices
 - often of *power law* form

- For complete Graph
 - Average degree: N
- For real-world network
 - Average degree: $\langle k \rangle = 2E/N \ll N$

Small World Property

- Small world phenomenon (Six degrees of separation)
 - Stanley Milgram's experiments (1960s)
 - Microsoft Instant Messaging (IM) experiment: J. Leskovec & E. Horvitz (WWW'08)
 - 240 M active user accounts: Est. avg. distance 6.6 & est. mean median 7
- Why small world?

•
$$N(d) \approx 1 + \langle k \rangle + \langle k \rangle^2 + \dots + \langle k \rangle^d = \frac{\langle k \rangle^{d+1} - 1}{\langle k \rangle - 1} \approx \langle k \rangle^d$$

• E.g.,
$$d \approx \frac{\ln N}{\ln \langle k \rangle} \approx \frac{\ln (7 \times 10^9)}{\ln (10^3)} \approx 3.28$$

Degree Distribution: Power Law

High Clustering Coefficient

- Clustering effect: a high clustering coefficient for graph G
 - Friends' friends are likely friends.
 - A lot of triangles
 - C(k): avg clustering coefficient for nodes with degree
 k

Overview of Information Network Analysis

Network Representation

Network Properties

Random Walk and Its Applications

Network Generative Models

- All of the network generation models we will study are *probabilistic* or *statistical* in nature
- They can generate networks of any size
- They often have various *parameters* that can be set:
 - size of network generated
 - average degree of a vertex
 - fraction of long-distance connections
- The models generate a *distribution* over networks
- Statements are always *statistical* in nature:
 - with high probability, diameter is small
 - on average, degree distribution has heavy tail

Examples

• Erdös-Rényi Random graph model:

- Gives few components and small diameter
- does not give high clustering and heavy-tailed degree distributions
- is the mathematically most well-studied and understood model
- Watts-Strogatz small world graph model:
 - gives few components, small diameter and high clustering
 - does not give heavy-tailed degree distributions
- Barabási-Albert Scale-free model:
 - gives few components, small diameter and heavy-tailed distribution
 - does not give high clustering
- Stochastic Block Model

Erdös-Rényi (ER) Random Graph Model

- Every possible edge occurs independently with probability p
 - G(N, p): a network of N nodes, each node pair is connected with probability of p
 - Paul Erdős and Alfréd Rényi: "On Random Graphs" (1959)
 - E. N. Gilbert: "Random Graphs" (1959) (proposed independently)
 - Usually, N is large and p ~ 1/N
 - Choices: p = 1/2N, p = 1/N, p = 2/N, p = 10/N, p = log(N)/N, etc.

Degree Distribution

 The degree distribution of a random (small) network follows binomial distribution

•
$$p_k = \begin{pmatrix} N-1 \\ k \end{pmatrix} p^k (1-p)^{N-1-k}$$

• When N is large and Np is fixed, approximated by Poisson distributi $p_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$

From Barabasi 2016

Watts-Strogatz small world model

- Interpolates between regular lattice and a random network to generate graphs with
 - Small-world: short average path lengths

Barabási-Albert Model: Preferential Attachment

- Major limitation of the Watts-Strogatz model
 - It produces graphs that are homogeneous in degree
 - Real networks are often inhomogeneous in degree, having hubs and a scale-free degree distribution (*scale-free networks*)
- Scale-free networks are better described by the preferential attachment family of models, e.g., the Barabási–Albert (BA) model
 - *"rich-get-richer":* New edges are more likely to link to nodes with higher degrees
 - **Preferential attachment:** The probability of connecting to a node is proportional to the current degree of that node
- This leads to the proposal of a new model: scale-free network, a network whose degree distribution follows a power law, at least asymptotically

Overview of Information Network Analysis

Network Representation

Network Properties

- Network Generative Models
- Random Walk and Its Applications

The History of PageRank

- PageRank was developed by Larry Page (hence the name Page-Rank) and Sergey Brin.
- It is first as part of a research project about a new kind of search engine. That project started in 1995 and led to a functional prototype in 1998.
- Shortly after, Page and Brin founded Google.

Ranking web pages

- Web pages are not equally "important"
 - <u>www.cnn.com</u> vs. a personal webpage
- Inlinks as votes
 - The more inlinks, the more important
- Are all inlinks equal?
 - Higher ranked inlink should play a more important role
 - Recursive question!

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- If page P with importance x has n outlinks, each link gets x/n votes
- Page P's own importance is the sum of the votes on its inlinks

Matrix formulation

- Matrix M has one row and one column for each web y a m
- Suppose page j has n outlinks
 - If $j \rightarrow i$, then $M_{ij}=1/n$
 - Else M_{ij}=0

- M is a column stochastic matrix
 - Columns sum to 1
- Suppose r is a vector with one entry per web page
 - r_i is the importance score of page i
 - Call it the rank vector
 - $|\mathbf{r}| = 1$ (i.e., $r_1 + r_2 + \dots + r_N = 1$)

Eigenvector formulation

The flow equations can be written

r = *Mr*

- So the rank vector is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1

Example

$$\begin{array}{ccccccc} y & a & m \\ y & 1/2 & 1/2 & 0 \\ a & 1/2 & 0 & 1 \\ m & 0 & 1/2 & 0 \end{array}$$

$$\mathbf{r} = \mathbf{M} * \mathbf{r}$$

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{a} \\ \mathbf{m} \end{bmatrix} = \begin{bmatrix} 1/2 \ 1/2 \ 0 \\ 1/2 \ 0 \ 1 \\ 0 \ 1/2 \ 0 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{a} \\ \mathbf{m} \end{bmatrix}$$

Power Iteration method

- Simple iterative scheme
- Suppose there are N web pages
 - Initialize: $\mathbf{r}^{0} = [1/N, ..., 1/N]^{T}$
 - Iterate: $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
 - Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \epsilon$
 - $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean

Power Iteration Example

 r_0 \boldsymbol{r}_1 **r**₃ r_2

Random Walk Interpretation

- Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time t+1, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely
- Let p(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - **p**(t) is a probability distribution on pages

The stationary distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random
 - p(t+1) = Mp(t)
- Suppose the random walk reaches a state such that p(t+1) = Mp(t) = p(t)
 - Then p(t) is called a stationary distribution for the random walk
- Our rank vector r satisfies r = Mr
 - So it is a stationary distribution for the random surfer

Existence and Uniqueness

A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0.

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

Microsoft becomes a spider trap

Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1-β, jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta = 0.8$)

····→ : teleport links from "Yahoo"

Random teleports ($\beta = 0.8$)

Matrix formulation

- Suppose there are N pages
 - Consider a page j, with set of outlinks O(j)
 - We have $M_{ij} = 1/|O(j)|$ when j->i and $M_{ij} = 0$ otherwise
 - The random teleport is equivalent to
 - adding a teleport link from j to every other page with probability $(1-\beta)/N$
 - reducing the probability of following each outlink from 1/|O(j)| to $\beta/|O(j)|$
 - Equivalent: tax each page a fraction (1- β) of its score and redistribute evenly

PageRank

Construct the N-by-N matrix A as follows

• $A_{ij} = \beta M_{ij} + (1-\beta)/N$

- Verify that A is a stochastic matrix
- The page rank vector r is the principal eigenvector of this matrix

satisfying r = Ar

 Equivalently, r is the stationary distribution of the random walk with teleports

Dead ends

- Pages with no outlinks are "dead ends" for the random surfer
 - Nowhere to go on next step

Microsoft becomes a dead end

Dealing with dead-ends

Teleport

- Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly
- Prune and propagate
 - Preprocess the graph to eliminate dead-ends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph

Dealing dead end: teleport

Dealing dead end: reduce graph

Computing PageRank

- Key step is matrix-vector multiplication
 - r^{new} = Ar^{old}
- Easy if we have enough main memory to hold
 A, r^{old}, r^{new}
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

Rearranging the equation

r = **Ar**, where $A_{ii} = \beta M_{ii} + (1 - \beta)/N$ $r_i = \sum_{1 \le i \le N} A_{ii} r_i$ $r_i = \sum_{1 \le i \le N} [\beta M_{ii} + (1-\beta)/N] r_i$ $= \beta \sum_{1 \le i \le N} M_{ii} r_i + (1 - \beta) / N \sum_{1 \le i \le N} r_i$ $= \beta \sum_{1 \le i \le N} M_{ii} r_i + (1-\beta)/N$, since $|\mathbf{r}| = 1$ $\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_{N}$

where $[x]_N$ is an N-vector with all entries x

Sparse matrix formulation

- We can rearrange the page rank equation:
 - $\mathbf{r} = \beta \mathbf{Mr} + [(1-\beta)/N]_N$
 - $[(1-\beta)/N]_N$ is an N-vector with all entries $(1-\beta)/N$
- M is a sparse matrix!
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $\mathbf{r}^{\text{new}} = \beta \mathbf{M} \mathbf{r}^{\text{old}}$
 - Add a constant value $(1-\beta)/N$ to each entry in \mathbf{r}^{new}

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - say 10N, or 4*10*1 billion = 40GB
 - still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm

- Assume we have enough RAM to fit r^{new}, plus some working memory
 - Store **r**^{old} and matrix **M** on disk

Basic Algorithm:

- Initialize: r^{old} = [1/N]_N
- Iterate:
 - Update: Perform a sequential scan of M and r^{old} to update
 r^{new}
 - Write out **r**^{new} to disk as **r**^{old} for next iteration
 - Every few iterations, compute |r^{new}-r^{old}| and stop if it is below threshold
 - Need to read in both vectors into memory

Network Representation

Network Properties

Network Generative Models

Random Walk and Its Applications

Paper Sign-Up

- <u>https://docs.google.com/spreadsheets/d/1Sao</u>
 <u>PGP2SsYyaycX82T7mF_efbiueOI53bnZtZS04Bt</u>
 <u>Q/edit?usp=sharing</u>
- If you are still on waiting list
 - Sign-up for Presenter 4 only

Credits

 This is 4-credit course, please change it if you are current enrolled with 2-credit

Course Project Examples

- Citation graph summary
 - Find k papers that can tell the main structure evolution of a certain field
- Name disambiguation problem in DBLP
 - Different people may share the same name, e.g., distinguish "Wei Wang"'s;
 - Same person may have different forms of names, e.g., initials, middle names, typos

- User profile prediction in heterogeneous information networks
 - Suppose we only know small number of labels for people's ideology, profession, education, can we predict the remaining?
- Sentence embedding
 - Can we find the most similar sentences or S-V-O (subject-verb-object) triplets to the given one, by converting the text into a network?