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Overview of Information Network

Analysis

- Network Representation '

- Network Properties

- Network Generative Models

- Random Walk and Its Applications



Networks Are Everywhere

Internet

from H. Jeong et al Nature 411, 41 (2001)
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Representation of a Network: Graph

G =<V,E >
-V ={uy, ...,u, }: node set
- E €V xV: edge set
- Adjacency matrix
cA={a;}ij=1..,N
ca;; =1if <u,u; >€E
ca;j=0,if <u,u >¢E
- Network types
- Undirected graph vs. Directed graph
- A=ATvs. A+ AT
- Binary graph Vs. Weighted graph

* Use Winstead of A, where w;; represents the weight of edge
< ui,uj >



Example

y a m
yll1 1 0
all 0 1
mi0O 1 O

Adjacency matrix A




Degree of Nodes

- Let a network G = (V, E)

- Undirected Network
- Degree (or degree centrality) of a vertex: d(v;)
- # of edges connected to it, e.g., d(A) = 4, d(H) = 2
* Directed network
- In-degree of a vertex d. (v,):
* # of edges pointing to v,

- E.g.,d (A)=3,d (B)=2 (1) (& (£)
- Qut-degree of a vertex d, «(Vv;): o
- # of edges from v,

‘E.g., d.(A)=1,d(B)=2 (£ D ©



Degree Distribution

Graph G,
- Degree sequence of a graph: The list of degrees of the
nodes sorted in non-increasing order
- E.g., in Gy, degree sequence: (4, 3, 2, 2, 1)
- Degree frequency distribution of a graph: Let N,
denote the # of vertices with degree k
* (Ng, Ny, ..., Np), tiis max degree for a node in G
- E.g., in G;, degree frequency distribution: (0, 1, 2, 1, 1)
- Degree distribution of a graph:
Probability mass function f for random variable X
- (f(0), f(2), ..., f(t), where f(k) = P(X = k) = N,/n
- E.g., in G,, degree distrib.: (0, 0.2, 0.4, 0.2, 0.2)



Path

- Path: A sequence of vertices that every
consecutive pair of vertices in the sequence is
connected by an edge in the network

- Length of a path: # of edges traversed along
the path

- Total # of path of length 2 from j to j, via any
vertex in N1 is

2
Nij( ) = k=14 Ay = [4%];

- Generalizing to path of arbitrary length, we

have: @)
r) r



Radius and Diameter

Graph G,

- Eccentricity: The eccentricity of a node v, is the maximum distance from v,
to any other nodes in the graph

+ &(vi) = max; {d(v; v;)
-E.g,e(A)=1,¢e(F) =eB)=eD) =e(H) =2
- Radius of a connected graph G: the min eccentricity of any node in G
- 1(G) = min; {e(v;)} = min; {max; {d(v; v;)}}
- E.g., r(Gy) =1
- Diameter of a connected graph G: the max eccentricity of any node in G
- d(G) = max; {e(v))} = max; ; {d(v; v;)}
- E.g., d(Gy) =2
- Diameter is sensitive to outliers. Effective diameter: min # of hops for

which a large fraction, typically 90%, of all connected pairs of nodes can
reach each other



Clustering Coefficient

- Real networks are sparse: Corresponding to a complete graph

- Clustering coefficient of a node v;: A measure of the density of edges in
the neighborhood of v,

- Let G, = (V, E,) be the subgraph induced by the neighbors of vertex v, |V.|
=n, (# of neighbors of v,), and |E,| = m. (# of edges among the neighbors
of v,)

- Clustering coefficient of v, for undirected network is

;) = # edges in G;  m;  2xXmy
Y max # edges in Gy ng \ na(ng — 1)
2
edges in G; m;
C'(v;) = # edg i

- For directed network, max # edges in G n?(m 1)
- Clustering coefficient of a graph G: C(G) Z O

- Averaging the local clustering coefficient of all the ver’tlces (Watts & Strogatz)
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- Network Representation
- Network Properties '
- Network Generative Models

- Random Walk and Its Applications
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More Than a Graph

+ A typical network has the following common
properties:
- Few connected components:
 often only 1 or a small number, independent of network size

- Small diameter:

- often a constant independent of network size (like 6)

- growing only logarithmically with network size or even shrink?
- A high degree of clustering:

 considerably more so than for a random network
« A heavy-tailed degree distribution:

+ a small but reliable number of high-degree vertices
- often of power law form

12



Sparse

- For complete Graph
- Average degree: N

- For real-world network
- Average degree: (k) = 2E/N < N

13



Small World Property

- Small world phenomenon (Six degrees of
separation)

- Stanley Milgram’s experiments (1960s)

- Microsoft Instant Messaging (IM) experiment: J.
Leskovec & E. Horvitz (WWW’08)

* 240 M active user accounts: Est. avg. distance 6.6 & est.

mean median 7

- Why small world?

Nd+1 -
P N(d) ~= 1+ (k) + (k)2 + - + (k) = “();;} - !
o bl / 7 }Q
E.qg., 7~ In N In(7 x 107) ~ 398

In(k)y — In(103)

~ (ﬁf)d
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Degree Distribution: Power Law

a. b.
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High Clustering Coefficient

- Clustering effect: a high clustering coefficient
for graph G
- Friends’ friends are likely friends.
- A lot of triangles

- C(k): avg clustering coefficient for nodes with degree
k

16
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Network Generative Models

- All of the network generation models we will study
are probabilistic or statistical in nature

- They can generate networks of any size

- They often have various parameters that can be
set:
- size of network generated
- average degree of a vertex
- fraction of long-distance connections

- The models generate a distribution over networks

- Statements are always statistical in nature:
- with high probability, diameter is small
- on average, degree distribution has heavy tail

18



Examples

- Erdds-Rényi Random graph model:
- Gives few components and small diameter

- does not give high clustering and heavy-tailed degree
distributions

- is the mathematically most well-studied and understood
model

- Watts-Strogatz small world graph model:
- gives few components, small diameter and high clustering
- does not give heavy-tailed degree distributions

- Barabasi-Albert Scale-free model:

- gives few components, small diameter and heavy-tailed
distribution

- does not give high clustering
- Stochastic Block Model

19



Erdos-Rényi (ER) Random Graph Model

- Every possible edge occurs independently
with probability p
* G(N, p): a network of N nodes, each node pair is
connected with probability of p

 Paul Erd6s and Alfréd Rényi: "On Random Graphs” (1959)

 E. N. Gilbert: “Random Graphs” (1959) (proposed
independently)

» Usually, N is large and p ~ 1/N

 Choices: p=1/2N, p=1/N, p=2/N, p =10/N, p = log(N)/N,
etc.

20



Degree Distribution

- The degree distribution of a random (small)
network follows binomial distribution

: N-1 | .
Pk( , )pk(l—p)‘w o

- When N is large and Np is fixed, apprommated by

Poisson distributi , (L)
pp = e (RIIL

k!

- POISSON

0.075 L iTOMINAL

P, 0,

0.05 ~ #.;’" 'q‘%_ N=10

0.025 ’ VO

From Barabasi 2016
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Watts—Strogatz small world model

- Interpolates between regular lattice and a
random network to generate graphs with

- Small-world: short average path lengths

* High clustering coefficient: [ LA I L
o8l ° Clp)/ C(0) © 1

Small-world - ® D

06 :

0'4} ™ d —

o2f L(p) 7 L(0) _

p=0 > p=1 0.0001 0.001 0.01 0.1 1

Increasing randomness

p: the prob. each link is rewired
to a randomly chosen node

C(p) : clustering coeff.
L(p) : average path length 22



Barabasi-Albert Model: Preferential

Attachment

- Major limitation of the Watts-Strogatz model
- It produces graphs that are homogeneous in degree
- Real networks are often inhomogeneous in degree, having hubs
and a scale-free degree distribution (scale-free networks)
- Scale-free networks are better described by the preferential
attachment family of models, e.g., the Barabadsi—Albert (BA)
model

 “rich-get-richer”: New edges are more likely to link to nodes with
higher degrees

- Preferential attachment: The probability of connecting to a node
is proportional to the current degree of that node
- This leads to the proposal of a new model: scale-free
network, a network whose degree distribution follows a
power law, at least asymptotically

23
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The History of PageRank

- PageRank was developed by Larry Page (hence the name
Page-Rank) and Sergey Brin.

- It is first as part of a research project about a new kind of
search engine. That project started in 1995 and led to a
functional prototype in 1998.

- Shortly after, Page and Brin founded Google.



Ranking web pages

- Web pages are not equally “important”
- WWW.CNN.Ccom VS. a personal webpage

- Inlinks as votes
- The more inlinks, the more important
- Are all inlinks equal?

- Higher ranked inlink should play a more
important role

- Recursive question!

26


http://www.cnn.com/

Simple recursive formulation

- Each link’s vote is proportional to the

importance of its source page

f page P with importance x has n outlinks, each
ink gets x/n votes

votes on its inlinks

Page P’s own importance is the sum of the

»
|

27



Matrix formulation

- Matrix M has one row and one column for each web
nage y a m

- Suppose page j has n outlinks
- If j -> i, then M;=1/n
- Else M;=0

*Misa
- Columns sumto 1

- Suppose r is a vector with one entry per web page
- I, is the importance score of page |

- Call it the
° |I‘| — 1 (i.e., &1 +T2 + "'+TN = 1)

y 11| 0
a 1|0 1= 10,1
mO |1l O

28



Eigenvector formulation

- The flow equations can be written

- So the rank vector is an eigenvector of the
stochastic web matrix

- In fact, its first or principal eigenvector, with
corresponding eigenvalue 1

29



Example

y =yl2+a/2
a=y/2+m
m=a/2

QD

y a m

1/21/2 0
1/2 0 1
012 0

1/21/2 0
1/2 0 1
m 01/2 0

S

D <

30



Power Iteration method

- Simple iterative scheme

- Suppose there are N web pages
- Initialize: 0 = [1/N,....,1/N]"
- Iterate: rkt1 = MrX

- Stop when |r¢tl- K|, < ¢
* |x]; =214 ]%| is the L1 norm
 Can use any other vector norm e.g., Euclidean

31



Power lteration Example

y a m

y 1/21/2 0

a (1/72 0 1

m|012 0
y 1/3 1/3 5/12 3/8 2/5
a = 1/3  1/2 1/3 11/24 ... 2/5
m 1/3  1/6 1/4  1/6 1/5

o rp r; rs r



Random Walk Interpretation

*Imagine a

- At any time t, surfer is on some page P

- At time t+1, the surfer follows an outlink from P
uniformly at random

- Ends up on some page Q linked from P
- Process repeats indefinitely

- Let p(t) be a vector whose it" component is the
probability that the surfer is at page i at time t

- p(t) is a probability distribution on pages

33



The stationary distribution

- Where is the surfer at time t+17?
- Follows a link uniformly at random
- p(t+1) = Mp(t)

- Suppose the random walk reaches a state such
that p(t+1) = Mp(t) = p(t)

- Then p(t) is called a for
the random walk

« Qur rank vector r satisfies r = Mr

- S0 it is a stationary distribution for the random
surfer

34



Existence and Uniqueness

A central result from the theory of random walks (aka Markov
processes):

For graphs that satisfy certain conditions, the
stationary distribution is unique and eventually
will be reached no matter what the initial
probability distribution at time t = 0.

35



Spider traps

- A group of pages is a if there are no
links from within the group to outside the
group
- Random surfer gets trapped

- Spider traps violate the conditions needed for
the random walk theorem

36



Microsoft becomes a spider trap

y a m

y 1/21/2 0

a (1/20 O

m| 0172 1

1/3 1/3 1/4  5/24 0
1/3 1/6 1/6 1/8 0

1/3 12 7112 2/3 1



Random teleports

- The Google solution for spider traps

- At each time step, the random surfer has two
options:
- With probability B, follow a link at random

- With probability 1-B, jump to some page
uniformly at random

- Common values for B are in the range 0.8 to
0.9

- Surfer will teleport out of spider trap within a
few time steps

38



Random teleports (B = 0.8)

S <<

L 02413

y

1/2
1/2

y

1/2
0.8*1/2

// 0.2%1/3¢ 12 1/2 0
. ; 0.8[12 0 0| +0.2

0 1/2 1

----- > : teleport links from “Yahoo”

y
a

m

y

1/3
+0.2* |1/3
1/3

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

7115 7/15 1/15
7/15 1/15 1/15
1/15 7/15 13/15

39




Random teleports (B = 0.8)

1/21/2 0 1/3 1/3 1/3
0.8/1/2 0 0 + 0.211/31/3 1/3
0 1/2 1 1/3 1/3 1/3
y |7/15 7/15 1/15
d

7/15 1/15 1/15
, m|1/15 7/15 13/15

S 2

10.333
0.333

0.333

[ 0.333]
0.200

10.467

[0.280 ]
0.200

0.520

(0.259 ]
0.179

0.563

[ 7/33 |
5/33

21/33
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Matrix formulation

- Suppose there are N pages

- Consider a page j, with set of outlinks O(j)
- We have M;; = 1/]|0(j)| when j->i and M;; = 0
otherwise

- The random teleport is equivalent to

* adding a from j to every other page with
probability (1-8)/N

* reducing the probability of following each outlink from
1/10(j)| to B/1O())|

* Equivalent: tax each page a fraction (1-3) of its score and
redistribute evenly

41



PageRank

- Construct the N-by-N matrix A as follows
- Ay = BM;; + (1-B)/N

- Verify that A is a stochastic matrix

*The ris the principal
eigenvector of this matrix
- satisfying r = Ar

- Equivalently, r is the stationary distribution of
the random walk with teleports

42



Dead ends

- Pages with no outlinks are
random surfer

- Nowhere to go on next step

” for the

43



Microsoft becomes a dead end

1/21/2 0 1/3 1/3 1/3
0.8/1/2 0 0 + 0.211/31/3 1/3
0 1/2 0 1/3 1/3 1/3

7115 7/15 1/15
7/15 1/15 1/15

. m|1/15 7/15 1/15

ISP

y 1/3  1/3 0
a = 1/3 0.2 0
m 1/3 0.2 0




Dealing with dead-ends

- Teleport

- Follow random teleport links with probability 1.0
from dead-ends

- Adjust matrix accordingly
*Prune and propagate
- Preprocess the graph to eliminate dead-ends

* Might require multiple passes
- Compute page rank on reduced graph

- Approximate values for deadends by
propagating values from reduced graph

45



Dealing dead end: teleport

1/21/2 0
1/2 0 0
0 1/2 O

»
|

<

0.2*1/3 0.2*1/3 1*1/3
T 10.2*1/3 0.2*%1/3 1*1/3
0.2*1/3 0.2*1/3 1*1/3

7115 7/15 1/3
7115 1/15 1/3
1/15 7/15 1/3

46



Dealing dead end: reduce graph

7 .7

[
»

Tl

47




Computing PageRank

- Key step is matrix-vector multiplication
o FNEW — Arold
- Easy if we have enough main memory to hold
A, rold’ ynew
-Say N =1 billion pages
- We need 4 bytes for each entry (say)

- 2 billion entries for vectors, approx 8GB

- Matrix A has N2 entries
- 10%8is a large number!

48



Rearranging the equation

r = Ar, where
A; = BM; + (1-B)/N

I = Zl<,<N [BM;; + (1-B)/N] r;

=B Loy M; 1+ (1-B)/N ZEEN r

=B 21y M1+ (1-B)/N, since [r| =1
r=BMr + [(1-B)/N],

where [x] is an N-vector with all entries x




Sparse matrix formulation

- We can rearrange the page rank equation:

- 1 = BMr + [(1-B)/NIy

- [(1-B)/N]y is an N-vector with all entries (1-8)/N
- M is a sparse matrix!

- 10 links per node, approx 10N entries
- So in each iteration, we need to:

- Compute r"ew = gMrod
- Add a constant value (1-B)/N to each entry in rev

50



Sparse matrix encoding

- Encode sparse matrix using only nonzero
entries

- Space proportional roughly to number of links
- say 10N, or 4*10*1 billion = 40GB
- still won't fit in memory, but will fit on disk

0 3 1,5,7
1 5 17, 64, 113, 117, 245
2 2 13, 23

51



Basic Algorithm

- Assume we have enough RAM to fit r"®¥, plus some
working memory
Store rod and matrix M on disk

Basic Algorithm:
- Initialize: rol® = [1/N],

° lterate:

Update: Perform a sequential scan of M and r°ld to update
rnew

Write out rew to disk as ro'd for next iteration

Every few iterations, compute |r"ew-rold| and stop if it is
below threshold

* Need to read in both vectors into memory

52



Summary

- Network Representation

- Network Properties

- Network Generative Models

- Random Walk and Its Applications
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Paper Sign-Up

» https://docs.google.com/spreadsheets/d/1Sao

PGP2SsYyaycX82T7mF efbiueOl53bnZtZS04Bt
Q/edit?usp=sharing

- If you are still on waiting list
- Sign-up for Presenter 4 only

54
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Credits

- This is 4-credit course, please change it if you
are current enrolled with 2-credit
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Course Project Examples

- Citation graph summary

- Find k papers that can tell the main structure
evolution of a certain field

- Name disambiguation problem in DBLP

- Different people may share the same name,
e.g., distinguish “"Wei Wang"’s;

- Same person may have different forms of
names, e.g., initials, middle names, typos

56



- User profile prediction in heterogeneous
information networks

- Suppose we only know small number of labels
for people’s ideology, profession, education, can
we predict the remaining?

- Sentence embedding

- Can we find the most similar sentences or S-V-
O (subject-verb-object) triplets to the given
one, by converting the text into a network?

57



