CS145 Discussion
Week 3

Junheng, Shengming, Yunsheng
10/19/2018
Announcements
- HW1 due Oct 19, 2018 (Friday, tonight)
- Package your Report AND codes, README together and submit it through CCLE

Review:
- Decision Tree
 - Information Gain
 - Gain Ratio
 - Gini Index
- SVM
 - Linear SVM
 - Soft Margin SVM
 - Non-linear SVM
• Decision Tree Classification
 ○ Example: Play or Not?

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play?</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>No</td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>true</td>
<td>No</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>Yes</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>Yes</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>Yes</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>No</td>
</tr>
<tr>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>Yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>No</td>
</tr>
<tr>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>Yes</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>false</td>
<td>Yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>true</td>
<td>Yes</td>
</tr>
<tr>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>Yes</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>false</td>
<td>Yes</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>No</td>
</tr>
</tbody>
</table>
Decision Tree

- Choosing the Splitting Attribute
- At each node, available attributes are evaluated on the basis of separating the classes of the training examples.
- A Goodness function is used for this purpose:
 - Information Gain
 - Gain Ratio
 - Gini Index
A criterion for attribute selection

● Which is the best attribute?
 ○ The one which will result in the smallest tree
 ○ Heuristic: choose the attribute that produces the “purest” nodes

● Popular *impurity criterion*: *information gain*
 ○ Information gain increases with the average purity of the subsets that an attribute produces

● Strategy: choose attribute that results in greatest information gain
Entropy of a split

- Information in a split with \(x \) items of one class, \(y \) items of the second class

\[
\text{info}([x, y]) = \text{entropy}\left(\frac{x}{x + y}, \frac{y}{x + y}\right) \\
= - \frac{x}{x + y} \log\left(\frac{x}{x + y}\right) - \frac{y}{x + y} \log\left(\frac{y}{x + y}\right)
\]
Example: attribute “Outlook”

- “Outlook” = “Sunny”: 2 and 3 split

\[
\text{info}([2,3]) = \text{entropy}(2/5, 3/5) = -\frac{2}{5} \log\left(\frac{2}{5}\right) - \frac{3}{5} \log\left(\frac{3}{5}\right) = 0.971 \text{ bits}
\]
“Outlook” = “Overcast”: 4/0 split

\[
\text{info}([4,0]) = \text{entropy}(1,0) = -1 \log(1) - 0 \log(0) = 0 \text{ bits}
\]

Note: \(\log(0)\) is not defined, but we evaluate \(0 \times \log(0)\) as zero
“Outlook” = “Rainy”:

\[
\text{info}([3,2]) = \text{entropy}(3/5,2/5) = -\frac{3}{5} \log\left(\frac{3}{5}\right) - \frac{2}{5} \log\left(\frac{2}{5}\right) = 0.971 \text{ bits}
\]
Expected information for attribute:

\[\text{info}([3,2],[4,0],[3,2]) = \frac{5}{14} \times 0.971 + \frac{4}{14} \times 0 + \frac{5}{14} \times 0.971\]

\[= 0.693 \text{ bits}\]
The final decision tree

- Note: not all leaves need to be pure; sometimes identical instances have different classes
 ⇒ Splitting stops when data can’t be split any further
Computing the information gain

- Information gain:
 (information before split) – (information after split)

\[
\text{gain("Outlook")} = \text{info([9,5])} - \text{info([2,3],[4,0],[3,2])} = 0.940 - 0.693 = 0.247 \text{ bits}
\]

- Information gain for attributes from weather data:

\[
\begin{align*}
\text{gain("Outlook")} &= 0.247 \text{ bits} \\
\text{gain("Temperature")} &= 0.029 \text{ bits} \\
\text{gain("Humidity")} &= 0.152 \text{ bits} \\
\text{gain("Windy")} &= 0.048 \text{ bits}
\end{align*}
\]
Continuing to split

\[
\text{gain("Temperature")} = 0.571 \text{ bits}
\]

\[
\text{gain("Windy")} = 0.020 \text{ bits}
\]

\[
\text{gain("Humidity")} = 0.971 \text{ bits}
\]
Note: not all leaves need to be pure; sometimes identical instances have different classes

⇒ Splitting stops when data can’t be split any further
Gain Ratio

$$SplitInfo_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2 \left(\frac{|D_j|}{|D|} \right)$$

Gain Ratio = Gain_A(D) / SplitInfo_A(D)

Why Gain Ratio?

Unbiased compared with Information Gain

Why? (https://stats.stackexchange.com/questions/306456/how-is-information-gain-biased)
Decision Tree

• Is the decision boundary for decision tree linear? No
Visual Tutorials of Decision Trees

https://algobeans.com/2016/07/27/decision-trees-tutorial/
Support Vector Machine

Hyperplane separating the data points

$$w^T x + b = 0$$

Maximize margin

$$\rho = \frac{2}{\|w\|}$$

Solution

$$w = \sum \alpha_i y_i x_i \quad b = \sum_{k: \alpha_k \neq 0} \left(y_k - w^T x_k \right) / N_k$$
Margin Formula

Margin Lines

\[w^T x_a + b = 1 \quad w^T x_b + b = -1 \]

Distance between parallel lines

\[d = \frac{|c_2 - c_1|}{\sqrt{a^2 + b^2}} \]

Margin

\[\rho = \frac{|(b + 1) - (b - 1)|}{\|w\|} = \frac{2}{\|w\|} \]
Linear SVM Example

- Positively labeled data points (1 to 4)
 \[\{(3, 1), (-3, -1), (6, 1), (-6, -1)\}\]

- Negatively labeled data points (5 to 8)
 \[\{(1, 0), (0, 1), (0, -1), (-1, 0)\}\]

- Alpha values
 - \(\alpha_1 = 0.75\)
 - \(\alpha_2 = 0.75\)
 - \(\alpha_5 = 3.5\)
 - Others = 0
Linear SVM Example

- Which points are support vectors?
- Calculate normal vector of hyperplane: \(\mathbf{w} \)
- Calculate the bias term
- What is the decision boundary?
- Predict class of new point (4, 1)

\[
\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i \\
b = \sum_{k: \alpha_k \neq 0} (y_k - \mathbf{w}^T \mathbf{x}_k) / N_k
\]
Plot
Non-linear SVM Example

• Positively labeled data points (1 to 4)
 \[\{(\frac{2}{2}), (\frac{2}{-2}), (\frac{-2}{-2}), (\frac{-2}{2})\}\]

• Negatively labeled data points (5 to 8)
 \[\{(\frac{1}{1}), (\frac{1}{-1}), (\frac{-1}{-1}), (\frac{-1}{1})\}\]

• Non-linear mapping
 \[\Phi_1\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \begin{cases} \left(\begin{array}{c} 4 - x_2 \\ 4 - x_1 \\ 2 \end{array}\right) & \text{if } \sqrt{x_1^2 + x_2^2} > 2 \\ \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) & \text{otherwise} \end{cases}\]
Non-linear SVM Example

- New positively labeled data points (1 to 4)
 \[\left\{ \left(\frac{2}{2} \right), \left(\frac{6}{2} \right), \left(\frac{6}{6} \right), \left(\frac{2}{6} \right) \right\} \]
- New negatively labeled data points (5 to 8)
 \[\left\{ \left(\frac{1}{1} \right), \left(\frac{-1}{1} \right), \left(\frac{-1}{-1} \right), \left(\frac{-1}{1} \right) \right\} \]
- Alpha values
 - \(\alpha_1 = 4 \)
 - \(\alpha_5 = 7 \)
 - Others = 0
Non-linear SVM Example

• Which points are support vectors?
• Calculate normal vector of hyperplane: \(\mathbf{w} \)
• Calculate the bias term
• What is the decision boundary?
• Predict class of new point (4, 5)
Visualize Tutorials of Decision Trees

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

http://explained.ai/decision-tree-viz/
Visual Tutorials of SVM

https://cs.stanford.edu/people/karpathy/svmjs/demo/
Thank you!

Q & A
Double-row title
Subtitle