5: Vector Data: Support Vector Machine

Instructor: Yizhou Sun
yzsun@cs.ucla.edu

October 19, 2018
Methods to Learn: Last Lecture

<table>
<thead>
<tr>
<th>Method</th>
<th>Vector Data</th>
<th>Set Data</th>
<th>Sequence Data</th>
<th>Text Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Logistic Regression; Decision Tree; KNN SVM; NN</td>
<td></td>
<td></td>
<td>Naïve Bayes for Text</td>
</tr>
<tr>
<td>Clustering</td>
<td>K-means; hierarchical clustering; DBSCAN; DBSCAN; Mixture Models</td>
<td></td>
<td></td>
<td>PLSA</td>
</tr>
<tr>
<td>Prediction</td>
<td>Linear Regression GLM*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequent Pattern Mining</td>
<td>Apriori; FP growth</td>
<td>GSP; PrefixSpan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similarity Search</td>
<td></td>
<td></td>
<td></td>
<td>DTW</td>
</tr>
</tbody>
</table>
Methods to Learn

<table>
<thead>
<tr>
<th></th>
<th>Vector Data</th>
<th>Set Data</th>
<th>Sequence Data</th>
<th>Text Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Logistic Regression; Decision Tree; KNN SVM; NN</td>
<td></td>
<td></td>
<td>Naïve Bayes for Text</td>
</tr>
<tr>
<td>Clustering</td>
<td>K-means; hierarchical clustering; DBSCAN; DBSCAN; Mixture Models</td>
<td></td>
<td></td>
<td>PLSA</td>
</tr>
<tr>
<td>Prediction</td>
<td>Linear Regression GLM*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequent Pattern Mining</td>
<td>Apriori; FP growth</td>
<td></td>
<td>GSP; PrefixSpan</td>
<td></td>
</tr>
<tr>
<td>Similarity Search</td>
<td></td>
<td></td>
<td></td>
<td>DTW</td>
</tr>
</tbody>
</table>
Support Vector Machine

• Introduction
• Linear SVM
• Non-linear SVM
• Scalability Issues*
• Summary
Math Review

- Vector
 - $\mathbf{x} = (x_1, x_2, \ldots, x_n)$
 - Subtracting two vectors: $\mathbf{x} = \mathbf{b} - \mathbf{a}$

- Dot product
 - $\mathbf{a} \cdot \mathbf{b} = \sum a_i b_i$
 - Geometric interpretation: projection
 - If \mathbf{a} and \mathbf{b} are orthogonal, $\mathbf{a} \cdot \mathbf{b} = 0$
Math Review (Cont.)

• Plane/Hyperplane
 • \(a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = c\)
 • Line (n=2), plane (n=3), hyperplane (higher dimensions)

• Normal of a plane
 • \(n = (a_1, a_2, \ldots, a_n)\)
 • a vector which is perpendicular to the surface
• Define a plane using normal $\mathbf{n} = (a, b, c)$ and a point (x_0, y_0, z_0) in the plane:

\[(a, b, c) \cdot (x_0 - x, y_0 - y, z_0 - z) = 0 \Rightarrow \]
\[ax + by + cz = ax_0 + by_0 + cz_0 (= d) \]

• Distance from a point (x_0, y_0, z_0) to a plane $ax + by + cz = d$

\[\left| (x_0 - x, y_0 - y, z_0 - z) \cdot \frac{(a, b, c)}{||(a, b, c)||} \right| = \]
\[\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}} \]
Linear Classifier

- Given a training dataset \(\{x_i, y_i\}_{i=1}^N \)
 - A separating hyperplane can be written as a linear combination of attributes
 \[
 \mathbf{W} \cdot \mathbf{x} + b = 0
 \]
 where \(\mathbf{W} = \{w_1, w_2, \ldots, w_n\} \) is a weight vector and \(b \) a scalar (bias)
 - For 2-D it can be written as
 \[
 w_0 + w_1 x_1 + w_2 x_2 = 0
 \]
 - Classification:
 \[
 w_0 + w_1 x_1 + w_2 x_2 > 0 \Rightarrow y_i = +1 \\
 w_0 + w_1 x_1 + w_2 x_2 \leq 0 \Rightarrow y_i = -1
 \]
Recall

• Is the decision boundary for logistic regression linear?

• Is the decision boundary for decision tree linear?
Simple Linear Classifier: Perceptron

\[\mathbf{x} = (1, x_1, x_2, \ldots, x_d)^T \quad \mathbf{w} = (\omega_0, \omega_1, \omega_2, \ldots, \omega_d)^T \]
\[y = \{1, -1\} \]
\[\alpha \in (0, 1] \text{ (learning rate)} \]

Initialize \(\mathbf{w} = \mathbf{0} \) (can be any vector)
Repeat:
 - For each training example \((\mathbf{x}_i, y_i)\):
 - Compute \(\hat{y}_i = \text{sign}(\mathbf{w}^T \mathbf{x}_i) \)
 - if \((y_i \neq \hat{y}_i)\) \(\mathbf{w} = \mathbf{w} + \alpha(y_i \mathbf{x}_i) \)
Until \((y_i = \hat{y}_i \quad \forall i = 1 \ldots N)\)
Return \(\mathbf{w} \)

Loss function: \(\max\{0, -y_i \cdot \mathbf{w}^T \mathbf{x}_i\} \)
More on Sign Function

\[\text{sign}(x) = \begin{cases}
1, & x > 0; \\
0, & x = 0; \\
-1, & x < 0.
\end{cases} \]
Example ($\alpha = 0.9$)

<table>
<thead>
<tr>
<th>x0</th>
<th>x1</th>
<th>x2</th>
<th>true label</th>
<th>w before update</th>
<th>predicted label</th>
<th>w after update</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Y</td>
<td>(0.0, 0.0, 0.0)</td>
<td>N</td>
<td>(0.9, 0.0, 0.9)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td>(0.9, 0.0, 0.9)</td>
<td>Y</td>
<td>(0.0, -0.9, 0.0)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Y</td>
<td>(0.0, -0.9, 0.0)</td>
<td>N</td>
<td>(0.9, -0.9, 0.0)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Y</td>
<td>(0.9, -0.9, 0.0)</td>
<td>N</td>
<td>(1.8, 0.0, 0.0)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Y</td>
<td>(1.8, 0.0, 0.0)</td>
<td>Y</td>
<td>(1.8, 0.0, 0.0)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td>(1.8, 0.0, 0.0)</td>
<td>Y</td>
<td>(0.9, -0.9, -0.9)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Y</td>
<td>(0.9, -0.9, -0.9)</td>
<td>Y</td>
<td>(0.9, -0.9, -0.9)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Y</td>
<td>(0.9, -0.9, -0.9)</td>
<td>N</td>
<td>(1.8, 0.0, -0.9)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Y</td>
<td>(1.8, 0.0, -0.9)</td>
<td>Y</td>
<td>(1.8, 0.0, -0.9)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td>(1.8, 0.0, -0.9)</td>
<td>Y</td>
<td>(0.9, -0.9, -1.8)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Y</td>
<td>(0.9, -0.9, -1.8)</td>
<td>Y</td>
<td>(0.9, -0.9, -1.8)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Y</td>
<td>(0.9, -0.9, -1.8)</td>
<td>N</td>
<td>(1.8, 0.0, -1.8)</td>
</tr>
</tbody>
</table>
Support Vector Machine

- Introduction
- Linear SVM
- Non-linear SVM
- Scalability Issues*
- Summary
Can we do better?

• Which hyperplane to choose?
SVM—Margins and Support Vectors

Small Margin

Large Margin

Support Vectors
Let data D be \((X_1, y_1), \ldots, (X_{|D|}, y_{|D|})\), where \(X_i\) is the set of training tuples associated with the class labels \(y_i\).

There are infinite lines (hyperplanes) separating the two classes but we want to find the best one (the one that minimizes classification error on unseen data).

SVM searches for the hyperplane with the largest margin, i.e., *maximum marginal hyperplane* (MMH)
A separating hyperplane can be written as

\[\mathbf{w} \cdot \mathbf{x} + b = 0 \]

The hyperplane defining the sides of the margin, e.g.,:

\[H_1: w_1 x_1 + w_2 x_2 + b \geq 1 \quad \text{for } y_i = +1, \text{ and} \]

\[H_2: w_1 x_1 + w_2 x_2 + b \leq -1 \quad \text{for } y_i = -1 \]

Any training tuples that fall on hyperplanes \(H_1 \) or \(H_2 \) (i.e., the sides defining the margin) are support vectors.

This becomes a constrained (convex) quadratic optimization problem: Quadratic objective function and linear constraints \(\rightarrow Quadratic \ Programming \ (QP) \rightarrow \) Lagrangian multipliers.
Maximum Margin Calculation

• **w**: decision hyperplane normal vector
• **x_i**: data point <i>i</i>
• **y_i**: class of data point <i>i</i> (+1 or -1)

\[w^T x + b = 0 \]

\[w^T x_a + b = 1 \]

\[w^T x_b + b = -1 \]

\[\rho_{\text{max}} = \frac{2}{||w||} \]

Hint: what is the distance between \(x_a \) and \(w^T x + b = -1 \)
SVM as a Quadratic Programming

- **QP**
 Objective: Find \(w \) and \(b \) such that \(\rho = \frac{2}{||w||} \) is maximized;

 Constraints: For all \(\{(x_i, y_i)\} \)

 \[w^T x_i + b \geq 1 \text{ if } y_i = 1; \]

 \[w^T x_i + b \leq -1 \text{ if } y_i = -1 \]

- **A better form**
 Objective: Find \(w \) and \(b \) such that \(\Phi(w) = \frac{1}{2} w^T w \) is minimized;

 Constraints: for all \(\{(x_i, y_i)\} \):

 \[y_i (w^T x_i + b) \geq 1 \]
Solve QP

- This is now optimizing a quadratic function subject to linear constraints
- Quadratic optimization problems are a well-known class of mathematical programming problem, and many (intricate) algorithms exist for solving them (with many special ones built for SVMs)
- The solution involves constructing a dual problem where a Lagrange multiplier α_i is associated with every constraint in the primary problem:
Lagrange Formulation

• Introducing Lagrange multipliers $\alpha_i \geq 0$ for each constraint

Minimize

$$L(w, b, \alpha) = \frac{1}{2} w^T w - \sum_{i=1}^{N} \alpha_i (y_i(w^T x_i + b) - 1)$$

Take the partial derivatives w.r.t w, b:

$$\nabla_w L = w - \sum_{i=1}^{N} \alpha_i y_i x_i = 0 \quad \Rightarrow \quad w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$\frac{\partial L}{\partial b} = - \sum_{i=1}^{N} \alpha_i y_i = 0$$
Primal Form and Dual Form

Primal

Objective: Find w and b such that $\Phi(w) = \frac{1}{2} w^T w$ is minimized;

Constraints: for all $\{(x_i, y_i)\}$: $y_i (w^T x_i + b) \geq 1$

Equivalent under some conditions; also w, b, α satisfy KKT conditions

Dual

Objective: Find $\alpha_1...\alpha_n$ such that $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j x_i^T x_j$ is maximized and

Constraints

1. $\sum \alpha_i y_i = 0$
2. $\alpha_i \geq 0$ for all α_i

The Optimization Problem Solution

- The solution has the form:

\[w = \sum \alpha_i y_i x_i \quad b = y_k - w^T x_k \quad \text{for any } x_k \quad \text{such that } \alpha_k \neq 0 \]

- Each non-zero \(\alpha_i \) indicates that corresponding \(x_i \) is a support vector.

- Then the classifying function will have the form:

\[f(x) = \sum \alpha_i y_i x_i^T x + b \]

- Notice that it relies on an *inner product* between the test point \(x \) and the support vectors \(x_i \):
 - We will return to this later.

- Also keep in mind that solving the optimization problem involved computing the inner products \(x_i^T x_j \) between all pairs of training points.
Soft Margin Classification

• If the training data is not linearly separable, \textit{slack variables} \(\xi_i \) can be added to allow misclassification of difficult or noisy examples.

• Allow some errors
 • \textit{Let some points be moved to where they belong, at a cost}
 • Still, try to minimize training set errors, and to place hyperplane “far” from each class (large margin)
Soft Margin Classification
Mathematically

- The old formulation:

\[
\text{Find } \mathbf{w} \text{ and } b \text{ such that } \\
\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} \text{ is minimized and for all } \{(\mathbf{x}_i, y_i)\} \\
y_i (\mathbf{w}^T \mathbf{x}_i + b) \geq 1
\]

- The new formulation incorporating slack variables:

\[
\text{Find } \mathbf{w} \text{ and } b \text{ such that } \\
\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum \xi_i \text{ is minimized and for all } \{(\mathbf{x}_i, y_i)\} \\
y_i (\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \text{ for all } i
\]

- Parameter \(C \) can be viewed as a way to control overfitting
 - A regularization term (L1 regularization)
Soft Margin Classification – Solution

• The dual problem for soft margin classification:

\[
Q(\alpha) = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i} \sum_{j} \alpha_i \alpha_j y_i y_j x_i^T x_j
\]

is maximized and

1. \(\sum \alpha_i y_i = 0 \)
2. \(0 \leq \alpha_i \leq C \) for all \(\alpha_i \)

• Neither slack variables \(\xi_i \) nor their Lagrange multipliers appear in the dual problem!

• Again, \(x_i \) with non-zero \(\alpha_i \) will be support vectors.
 • If \(0 < \alpha_i < C \), \(\xi_i = 0 \)
 • If \(\alpha_i = C \), \(\xi_i > 0 \)

• Solution to the problem is:

\[
w = \sum \alpha_i y_i x_i \\
b = y_k - w^T x_k \text{ for any } x_k \text{ such that } 0 < \alpha_k < C
\]

\(w \) is not needed explicitly for classification!

\[
f(x) = \sum \alpha_i y_i x_i^T x + b
\]
A Different View of Soft Margin SVM

- Hinge loss with regularization terms
 - $\Phi(w) = \frac{1}{2} w^T w + C \sum \xi_i$
 - $= \frac{1}{2} w^T w + C \sum \max(0, 1 - y_i (w^T x_i + b))$

L2 regularization

Hinge loss

0-1 Loss:

$L(y, \hat{y}) = 1[\hat{y} \neq y]$

Hinge loss:

$L(y, \hat{y}) = \max\left(0, 1 - \hat{y}y\right)$
Classification with SVMs

• Given a new point \mathbf{x}, we can score its projection onto the hyperplane normal:

 • I.e., compute score: $\mathbf{w}^T \mathbf{x} + b = \sum \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b$

 • Decide class based on whether < 0 or > 0

• Can set confidence threshold t.

Score $> t$: yes
Score $< -t$: no
Else: don’t know
Linear SVMs: Summary

- The classifier is a *separating hyperplane*.

- The most “important” training points are the support vectors; they define the hyperplane.

- Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrangian multipliers α_i.

- Both in the dual formulation of the problem and in the solution, training points appear only inside inner products:

 \[
 \text{Find } \alpha_1\ldots\alpha_N \text{ such that } \\
 Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j x_i^T x_j \text{ is maximized and} \\
 (1) \sum \alpha_i y_i = 0 \\
 (2) 0 \leq \alpha_i \leq C \text{ for all } \alpha_i
 \]

 \[
 f(x) = \sum \alpha_i y_i x_i^T x + b
 \]
Support Vector Machine

• Introduction
• Linear SVM
• Non-linear SVM
• Scalability Issues*
• Summary
Non-linear SVMs

- Datasets that are linearly separable (with some noise) work out great:

- But what are we going to do if the dataset is just too hard?

- How about ... mapping data to a higher-dimensional space:
Non-linear SVMs: Feature spaces

• General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

$$\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$$
The “Kernel Trick”

- The linear classifier relies on an inner product between vectors $K(x_i, x_j) = x_i^T x_j$
- If every data point is mapped into high-dimensional space via some transformation Φ: $x \rightarrow \phi(x)$, the inner product becomes:
 $$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$
- A *kernel function* is some function that corresponds to an inner product in some expanded feature space.
Example

• 2-dimensional vectors $\mathbf{x}=[x_1 \ x_2]$, let
 $K(\mathbf{x}_i, \mathbf{x}_j)=(1 + \mathbf{x}_i^T \mathbf{x}_j)^2$

• show that $K(\mathbf{x}_i, \mathbf{x}_j)=\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$:

\[
K(\mathbf{x}_i, \mathbf{x}_j)=(1 + \mathbf{x}_i^T \mathbf{x}_j)^2 = 1 + x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} = \\
= \begin{bmatrix}
1 & x_{i1}^2 \sqrt{2} & x_{i1} x_{i2} \sqrt{2} & x_{i2}^2 \sqrt{2} \\
1 & x_{j1}^2 \sqrt{2} & x_{j1} x_{j2} \sqrt{2} & x_{j2}^2 \sqrt{2}
\end{bmatrix}^T \begin{bmatrix}
1 & x_{j1}^2 \sqrt{2} & x_{j1} x_{j2} \sqrt{2} & x_{j2}^2 \sqrt{2}
\end{bmatrix}
\]

\[
= \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)
\]

where $\phi(\mathbf{x}) = \begin{bmatrix}
1 & x_1^2 \sqrt{2} & x_1 x_2 \sqrt{2} & x_2^2 \sqrt{2} & \sqrt{2} x_1 & \sqrt{2} x_2
\end{bmatrix}$
SVM: Different Kernel functions

- Instead of computing the dot product on the transformed data, it is math. equivalent to applying a kernel function $K(X_i, X_j)$ to the original data, i.e., $K(X_i, X_j) = \Phi(X_i)^T\Phi(X_j)$

- Typical Kernel Functions

 Polynomial kernel of degree h:
 $$K(X_i, X_j) = (X_i \cdot X_j + 1)^h$$

 Gaussian radial basis function kernel:
 $$K(X_i, X_j) = e^{-\|X_i - X_j\|^2 / 2\sigma^2}$$

 Sigmoid kernel:
 $$K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$$

- *SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)
Non-linear SVM

• Replace inner-product with kernel functions
 • Optimization problem

Find $\alpha_1...\alpha_N$ such that

$$Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

is maximized and

$$\sum \alpha_i y_i = 0$$

(2) $0 \leq \alpha_i \leq C$ for all α_i

• Decision boundary

$$f(x) = \sum \alpha_i y_i K(x_i, x) + b$$
Support Vector Machine

- Introduction
- Linear SVM
- Non-linear SVM
- Scalability Issues
- Summary
Scaling SVM by Hierarchical Micro-Clustering

- SVM is not scalable to the number of data objects in terms of training time and memory usage
- H. Yu, J. Yang, and J. Han, “Classifying Large Data Sets Using SVM with Hierarchical Clusters”, KDD'03
- CB-SVM (Clustering-Based SVM)
 - Given limited amount of system resources (e.g., memory), maximize the SVM performance in terms of accuracy and the training speed
 - Use micro-clustering to effectively reduce the number of points to be considered
 - At deriving support vectors, de-cluster micro-clusters near “candidate vector” to ensure high classification accuracy
CF-Tree: Hierarchical Micro-cluster

- Read the data set once, construct a statistical summary of the data (i.e., hierarchical clusters) given a limited amount of memory
- Micro-clustering: Hierarchical indexing structure
 - provide finer samples closer to the boundary and coarser samples farther from the boundary
Selective Declustering: Ensure High Accuracy

- CF tree is a suitable base structure for selective declustering
- De-cluster only the cluster E_i such that
 - $D_i - R_i < D_s$, where D_i is the distance from the boundary to the center point of E_i and R_i is the radius of E_i
- Decluster only the cluster whose subclusters have possibilities to be the support cluster of the boundary
 - “Support cluster”: The cluster whose centroid is a support vector
CB-SVM Algorithm: Outline

- Construct two CF-trees from positive and negative data sets independently
 - Need one scan of the data set
- Train an SVM from the centroids of the root entries
- De-cluster the entries near the boundary into the next level
 - The children entries de-clustered from the parent entries are accumulated into the training set with the non-declustered parent entries
- Train an SVM again from the centroids of the entries in the training set
- Repeat until nothing is accumulated
Accuracy and Scalability on Synthetic Dataset

- Experiments on large synthetic data sets shows better accuracy than random sampling approaches and far more scalable than the original SVM algorithm.

Figure 6: Synthetic data set in a two-dimensional space. ‘|’: positive data; ‘-’: negative data.
Support Vector Machine

• Introduction
• Linear SVM
• Non-linear SVM
• Scalability Issues*
• Summary
Summary

• Support Vector Machine
 • Linear classifier; support vectors; kernel SVM
SVM Related Links

- SVM Website: http://www.kernel-machines.org/

- Representative implementations
 - **LIBSVM**: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - **SVM-light**: simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - **SVM-torch**: another recent implementation also written in C

- From classification to regression and ranking:
More about Lagrangian

• Objective with equality constraints

\[
\min_w f(w) \\
\text{s.t.} \\
h_i(w) = 0, \text{for } i = 1, 2, \ldots, l
\]

• Lagrangian:

\[
L(w, \alpha) = f(w) + \sum_i \alpha_i h_i(w)
\]

• \(\alpha_i\): Lagrangian multipliers

• Solution: setting the derivatives of Lagrangian to be 0

\[
\frac{\partial L}{\partial w} = 0 \text{ and } \frac{\partial L}{\partial \alpha_i} = 0 \text{ for every } i
\]
Generalized Lagrangian

• Objective with both equality and inequality constraints

\[
\min_{w} f(w) \\
\text{s.t.} \\
h_i(w) = 0, \text{for } i = 1,2, \ldots, l \\
g_j(w) \leq 0, \text{for } j = 1,2, \ldots, k
\]

• Lagrangian

\[
L(w, \alpha, \beta) = f(w) + \sum_i \alpha_i h_i(w) + \sum_j \beta_j g_j(w)
\]

• \(\alpha_i\): Lagrangian multipliers
• \(\beta_j \geq 0\): Lagrangian multipliers
Why It Works

• Consider function

\[\theta_p(w) = \max_{\alpha, \beta: \beta_j \geq 0} L(w, \alpha, \beta) \]

• \[\theta_p(w) = \begin{cases} f(w), & \text{if } w \text{ satisfies all constraints} \\ \infty, & \text{if } w \text{ doesn't satisfy constraints} \end{cases} \]

• Therefore, minimize \(f(w) \) with constraints is equivalent to minimize \(\theta_p(w) \)
Lagrange Duality

• The primal problem
 \[p^* = \min_w \max_{\alpha, \beta : \beta_j \geq 0} L(w, \alpha, \beta) \]

• The dual problem
 \[d^* = \max_{\alpha, \beta : \beta_j \geq 0} \min_w L(w, \alpha, \beta) \]

• According to max-min inequality
 \[p^* \leq d^* \]

 • When does equation hold?
Primal = Dual

- $p^* = d^*$, under some proper condition (Slater conditions)
 - f, g_j convex, h_i affine
 - Exists w, such that all $g_j(w) < 0$
- (w^*, α^*, β^*) need to satisfy KKT conditions
 - $\frac{\partial L}{\partial w} = 0$
 - $\beta_j g_j(w) = 0$
 - $h_i(w) = 0, g_j(w) \leq 0, \beta_j \geq 0$