09: Vector Data: Clustering Basics

Instructor: Yizhou Sun
yzsun@cs.ucla.edu

February 6, 2019
Methods to Learn

<table>
<thead>
<tr>
<th></th>
<th>Vector Data</th>
<th>Set Data</th>
<th>Sequence Data</th>
<th>Text Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Logistic Regression; Decision Tree; KNN; SVM; NN</td>
<td></td>
<td></td>
<td>Naïve Bayes for Text</td>
</tr>
<tr>
<td>Clustering</td>
<td>K-means; hierarchical clustering; DBSCAN; DBSCAN; Mixture Models</td>
<td></td>
<td></td>
<td>PLSA</td>
</tr>
<tr>
<td>Prediction</td>
<td>Linear Regression; GLM*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequent Pattern Mining</td>
<td>Apriori; FP growth</td>
<td>GSP; PrefixSpan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similarity Search</td>
<td></td>
<td></td>
<td></td>
<td>DTW</td>
</tr>
</tbody>
</table>
Vector Data: Clustering Basics

• Clustering Analysis: Basic Concepts

• Partitioning methods

• Hierarchical Methods

• Density-Based Methods

• Summary
What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms
Applications of Cluster Analysis

- Data reduction
 - Summarization: Preprocessing for regression, PCA, classification, and association analysis
 - Compression: Image processing: vector quantization
- Prediction based on groups
 - Cluster & find characteristics/patterns for each group
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection: Outliers are often viewed as those “far away” from any cluster
Clustering: Application Examples

- **Biology**: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- **Information retrieval**: document clustering
- **Land use**: Identification of areas of similar land use in an earth observation database
- **Marketing**: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- **City-planning**: Identifying groups of houses according to their house type, value, and geographical location
- **Earth-quake studies**: Observed earth quake epicenters should be clustered along continent faults
- **Climate**: understanding earth climate, find patterns of atmospheric and ocean
Vector Data: Clustering Basics

• Clustering Analysis: Basic Concepts
• Partitioning methods
• Hierarchical Methods
• Density-Based Methods
• Summary
Partitioning Algorithms: Basic Concept

• **Partitioning method:** Partitioning a dataset D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_j is the centroid or medoid of cluster C_j)

$$J = \sum_{j=1}^{k} \sum_{C(i)=j} d(x_i, c_j)^2$$

• Given k, find a partition of k clusters that optimizes the chosen partitioning criterion

 • **Global optimal:** exhaustively enumerate all partitions

 • **Heuristic methods:** *k-means* and *k-medoids* algorithms

 • **k-means** (MacQueen’67, Lloyd’57/’82): Each cluster is represented by the center of the cluster

 • **k-medoids** or PAM (Partition around medoids) (Kaufman & Rousseeuw’87): Each cluster is represented by one of the objects in the cluster
The \textit{K-Means Clustering Method}

- Given k, the \textit{k-means} algorithm is implemented in four steps:

 \begin{itemize}
 \item Step 0: Partition objects into k nonempty subsets
 \item Step 1: Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., \textit{mean point}, of the cluster)
 \item Step 2: Assign each object to the cluster with the nearest seed point
 \item Step 3: Go back to Step 1, stop when the assignment does not change
 \end{itemize}
An Example of *K*-Means Clustering

- Partition objects into \(k \) nonempty subsets
- Repeat
 - Compute centroid (i.e., mean point) for each partition
 - Assign each object to the cluster of its nearest centroid
- Until no change

The initial data set

\(K=2 \)

 Arbitrarily partition objects into \(k \) groups

Loop if needed

Update the cluster centroids

Reassign objects

Update the cluster centroids
Theory Behind K-Means

• Objective function

 \[J = \sum_{j=1}^{k} \sum_{c(i)=j} ||x_i - c_j||^2 \]

• Re-arrange the objective function

 \[J = \sum_{j=1}^{k} \sum_i w_{ij} ||x_i - c_j||^2 \]

 • \(w_{ij} \in \{0,1\} \)

 • \(w_{ij} = 1, \text{ if } x_i \text{ belongs to cluster } j; w_{ij} = 0, \text{ otherwise} \)

• Looking for:

 • The best assignment \(w_{ij} \)

 • The best center \(c_j \)
Solution of K-Means

- **Iterations**

 - **Step 1:** Fix centers c_j, find assignment w_{ij} that minimizes J

 $\Rightarrow w_{ij} = 1, \text{if } ||x_i - c_j||^2$ is the smallest

 - **Step 2:** Fix assignment w_{ij}, find centers that minimize J

 \Rightarrow first derivative of $J = 0$

 $\Rightarrow \frac{\partial J}{\partial c_j} = -2 \sum_i w_{ij} (x_i - c_j) = 0$

 $\Rightarrow c_j = \frac{\sum_i w_{ij} x_i}{\sum_i w_{ij}}$

 • Note $\sum_i w_{ij}$ is the total number of objects in cluster j
Comments on the *K*-Means Method

- **Strength**: *Efficient*: $O(tkn)$, where n is # objects, k is # clusters, and t is # iterations. Normally, $k, t << n$.

- **Comment**: Often terminates at a *local optimal*

- **Weakness**
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify k, the *number* of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
 - Sensitive to noisy data and *outliers*
 - Not suitable to discover clusters with *non-convex shapes*
Variations of the *K-Means* Method*

- Most of the variants of the *k-means* which differ in
 - Selection of the initial *k* means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: *k-modes*
 - Replacing means of clusters with *modes*
 - Using new dissimilarity measures to deal with categorical objects
 - Using a *frequency*-based method to update modes of clusters
- A mixture of categorical and numerical data: *k-prototype* method
The K-Medoid Clustering Method*

- **K-Medoids Clustering**: Find *representative* objects (medoids) in clusters
 - **PAM** (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)
 - Starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - **PAM** works effectively for small data sets, but does not scale well for large data sets (due to the computational complexity)
 - Efficiency improvement on PAM
 - **CLARA** (Kaufmann & Rousseeuw, 1990): PAM on samples
 - **CLARANS** (Ng & Han, 1994): Randomized re-sampling
Vector Data: Clustering Basics

• Clustering Analysis: Basic Concepts
• Partitioning methods
• Hierarchical Methods
• Density-Based Methods
• Summary
Hierarchical Clustering

- Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition.
AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical packages, e.g., Splus
- Use the single-link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster
Pseudo Code

• Initialization: Place each data point into its own cluster and compute distance matrix between clusters

• Repeat:
 • Merge the two closest clusters
 • Update the distance matrix for the affected entries

• Until: all the data are merged into a single cluster
Dendrogram: Shows How Clusters are Merged

Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram.

A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.
DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own
Distance between Clusters

- **Single link**: smallest distance between an element in one cluster and an element in the other, i.e., \(\text{dist}(K_i, K_j) = \min \text{dist}(t_{ip}, t_{jq}) \)

- **Complete link**: largest distance between an element in one cluster and an element in the other, i.e., \(\text{dist}(K_i, K_j) = \max \text{dist}(t_{ip}, t_{jq}) \)

- **Average**: avg distance between an element in one cluster and an element in the other, i.e., \(\text{dist}(K_i, K_j) = \text{avg dist}(t_{ip}, t_{jq}) \)

- **Centroid**: distance between the centroids of two clusters, i.e., \(\text{dist}(K_i, K_j) = \text{dist}(C_i, C_j) \)

- **Medoid**: distance between the medoids of two clusters, i.e., \(\text{dist}(K_i, K_j) = \text{dist}(M_i, M_j) \)
 - **Medoid**: a chosen, centrally located object in the cluster
Example: Single Link vs. Complete Link

(a) Data set

(b) Clustering using single linkage

(c) Clustering using complete linkage
Extensions to Hierarchical Clustering

- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - Do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects

- Integration of hierarchical & distance-based clustering
 - **BIRCH (1996)**: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - **CHAMELEON (1999)**: hierarchical clustering using dynamic modeling
Vector Data: Clustering Basics

• Clustering Analysis: Basic Concepts
• Partitioning methods
• Hierarchical Methods
• Density-Based Methods
• Summary
Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD’96)
 - DENCLUE*: Hinneburg & D. Keim (KDD’98)
 - CLIQUE*: Agrawal, et al. (SIGMOD’98) (more grid-based)
DBSCAN: Basic Concepts

• Two parameters:
 • \(Eps \): Maximum radius of the neighborhood
 • \(MinPts \): Minimum number of points in an Eps-neighborhood of that point

• \(N_{Eps}(q) \): \{p belongs to D | \(\text{dist}(p,q) \leq Eps \}\}

• Directly density-reachable: A point \(p \) is directly density-reachable from a point \(q \) w.r.t. \(Eps, MinPts \) if
 • \(p \) belongs to \(N_{Eps}(q) \)
 • \(q \) is a core point, core point condition: \(|N_{Eps}(q)| \geq MinPts \)

MinPts = 5
Eps = 1 cm
Density-Reachable and Density-Connected

• Density-reachable:

 • A point p is **density-reachable** from a point q w.r.t. Eps, MinPts if there is a chain of points p_1, \ldots, p_n, $p_1 = q$, $p_n = p$ such that p_{i+1} is directly density-reachable from p_i

• Density-connected

 • A point p is **density-connected** to a point q w.r.t. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts
DBSCAN: Density-Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points
- *Noise*: object not contained in any cluster is noise
- Discovers clusters of arbitrary shape in spatial databases with noise
DBSCAN: The Algorithm

(1) mark all objects as unvisited;
(2) do
(3) randomly select an unvisited object p;
(4) mark p as visited;
(5) if the \(\epsilon \)-neighborhood of p has at least \(MinPts \) objects
(6) create a new cluster \(C \), and add p to \(C \);
(7) let \(N \) be the set of objects in the \(\epsilon \)-neighborhood of p;
(8) for each point \(p' \) in \(N \)
(9) if \(p' \) is unvisited
(10) mark \(p' \) as visited;
(11) if the \(\epsilon \)-neighborhood of \(p' \) has at least \(MinPts \) points, add those points to \(N \);
(12) if \(p' \) is not yet a member of any cluster, add \(p' \) to \(C \);
(13) end for
(14) output \(C \);
(15) else mark p as noise;
(16) until no object is unvisited;

• If a spatial index is used, the computational complexity of DBSCAN is \(O(n \log n) \), where \(n \) is the number of database objects. Otherwise, the complexity is \(O(n^2) \).
DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

DBSCAN online Demo:
Questions about Parameters

- Fix Eps, increase MinPts, what will happen?
- Fix MinPts, decrease Eps, what will happen?
Vector Data: Clustering Basics

• Clustering Analysis: Basic Concepts
• Partitioning methods
• Hierarchical Methods
• Density-Based Methods
• Summary
Summary

• Cluster analysis groups objects based on their similarity and has wide applications; Measure of similarity can be computed for various types of data
• K-means and K-medoids algorithms are popular partitioning-based clustering algorithms
• AGNES and DIANA are interesting hierarchical clustering algorithms
• DBSCAN, OPTICS*, and DENCLUE* are interesting density-based algorithms
References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering", KDD'02
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. VLDB’98.
- V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical Data Using Summaries. KDD'99.
References (2)

R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.

L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A Review, SIGKDD Explorations, 6(1), June 2004

G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB’98.

A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based Clustering in Large Databases, ICDT'01.

A. K. H. Tung, J. Hou, and J. Han. Spatial Clustering in the Presence of Obstacles, ICDE'01

H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data sets, SIGMOD’ 02.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : An efficient data clustering method for very large databases. SIGMOD'96.

Xiaoxin Yin, Jiawei Han, and Philip Yu, “LinkClus: Efficient Clustering via Heterogeneous Semantic Links”, in Proc. 2006 Int. Conf. on Very Large Data Bases (VLDB'06), Seoul, Korea, Sept. 2006.