10: Vector Data: Mixture Model

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

February 10, 2019
Methods to Learn

<table>
<thead>
<tr>
<th></th>
<th>Vector Data</th>
<th>Set Data</th>
<th>Sequence Data</th>
<th>Text Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Logistic Regression; Decision Tree; KNN SVM; NN</td>
<td></td>
<td></td>
<td>Naïve Bayes for Text</td>
</tr>
<tr>
<td>Clustering</td>
<td>K-means; hierarchical clustering; DBSCAN; Mixture Models</td>
<td></td>
<td></td>
<td>PLSA</td>
</tr>
<tr>
<td>Prediction</td>
<td>Linear Regression GLM*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequent Pattern Mining</td>
<td>Apriori; FP growth</td>
<td>GSP; PrefixSpan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similarity Search</td>
<td></td>
<td></td>
<td></td>
<td>DTW</td>
</tr>
</tbody>
</table>
Vector Data: Mixture Model

- Revisit K-means

- Mixture Model and EM algorithm

- Summary
Recall K-Means

• Objective function
 \[J = \sum_{j=1}^{k} \sum_{C(i)=j} \|x_i - c_j\|^2 \]
 • Total within-cluster variance
• Re-arrange the objective function
 \[J = \sum_{j=1}^{k} \sum_i w_{ij} \|x_i - c_j\|^2 \]
 • \(w_{ij} \in \{0,1\} \)
 • \(w_{ij} = 1, \) if \(x_i \) belongs to cluster \(j; w_{ij} = 0, \) otherwise
• Looking for:
 • The best assignment \(w_{ij} \)
 • The best center \(c_j \)
Solution of K-Means

- **Iterations**

 - **Step 1:** Fix centers c_j, find assignment w_{ij} that minimizes J
 - $w_{ij} = 1$, if $||x_i - c_j||^2$ is the smallest

 - **Step 2:** Fix assignment w_{ij}, find centers that minimize J
 - $J = \sum_{j=1}^{k} \sum_i w_{ij} ||x_i - c_j||^2$
 - First derivative of $J = 0$
 - $\frac{\partial J}{\partial c_j} = -2 \sum_i w_{ij} (x_i - c_j) = 0$
 - $c_j = \frac{\sum_i w_{ij} x_i}{\sum_i w_{ij}}$
 - Note $\sum_i w_{ij}$ is the total number of objects in cluster j
Converges! Why?
Limitations of K-Means

- K-means has problems when clusters are of different
 - Sizes and density
 - Non-Spherical Shapes
Limitations of K-Means: Different Sizes and Variances

Original Points

K-means (3 Clusters)
Example

- Consider the cost of K-means in two cases

Recall: $J = \sum_{j=1}^{k} \sum_{C(i)=j} ||x_i - c_j||^2$
Limitations of K-Means: Non-Spherical Shapes

Original Points

K-means (2 Clusters)
Vector Data: Mixture Model

- Revisit K-means
- Mixture Model and EM algorithm
- Summary
Hard Clustering vs. Soft Clustering

- **Hard Clustering**
 - Every object \(i\) is assigned to one cluster \(j\), e.g., k-means
 - \(w_{ij} = \{0,1\}\) and \(\sum_j w_{ij} = 1\)

- **Soft Clustering**
 - Every object \(i\) is assigned with a probability to different clusters
 - \(w_{ij} \in [0,1]\) and \(\sum_j w_{ij} = 1\)
Mixture Model-Based Clustering

- A set C of k probabilistic clusters C_1, \ldots, C_k
 - probability density functions: f_1, \ldots, f_k,
 - Cluster prior probabilities: w_1, \ldots, w_k, $\sum_j w_j = 1$
- Joint Probability of an object i and its cluster C_j is:
 - $p(x_i, z_i = C_j) = w_j f_j(x_i)$
 - z_i: hidden random variable
- Probability of i is:
 - $p(x_i) = \sum_j w_j f_j(x_i)$
Maximum Likelihood Estimation

Since objects are assumed to be generated independently, for a data set $D = \{x_1, \ldots, x_n\}$, we have,

$$p(D) = \prod_i p(x_i) = \prod_i \sum_j w_j f_j(x_i)$$

$$\Rightarrow \log p(D) = \sum_i \log p(x_i) = \sum_i \log \sum_j w_j f_j(x_i)$$

Task: Find k probabilistic clusters s.t. $p(D)$ is maximized
The EM (Expectation Maximization) Algorithm

• **The (EM) algorithm**: A framework to approach maximum likelihood or maximum a posteriori estimates of parameters in statistical models.

• **E-step** assigns objects to clusters according to the current soft clustering or parameters of probabilistic clusters

 \[w_{ij}^{t+1} = p(z_i = j | \theta_j^t, x_i) \propto p(x_i | z_i = j, \theta_j^t) p(z_i = j) \]

• **M-step** finds the new clustering or parameters that maximize the expected likelihood, with respect to conditional distribution \(p(z_i = j | \theta_j^t, x_i) \)

 \[\theta^{t+1} = \operatorname{argmax}_\theta \sum_i \sum_j w_{ij}^{t+1} \log p(x_i, z_i = j | \theta) \]
Gaussian Mixture Model

• Generative model
 • For each object:
 • Pick its cluster, i.e., a distribution component: $Z \sim \text{Multinoulli}(w_1, \ldots, w_k)$
 • Sample a value from the selected distribution: $X|Z \sim N(\mu_Z, \sigma_Z^2)$

• Overall likelihood function
 • $L(D|\theta) = \prod_i \sum_j w_j p(x_i|\mu_j, \sigma_j^2)$
 s.t. $\sum_j w_j = 1$ and $w_j \geq 0$
 • Q: What is θ here?
Apply EM algorithm: 1-d

• An iterative algorithm (at iteration t+1)
 • E (expectation)-step
 • Evaluate the weight w_{ij} when μ_j, σ_j, w_j are given
 $$w_{ij}^{t+1} = \frac{w_j^{t}f_j(x_i)}{\sum_k w_k^{t}f_k(x_i)}$$
 • M (maximization)-step
 • Find μ_j, σ_j, w_j that maximize the weighted log likelihood, where w_{ij}’s are the weights:
 $$\sum_{ij} w_{ij}^{t+1} \log w_j p(x_i | \mu_j, \sigma_j^2)$$
 • It is equivalent to Gaussian distribution parameter estimation when each point has a weight belonging to each distribution

 $$\mu_j^{t+1} = \frac{\sum_i w_{ij}^{t+1} x_i}{\sum_i w_{ij}^{t+1}}; (\sigma_j^2)^{t+1} = \frac{\sum_i w_{ij}^{t+1}(x_i - \mu_j^{t+1})^2}{\sum_i w_{ij}^{t+1}}; w_j^{t+1} = \frac{\sum_i w_{ij}^{t+1}}{n}$$
Example: 1-D GMM

- Blue curve: ground truth distribution
- Sample data points from blue curve
- Red curve: estimated distribution
2-d Gaussian

- Bivariate Gaussian distribution

- Two dimensional random variable: \(X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \)

\[
\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N(\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma(X_1, X_2) \\ \sigma(X_1, X_2) & \sigma_2^2 \end{pmatrix})
\]

- \(\mu_1 \) and \(\mu_2 \) are means of \(X_1 \) and \(X_2 \)
- \(\sigma_1 \) and \(\sigma_2 \) are standard deviations of \(X_1 \) and \(X_2 \)
- \(\sigma(X_1, X_2) \) is the covariance between \(X_1 \) and \(X_2 \), i.e., \(\sigma(X_1, X_2) = E(X_1 - \mu_1)(X_2 - \mu_2) \)
Apply EM algorithm: 2-d

- An iterative algorithm (at iteration t+1)
 - E(expectation)-step
 - Evaluate the weight w_{ij} when μ_j, Σ_j, w_j are given

 \[
 w_{ij}^{t+1} = \frac{w_j^t p(x_i | \mu_j^t, \Sigma_j^t)}{\sum_j w_j^t p(x_i | \mu_j^t, \Sigma_j^t)}
 \]
 - M(maximization)-step
 - Find μ_j, Σ_j, w_j that maximize the weighted likelihood, where w_{ij}'s are weights: $\sum_{ij} w_{ij}^{t+1} \log w_j p(x_i | \mu_j, \Sigma_j)$
 - It is equivalent to Gaussian distribution parameter estimation when each point has a weight belonging to each distribution

 \[
 \begin{align*}
 \mu_j^{t+1} &= \frac{\sum_i w_{ij}^{t+1} x_i}{\sum_i w_{ij}^{t+1}};
 (\sigma_{j,1})^{t+1} &= \frac{\sum_i w_{ij}^{t+1} \left\| x_{i,1} - \mu_j^{t+1} \right\|^2}{\sum_i w_{ij}^{t+1}}; \\
 (\sigma_{j,2})^{t+1} &= \frac{\sum_i w_{ij}^{t+1} \left\| x_{i,2} - \mu_j^{t+1} \right\|^2}{\sum_i w_{ij}^{t+1}};
 \end{align*}
 \]

 \[
 (\sigma (X_1, X_2)_j)^{t+1} = \frac{\sum_i w_{ij}^{t+1} (x_{i,1} - \mu_j^{t+1})(x_{i,2} - \mu_j^{t+1})}{\sum_i w_{ij}^{t+1}}; w_j^{t+1} \propto \sum_i w_{ij}^{t+1}
 \]
K-Means: A Special Case of Gaussian Mixture Model

- When each Gaussian component with covariance matrix $\sigma^2 I$, and with the same size w_j
 - **Soft K-means**
 - $w_{ij} \propto p(x_i | \mu_j, \sigma^2) w_j \propto \exp \left\{ - \frac{(x_i - \mu_j)^2}{2\sigma^2} \right\} w_j$

- When $\sigma^2 \rightarrow 0$
 - **Soft assignment becomes hard assignment**
 - $w_{ij} \rightarrow 1, \text{if } x_i \text{ is closest to } \mu_j$ (why?)
Mapping Soft Clustering to Hard Clustering

- For evaluation purpose
 - $j^* = \arg\max_j w_{ij}$
 - $w_{ij^*} = 1; w_{ij} = 0$ for all other $j \neq j^*$

- Example:
 - $K = 3$; the output of GMM for object i is
 - $w_{i1} = 0.7, w_{i2} = 0.2, w_{i3} = 0.1$
 - \Rightarrow mapping result: assign i to cluster 1
Why EM Works?*

• **E-Step:** computing a **tight** lower bound L of the original objective function l at θ_{old}
• **M-Step:** find θ_{new} to maximize the lower bound
• $l(\theta_{new}) \geq L(\theta_{new}) \geq L(\theta_{old}) = l(\theta_{old})$
How to Find Tight Lower Bound?*

\[\ell(\theta) = \log \sum_h p(d, h; \theta) \]
\[= \log \sum_h \frac{q(h)}{q(h)} p(d, h; \theta) \]
\[= \log \sum_h q(h) \frac{p(d, h; \theta)}{q(h)} \]

- Jensen’s inequality

\[\log \sum_h q(h) \frac{p(d, h; \theta)}{q(h)} \geq \sum_h q(h) \log \frac{p(d, h; \theta)}{q(h)} \]

- When “=” holds to get a tight lower bound?
 - \(q(h) = p(h|d, \theta) \) (why?)

* q(h): the key to tight lower bound we want to get

the tight lower bound
In GMM Case*

\[L(D; \theta) = \sum_i \log \sum_j w_j p(x_i | \mu_j, \sigma_j^2) \]

\[\geq \sum_i \sum_j w_{ij} \left(\log w_j p(x_i | \mu_j, \sigma_j^2) - \log w_{ij} \right) \]

log \(L(x_i, z_i = j | \theta) \)

Does not involve \(\theta \), can be dropped.
Advantages and Disadvantages of GMM

- **Strength**
 - Mixture models are more general than partitioning: different densities and sizes of clusters
 - Clusters can be characterized by a small number of parameters
 - The results may satisfy the statistical assumptions of the generative models

- **Weakness**
 - Converge to local optimal (overcome: run multi-times w. random initialization)
 - Computationally expensive if the number of distributions is large
 - Hard to estimate the number of clusters
 - Can only deal with spherical clusters
Vector Data: Mixture Model

• Revisit K-means

• Mixture Model and EM algorithm

• Summary
Summary

- Revisit k-means
 - Limitations
- Mixture models
 - Gaussian mixture model; multinomial mixture model; EM algorithm; Connection to k-means