1: Introduction

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

January 7, 2019
Instructor

• Yizhou Sun
 • yzsun@cs.ucla.edu
 • http://web.cs.ucla.edu/~yzsun/

• Research areas
 • Social/information network mining, graph mining, text mining, web mining
 • Data mining, machine learning
Logistics of the Course

• Grading
 • Participation: 5%
 • Homework: 25%
 • Paper presentation: 30%
 • Group-based
 • Course project: 40%
 • Group-based
Lectures

- Part I: Lectures by the instructor (5 weeks)
 - Cover the basic materials
- Part II: paper presentation by students (4-5 weeks)
 - Extended materials, which require in-depth reading of papers
- Part III: course project presentation (final week)
Homework

• 2-3 homework in Part I
• A quick quiz style homework for each paper, due every week in Part II
Paper Presentation

- **What to present**
 - Each student sign-up for one group of research papers
 - Every group can be signed by at most 4 students
- **How long for each presentation?**
 - 1 lecture, including Q&A
- **When to present**
 - From Week 6 to Week 10
- **How to present**
 - Make slides, when necessary, using blackboard
- **What else?**
 - Design a homework with 3 quick questions
 - Could be multi-choice, true/false, or other types of questions
 - Send the slides and homework (with correct answer) to me the day before the lecture
Course Project

• Research project
 • Goal: design a probabilistic graphical model to solve the candidate problems, and write a report that is potentially submitted to some venue for publication

• Teamwork
 • 3-4 people per group

• Timeline
 • Team formation due date: Week 2
 • Proposal due date: Week 5
 • Presentation due date: 3/20/2019, final exam time
 • Final report due date: 3/20/2019
 • What to submit: project report and code
Content

• What are probabilistic models
• What are structured data
• Applications
• Key tasks and challenges
A Typical Machine Learning Problem

• Given a feature vector \mathbf{x}, predict its label y (discrete or continuous)

\[y = f(\mathbf{x}) \]

• Example: Text classification

 • Given a news article, which category does it belong to?

Argentina played to a frustrating 1-1 ties against Iceland on Saturday. A stubborn Icelandic defense was increasingly tough to penetrate, and a Lionel MESSI missed penalty was a huge turning point in the match, because it likely would’ve given Argentina three points.
Probabilistic Models

- Data: \(D = \{(x_i, y_i)\}_{i=1}^{n} \)
 - \(n \): number of data points
- Model: \(p(D | \theta) \) or \(p_{\theta}(D) \)
 - Use probability distribution to address uncertainty
 - \(\theta \): parameters in the model
- Inference: ask questions about the model
 - Marginal inference: marginal probability of a variable
 - Maximum a posteriori (MAP) inference: most likely assignment of variables
- Learning: learn the best parameters \(\theta \)
The I.I.D. Assumption

• Assume data points are independent and identically distributed (i.i.d.)
 • \(p(D|\theta) = \prod_i p(x_i, y_i|\theta) \) (if modeling joint distribution)
 • \(p(D|\theta) = \prod_i p(y_i|x_i, \theta) \) (if modeling conditional distribution, conditional i.i.d.)

• Example: linear regression
 • \(y_i|x_i, \beta \sim N(x_i^T \beta, \sigma^2) \)
 • \(y_i = x_i^T \beta + \varepsilon_i, \) where \(\varepsilon_i \sim N(0, \sigma^2) \)

\[
p(D|\beta) = \prod_i p(y_i|x_i, \beta) = \prod_i \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{(y_i - x_i^T \beta)^2}{2\sigma^2} \right\}
\]

\(L(\beta): \text{likelihood function} \)
Content

• What are probabilistic models

• What are structured data

• Applications

• Key tasks and challenges
Structured Data

- Dependency between data points
 - Dependency are described by links
- Example: paper citation network
 - Citation between papers introduces dependency
Examples of Structured Data

- Text
- sequence
- Image
 - Grid / regular graph
- Social/Information Network
 - General graph
Roles of Data Dependency

- I.I.D. or conditional I.I.D. assumption no longer holds
 - \(p(D|\theta) \neq \prod_i p(x_i, y_i|\theta), \) or
 - \(p(D|\theta) \neq \prod_i p(y_i|x_i, \theta) \)

- Example
 - In paper citation network, a paper is more likely to share the same label (research area) of its references

<table>
<thead>
<tr>
<th>Paper i’s label</th>
<th>Paper j’s label</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Suppose i cites j or j cites i
Scope of This Course

- A subset of probabilistic graphical model
 - Consider data dependency
 - Markov Random Fields, Conditional Random Fields, Factor Graph, and their applications in text, image, and social/information networks

- A full cover of probabilistic graphical models can be found:
 - Stanford course
 - Stefano Ermon, CS 228: Probabilistic Graphical Models
 - Daphne Koller, Probabilistic Graphical Models, YouTube
 - CMU course
 - Eric Xing, 10-708: Probabilistic Graphical Models
Content

• What are probabilistic models

• What are structured data

• Applications

• Key tasks and challenges
Text NER

• Named-Entity Recognition
 • Given a predefined label set, determine each word’s label
 • E.g., B-PER, I-PER, O
 • Possible solution: Conditional random field
 • https://nlp.stanford.edu/software/CRF-NER.html

Named Entity Recognition:

1. At the W party Thursday night at Chateau Marmont, Cate Blanchett barely made it up in the elevator.
Image Semantic Labeling

- Determine the label of each pixel
 - Given a predefined label set, determine each pixel’s label
 - Possible solution: Conditional random field
Social Network Node Classification

- Attribute prediction of Facebook users
 - E.g., gender
 - Zheleva et al., Higher-order Graphical Models for Classification in Social and Affiliation Networks, NIPS’2010
Content

• What are probabilistic models

• What are structured data

• Applications

• Key tasks and challenges
Key Tasks

• Model
 • From data model to graphical model
 • Define joint probability of all the data according to graphical model
 • \(p(D|\theta) \) or \(p_\theta(D) \)

• Inference
 • Marginal inference: marginal probability of a variable
 • Maximum a posteriori (MAP) inference: most likely assignment of variables

• Learning
 • Learn the best parameters \(\theta \)
Key Challenges

• Design challenges in modeling
 • How to use heuristics to design meaningful graphical model?
• Computational challenges in inference and learning
 • Usually are NP-hard problems
 • Need approximate algorithms
Course Overview

- Preliminary
 - Introduction
- Basic probabilistic models
 - Naïve Bayes
 - Logistic Regression
- Warm up: Hidden Markov Models
 - Forward Algorithm, Viterbi Algorithm, The Forward-Backward Algorithm
- Markov Random Fields
 - General MRF, Pairwise MRF
 - Variable elimination, sum-product message passing, max-product message passing, exponential family, pseudo-likelihood
- Conditional Random Fields
 - General CRF, Linear Chain CRF
- Factor Graph
Probability Review

- Follow Stanford CS229 Probability Notes
 - http://cs229.stanford.edu/section/cs229-prob.pdf
Major Concepts

• Elements of Probability
 • Sample space, event space, probability measure
 • Conditional probability
 • Independence, conditional independence

• Random variables
 • Cumulative distribution function, Probability mass function (for discrete random variable), Probability density function (for continuous random variable)
 • Expectation, variance
 • Some frequently used distributions
 • Discrete: Bernoulli, binomial, geometric, poisson
 • Continuous: uniform, exponential, normal

• More random variables
 • Joint distribution, marginal distribution, joint and marginal probability mass function, joint and marginal density function
 • Chain rule
 • Bayes’ rule
 • Independence
 • Expectation, conditional expectation, and covariance
Summary

• What are probabilistic models
 • Model uncertainty
• What are structured data
 • Use links to capture dependency between data
• Applications
 • Text, image, social/information network
• Key tasks and challenges
 • Modeling, inference, learning
References

- Zheleva et al., Higher-order Graphical Models for Classification in Social and Affiliation Networks, NIPS’2010
- https://cs.stanford.edu/~ermon/cs228/index.html
- https://nlp.stanford.edu/software/CRF-NER.html