PROBABILISTIC MODELS FOR STRUCTURED DATA

1: Introduction

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

January 7, 2019

Instructor

- Yizhou Sun
 - yzsun@cs.ucla.edu
 - http://web.cs.ucla.edu/~yzsun/
- Research areas
 - Social/information network mining, graph mining, text mining, web mining
 - Data mining, machine learning

Logistics of the Course

- Grading
 - Participation: 5%
 - Homework: 25%
 - Paper presentation: 30%
 - Group-based
 - Course project: 40%
 - Group-based

Lectures

- Part I: Lectures by the instructor (5 weeks)
 - Cover the basic materials
- Part II: paper presentation by students (4-5 weeks)
 - Extended materials, which require in-depth reading of papers
- Part III: course project presentation (final week)

Homework

- 2-3 homework in Part I
- A quick quiz style homework for each paper, due every week in Part II

Paper Presentation

- What to present
 - Each student sign-up for one group of research papers
 - Every group can be signed by at most 4 students
- How long for each presentation?
 - 1 lecture, including Q&A
- When to present
 - From Week 6 to Week 10
- How to present
 - Make slides, when necessary, using blackboard
- What else?
 - Design a homework with 3 quick questions
 - Could be multi-choice, true/false, or other types of questions
 - Send the slides and homework (with correct answer) to me the day before the lecture

Course Project

Research project

- Goal: design a probabilistic graphical model to solve the candidate problems, and write a report that is potentially submitted to some venue for publication
- Teamwork
 - 3-4 people per group

Timeline

- Team formation due date: Week 2
- Proposal due date: Week 5
- Presentation due date: 3/20/2019, final exam time
- Final report due date: 3/20/2019
 - What to submit: project report and code

Content

What are probabilistic models

What are structured data

Applications

Key tasks and challenges

A Typical Machine Learning Problem

Given a feature vector x, predict its label y
 (discrete or continuous)

$$y = f(x)$$

- Example: Text classification
 - Given a news article, which category does it belong to?

Argentina played to a frustrating 1-1 ties against Iceland on Saturday. A stubborn Icelandic defense was increasingly tough to penetrate, and a Lionel MESSI missed penalty was a huge turning point in the match, because it likely would've given Argentina three points.

SportsPoliticsEducation

Probabilistic Models

- Data: $D = \{(x_i, y_i)\}_{i=1}^n$
 - n: number of data points
- Model: $p(D|\theta)$ or $p_{\theta}(D)$
 - Use probability distribution to address uncertainty
 - θ : parameters in the model
- Inference: ask questions about the model
 - Marginal inference: marginal probability of a variable
 - Maximum a posteriori (MAP) inference: most likely assignment of variables
- ullet Learning: learn the best parameters heta

The I.I.D. Assumption

- Assume data points are independent and identically distributed (i.i.d.)
 - $p(D|\theta) = \prod_i p(x_i, y_i|\theta)$ (if modeling joint distribution)
 - $p(D|\theta) = \prod_i p(y_i|x_i,\theta)$ (if modeling conditional distribution, conditional i.i.d.)
- Example: linear regression
 - $y_i | \boldsymbol{x}_i, \boldsymbol{\beta} \sim N(\boldsymbol{x}_i^T \boldsymbol{\beta}, \sigma^2)$
 - $y_i = \mathbf{x}_i^T \mathbf{\beta} + \varepsilon_i$, where $\varepsilon_i \sim N(0, \sigma^2)$

$$p(D|\boldsymbol{\beta}) = \prod_{i} p(y_{i}|\boldsymbol{x}_{i},\boldsymbol{\beta}) = \prod_{i} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\{-\frac{(y_{i} - \boldsymbol{x}_{i}^{T}\boldsymbol{\beta})^{2}}{2\sigma^{2}}\}$$

 $L(\boldsymbol{\beta})$: likelihood function

Content

What are probabilistic models

What are structured data

Applications

Key tasks and challenges

Structured Data

- Dependency between data points
 - Dependency are described by links
- Example: paper citation network
 - Citation between papers introduces dependency

Examples of Structured Data

- sequence
- Image
 - Grid / regular graph
- Social/Information Network

General graph

4-connected, \mathcal{N}_4

Roles of Data Dependency

 I.I.D. or conditional I.I.D. assumption no longer holds

- $p(D|\theta) \neq \prod_i p(x_i, y_i|\theta)$, or
- $p(D|\theta) \neq \prod_i p(y_i|x_i,\theta)$
- Example
 - In paper citation network, a paper is more likely to share the same label (research area) of its

references
Suppose i cites j
or j cites i

Paper i's label	Paper j's label	Probability
0	0	0.4
0	1	0.1
1	0	0.1
1	1	0.4

Scope of This Course

- A subset of probabilistic graphical model
 - Consider data dependency
 - Markov Random Fields, Conditional Random Fields, Factor Graph, and their applications in text, image, and social/information networks
- A full cover of probabilistic graphical models can be found:
 - Stanford course
 - <u>Stefano Ermon</u>, CS 228: Probabilistic Graphical Models
 - Daphne Koller, Probabilistic Graphical Models, YouTube
 - CMU course
 - Eric Xing, 10-708: Probabilistic Graphical Models

Content

What are probabilistic models

What are structured data

Applications

Key tasks and challenges

Text NER

- Named-Entity Recognition
 - Given a predefined label set, determine each word's label
 - E.g., B-PER, I-PER, O
 - Possible solution: Conditional random field
 - https://nlp.stanford.edu/software/CRF-NER.html

Named Entity Recognition:

Image Semantic Labeling

- Determine the label of each pixel
 - Given a predefined label set, determine each pixel's label

Possible solution: Conditional random field

Social Network Node Classification

- Attribute prediction of Facebook users
 - E.g., gender
 - Zheleva et al., Higher-order Graphical Models for Classification in Social and Affiliation Networks, NIPS'2010

Content

What are probabilistic models

What are structured data

Applications

Key tasks and challenges

Key Tasks

Model

- From data model to graphical model
- Define joint probability of all the data according to graphical model
 - $p(D|\theta)$ or $p_{\theta}(D)$

Inference

- Marginal inference: marginal probability of a variable
- Maximum a posteriori (MAP) inference: most likely assignment of variables

Learning

• Learn the best parameters θ

Key Challenges

- Design challenges in modeling
 - How to use heuristics to design meaningful graphical model?
- Computational challenges in inference and learning
 - Usually are NP-hard problems
 - Need approximate algorithms

Course Overview

- Preliminary
 - Introduction
- Basic probabilistic models
 - Naïve Bayes
 - Logistic Regression
- Warm up: Hidden Markov Models
 - Forward Algorithm, Viterbi Algorithm, The Forward-Backward Algorithm
- Markov Random Fields
 - General MRF, Pairwise MRF
 - Variable elimination, sum-product message passing, max-product message passing, exponential family, pseudo-likelihood
- Conditional Random Fields
 - General CRF, Linear Chain CRF
- Factor Graph

Probability Review

- Follow Stanford CS229 Probability Notes
 - http://cs229.stanford.edu/section/cs229prob.pdf

Major Concepts

- Elements of Probability
 - Sample space, event space, probability measure
 - Conditional probability
 - Independence, conditional independence
- Random variables
 - Cumulative distribution function, Probability mass function (for discrete random variable), Probability density function (for continuous random variable)
 - Expectation, variance
 - Some frequently used distributions
 - Discrete: Bernoulli, binomial, geometric, possion
 - Continuous: uniform, exponential, normal
- More random variables
 - Joint distribution, marginal distribution, joint and marginal probability mass function, joint and marginal density function
 - Chain rule
 - Bayes' rule
 - Independence
 - Expectation, conditional expectation, and covariance

Summary

- What are probabilistic models
 - Model uncertainty
- What are structured data
 - Use links to capture dependency between data
- Applications
 - Text, image, social/information network
- Key tasks and challenges
 - Modeling, inference, learning

References

- Daphne Koller and Nir Friedman (2009). Probabilistic Graphical Models. The MIT Press.
- Kevin P. Murphy (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.
- Charles Sutton and Andrew McCallum (2014). An Introduction to Conditional Random Fields. Now Publishers.
- Zheleva et al., Higher-order Graphical Models for Classification in Social and Affiliation Networks, NIPS'2010
- https://cs.stanford.edu/~ermon/cs228/index.html
- https://nlp.stanford.edu/software/CRF-NER.html
- http://cs229.stanford.edu/section/cs229-prob.pdf