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Instructor
• Yizhou Sun

• yzsun@cs.ucla.edu
• http://web.cs.ucla.edu/~yzsun/

• Research areas
• Social/information network mining, graph 
mining, text mining, web mining

• Data mining, machine learning
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Logistics of the Course
• Grading

• Participation: 5%
• Homework: 25%

• Paper presentation: 30%
• Group-based

• Course project: 40%
• Group-based
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Lectures
• Part I: Lectures by the instructor (5 weeks)

• Cover the basic materials
• Part II: paper presentation by students (4-5 
weeks)
• Extended materials, which require in-depth 
reading of papers

• Part III: course project presentation (final week)
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Homework
• 2-3 homework in Part I
• A quick quiz style homework for each paper, 
due every week in Part II

5



Paper Presentation
• What to present

• Each student sign-up for one group of research papers
• Every group can be signed by at most 4 students

• How long for each presentation?
• 1 lecture, including Q&A

• When to present
• From Week 6 to Week 10

• How to present
• Make slides, when necessary, using blackboard

• What else?
• Design a homework with 3 quick questions

• Could be multi-choice, true/false, or other types of questions
• Send the slides and homework (with correct answer) to 
me the day before the lecture
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Course Project
• Research project

• Goal: design a probabilistic graphical model to solve 
the candidate problems, and write a report that is 
potentially submitted to some venue for publication

• Teamwork
• 3-4 people per group

• Timeline
• Team formation due date: Week 2
• Proposal due date: Week 5
• Presentation due date: 3/20/2019, final exam time
• Final report due date: 3/20/2019

• What to submit: project report and code
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Content
• What are probabilistic models

• What are structured data

• Applications

• Key tasks and challenges
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A Typical Machine Learning Problem
• Given a feature vector x, predict its label y 
(discrete or continuous)

𝑦𝑦 = 𝑓𝑓 𝒙𝒙
• Example: Text classification

• Given a news article, which category does it belong to?

9

Argentina played to a frustrating 1-1 ties against 
Iceland on Saturday. A stubborn Icelandic defense 
was increasingly tough to penetrate, and a Lionel 
MESSI missed penalty was a huge turning point in 
the match, because it likely would’ve given Argentina 
three points.

Sports
Politics
Education
…
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Probabilistic Models
• Data: 𝐷𝐷 = 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1

𝑛𝑛

• n: number of data points
• Model: 𝑝𝑝 𝐷𝐷 𝜃𝜃 𝑜𝑜𝑜𝑜 𝑝𝑝𝜃𝜃(𝐷𝐷)

• Use probability distribution to address uncertainty
• 𝜃𝜃: parameters in the model

• Inference: ask questions about the model
• Marginal inference: marginal probability of a 
variable

• Maximum a posteriori (MAP) inference: most likely 
assignment of variables

• Learning: learn the best parameters 𝜃𝜃
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The I.I.D. Assumption
• Assume data points are independent and identically 

distributed (i.i.d.)
• 𝑝𝑝 𝐷𝐷|𝜃𝜃 = ∏𝑖𝑖 𝑝𝑝(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖|𝜃𝜃) (if modeling joint distribution)
• 𝑝𝑝 𝐷𝐷|𝜃𝜃 = ∏𝑖𝑖 𝑝𝑝(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖 ,𝜃𝜃) (if modeling conditional 
distribution, conditional i.i.d.)

• Example: linear regression
• 𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖 ,𝜷𝜷~𝑁𝑁(𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷,𝜎𝜎2)

• 𝑦𝑦𝑖𝑖 = 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷 + ε𝑖𝑖 , where ε𝑖𝑖~𝑁𝑁 0,𝜎𝜎2

𝑝𝑝 𝐷𝐷 𝜷𝜷 = �
𝑖𝑖

𝑝𝑝 𝑦𝑦𝑖𝑖 𝒙𝒙𝑖𝑖 ,𝜷𝜷) = �
𝑖𝑖

1
2𝜋𝜋𝜎𝜎2

exp{−
𝑦𝑦𝑖𝑖 − 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷

2

2𝜎𝜎2
}
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Content
• What are probabilistic models

• What are structured data

• Applications

• Key tasks and challenges
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Structured Data
• Dependency between data points

• Dependency are described by links
• Example: paper citation network

• Citation between papers introduces dependency
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Examples of Structured Data
• Text

• sequence
• Image

• Grid / regular graph
• Social/Information Network

• General graph
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Roles of Data Dependency 
• I.I.D. or conditional I.I.D. assumption no longer 
holds
• 𝑝𝑝 𝐷𝐷|𝜃𝜃 ≠ ∏𝑖𝑖 𝑝𝑝 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝜃𝜃 , or
• 𝑝𝑝 𝐷𝐷|𝜃𝜃 ≠ ∏𝑖𝑖 𝑝𝑝 𝑦𝑦𝑖𝑖 𝒙𝒙𝑖𝑖 ,𝜃𝜃

• Example
• In paper citation network, a paper is more likely 
to share the same label (research area) of its 
references
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Paper i’s label Paper j’s label Probability

0 0 0.4

0 1 0.1

1 0 0.1

1 1 0.4

Suppose i cites j 
or j cites i



Scope of This Course
• A subset of probabilistic graphical model

• Consider data dependency
• Markov Random Fields, Conditional Random Fields, 
Factor Graph, and their applications in text, image, 
and social/information networks

• A full cover of probabilistic graphical models can 
be found:
• Stanford course

• Stefano Ermon, CS 228: Probabilistic Graphical Models
• Daphne Koller, Probabilistic Graphical Models, YouTube 

• CMU course
• Eric Xing, 10-708: Probabilistic Graphical Models
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Content
• What are probabilistic models

• What are structured data

• Applications

• Key tasks and challenges
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Text NER
• Named-Entity Recognition

• Given a predefined label set, determine each 
word’s label
• E.g., B-PER, I-PER, O

• Possible solution: Conditional random field
• https://nlp.stanford.edu/software/CRF-NER.html
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Image Semantic Labeling 
• Determine the label of each pixel

• Given a predefined label set, determine each 
pixel’s label

• Possible solution: Conditional random field 
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Social Network Node Classification
• Attribute prediction of Facebook users

• E.g., gender
• Zheleva et al., Higher-order Graphical Models 
for Classification in Social and Affiliation 
Networks, NIPS’2010
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Content
• What are probabilistic models

• What are structured data

• Applications

• Key tasks and challenges
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Key Tasks
• Model

• From data model to graphical model
• Define joint probability of all the data according to 
graphical model 
• 𝑝𝑝 𝐷𝐷 𝜃𝜃 𝑜𝑜𝑜𝑜 𝑝𝑝𝜃𝜃(𝐷𝐷)

• Inference
• Marginal inference: marginal probability of a 
variable

• Maximum a posteriori (MAP) inference: most likely 
assignment of variables

• Learning
• Learn the best parameters 𝜃𝜃
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Key Challenges
• Design challenges in modeling

• How to use heuristics to design meaningful 
graphical model?

• Computational challenges in inference and 
learning
• Usually are NP-hard problems
• Need approximate algorithms
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Course Overview
• Preliminary

• Introduction
• Basic probabilistic models

• Naïve Bayes
• Logistic Regression

• Warm up: Hidden Markov Models
• Forward Algorithm, Viterbi Algorithm, The Forward-Backward 

Algorithm
• Markov Random Fields

• General MRF, Pairwise MRF
• Variable elimination, sum-product message passing, max-product 

message passing, exponential family, pseudo-likelihood
• Conditional Random Fields

• General CRF, Linear Chain CRF
• Factor Graph
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Probability Review
• Follow Stanford CS229 Probability Notes

• http://cs229.stanford.edu/section/cs229-
prob.pdf
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http://cs229.stanford.edu/section/cs229-prob.pdf


Major Concepts
• Elements of Probability

• Sample space, event space, probability measure
• Conditional probability
• Independence, conditional independence

• Random variables
• Cumulative distribution function, Probability mass function (for discrete 

random variable), Probability density function (for continuous random 
variable)

• Expectation, variance
• Some frequently used distributions

• Discrete: Bernoulli, binomial, geometric, possion
• Continuous: uniform, exponential, normal

• More random variables
• Joint distribution, marginal distribution, joint and marginal probability mass 

function, joint and marginal density function
• Chain rule
• Bayes’ rule
• Independence
• Expectation, conditional expectation, and covariance
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Summary
• What are probabilistic models

• Model uncertainty
• What are structured data

• Use links to capture dependency between data
• Applications

• Text, image, social/information network
• Key tasks and challenges

• Modeling, inference, learning
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