PROBABILISTIC MODELS FOR STRUCTURED DATA

03: Hidden Markov Models

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

January 17, 2019

Content

Preliminary: Markov Chains

The Hidden Markov Model

- Inference
 - Likelihood Computation: The Forward Algorithm
 - Decoding: The Viterbi Algorithm
- Learning
 - The Forward-Backward Algorithm
- Summary

From I.I.D. Data to Sequence

- Dependency exists among data points, which form a sequence
- Examples
 - Speech recognition
 - Handwriting recognition

Note: this is a data model, not a graphical model

Named-entity recognition (NER)

(Discrete) Markov Chain

- Sequence
 - Ordered elements or events
 - $< x_1, x_2, \cdots, x_T >$
 - Examples:
 - A word, where each element is a letter
 - A sequence of text, where each element is a word
- Markov chain (also called observed Markov chain)
 - A probabilistic graphical model
 - Model how an observed sequence is generated

Definition of a First-Order Markov Chain

- N States: $S = \{S_1, S_2, ..., S_N\}$
 - Sometimes, a start state S_0 and an end state S_F are included
 - Examples:
 - For a word sequence, 26 states are 26 letters
 - For a text sequence, |V| states are |V| words in the dictionary
- Transition probability matrix: $A = \left\{a_{ij}\right\}_{i,j=1}^{N}$
 - First order: $P(x_t = S_j | x_{t-1} = S_i, x_{t-2} = S_k, ...) = P(x_t = S_j | x_{t-1} = S_i)$ (Markov Assumption)
 - $a_{ij} = P(x_t = S_j | x_{t-1} = S_i)$
 - $a_{ij} \ge 0$ and $\sum_{j} a_{ij} = 1$
- Initial distribution: $\pi = \{\pi_1, \pi_2, ..., \pi_N\}$
 - $\pi_i = P(x_1 = S_i)$, the probability that the Markov chain starts with state S_i
 - $\pi_i \geq 0$ and $\sum_i \pi_i = 1$

Generation of a Sequence

• To generate an observed sequence: $x = (x_1 x_2 ... x_T)$

- For t = 1, sample $x_1 \sim \pi$
- *For* t = 2: T
 - Sample a new state $x_t | x_{t-1} \sim a_{x_{t-1}}$.

The Probability of a Sequence

Under first-order Markov chain model

$$P(x_1, x_2, \dots, x_T)$$

$$= P(x_1)P(x_2|x_1) \dots P(x_T|x_{T-1}, x_{T-2}, \dots, x_1)$$

$$= P(x_1)\prod_{t=2} P(x_t|x_{t-1}) = \pi_{x_1}\prod_{t=2} a_{x_{t-1}x_t}$$

The Weather Example

- Three states: Sunny, Rainy, and Foggy
- Transition probability matrix

		Tomorrow's Weather		
		Sunny	Rainy	Foggy
	Sunny	0.8	0.05	0.15
Today's Weather	Rainy	0.2	0.6	0.2
	Foggy	0.2	0.3	0.5

represented as a table

represented as a graph

The Weather Example (Continued)

- Question 1: What's the probability that tomorrow is sunny and the day after is rainy, given today is sunny?
 - $P(x_2 = Sunny, x_3 = Rainy | x_1 = Sunny) =$ $P(x_2 = Sunny | x_1 = Sunny) \times$ $P(x_3 = Rainy | x_2 = Sunny) = 0.8 \times 0.05 = 0.04$
- Question 2: What's the probability it will be rainy two days from now, given today is foggy?
 - $P(x_3 = Rainy | x_1 = Foggy) =$ $\sum_i P(x_3 = Rainy, x_2 = S_i | x_1 = Foggy) =$ $P(x_3 = Rainy, x_2 = Sunny | x_1 = Foggy) +$ $P(x_3 = Rainy, x_2 = Rainy | x_1 = Foggy) +$ $P(x_3 = Rainy, x_2 = Foggy | x_1 = Foggy) = 0.34$

Content

- Preliminary: Markov Chains
- The Hidden Markov Model

- Inference
 - Likelihood Computation: The Forward Algorithm
 - Decoding: The Viterbi Algorithm
- Learning
 - The Forward-Backward Algorithm
- Summary

Hidden Markov Model

- States are not observable, observations are generated from a hidden state
 - Hidden state sequence

•
$$< y_1, y_2, ..., y_T >$$

- Observation sequence
 - $< x_1, x_2, ..., x_T >$
- Examples
 - Speech recognition
 - Handwriting recognition

Named-entity recognition (NER)

Definition of a Discrete Hidden Markov Model

• N States: $S = \{S_1, S_2, ..., S_N\}$

- Can be extended to numerical values
- M observation symbols: $V = \{v_1, v_2, ..., v_M\}$
- Transition probability matrix: $A = \left\{a_{ij}\right\}_{i,j=1}^{N}$
 - $a_{ij} = P(y_t = S_j | y_{t-1} = S_i)$
 - $a_{ij} \ge 0$ and $\sum_{i} a_{ij} = 1$
- Observation symbol probability distribution: $B = \{b_{ik}\}, 1 \le i \le N, 1 \le k \le M$
 - $\bullet \ b_{ik} = P(x_t = v_k | y_t = S_i)$
 - $b_{ik} \ge 0$ and $\sum_k b_{ik} = 1$
- Initial distribution: $\pi = \{\pi_1, \pi_2, ..., \pi_N\}$
 - $\pi_i = P(y_1 = S_i)$
 - $\pi_i \geq 0$ and $\sum_i \pi_i = 1$

Multinoulli: Can be extended to other probabilistic distribution

Generation of a Sequence

- To generate an observed sequence: $x = (x_1x_2 ... x_T)$
 - For t=1, sample $y_1 \sim \pi$, sample $x_1 | y_1 \sim b_{y_1}$.
 - *For* t = 2: T
 - Sample a new state $y_t | y_{t-1} \sim a_{y_{t-1}}$.
 - Sample an observation $x_t | y_t \sim b_{y_t}$.

Three Basic Questions

- [Likelihood Computation] How likely is a given sequence?
 - The Forward algorithm
- [**Decoding**] What is the most probable "path" for generating a given sequence?
 - The Viterbi algorithm
- [Learning] How can we learn the HMM parameters given a set of sequences?
 - The Forward-Backward (Baum-Welch) algorithm

Content

- Preliminary: Markov Chains
- The Hidden Markov Model
- Inference
 - Likelihood Computation: The Forward Algorithm
 - Decoding: The Viterbi Algorithm
- Learning
 - The Forward-Backward Algorithm
- Summary

Likelihood Computation

- Given an HMM $\lambda = (A, B, \pi)$ and an observation sequence $\mathbf{x} = (x_1 x_2 \dots x_T)$, determine the likelihood $P(\mathbf{x}|\lambda)$
 - $P(x|\lambda) = \sum_{y} P(x, y|\lambda) = \sum_{y} P(x|y, \lambda) P(y|\lambda)$
 - $P(x|y,\lambda)$: the conditional probability of observation sequence when a state sequence known
 - $P(\boldsymbol{x}|\boldsymbol{y},\lambda) = \prod_t P(x_t|y_t,\lambda) = \prod_t \boldsymbol{b}_{\boldsymbol{y}_t\boldsymbol{x}_t}$
 - $P(y|\lambda)$: the probability of a state sequence y
 - $P(y|\lambda) = P(y_1) \prod_{t=2} P(y_t|y_{t-1}) = \pi_{y_1} \prod_{t=2} a_{y_{t-1}y_t}$

Challenge of Brute-force Computation

- $P(x|\lambda) = \sum_{y} P(x, y|\lambda) = \sum_{y} P(x|y, \lambda) P(y|\lambda)$
 - Sum over all the possible state sequences
 - How many of them?
 - *N*^T (why?)

The Forward Algorithm

- A dynamic programming algorithm
- A special case of variable elimination
- Use table to store intermediate results
- Define forward variable $\alpha_t(j)$ as the probability of seeing the first t observations and the t-th state is *j*
 - $\alpha_t(j) = P(x_1, x_2, ..., x_t, y_t = j | \lambda)$ $\sum P(y_1, y_2, ..., y_{t-1}, y_t = j, x_1, x_2, ..., x_t | \lambda)$ $y_1, y_2, ..., y_{t-1}$
- $\alpha_t(j)$ can be recursively defined as
 - $\alpha_t(j) = \sum_i \alpha_{t-1}(i) a_{ij} b_{jx_t}$ (when $1 < t \le T$)

$$P(x_1, x_2, ..., x_{t-1}, y_{t-1} = i)$$

$$P(y_t = j | y_{t-1} = i)$$
 $P(x_t | y_t = j)$

Major Steps

- 1. Initialization (when t = 1):
 - $\alpha_1(j) = \pi_j b_{jx_1}$, for $1 \le j \le N$
- 2. Recursion (when $1 < t \le T$):
 - $\alpha_t(j) = \sum_i \alpha_{t-1}(i) a_{ij} b_{jx_t}$, for $1 \le j \le N$
- 3. Termination:
 - $P(\mathbf{x}|\lambda) = \sum_{j} \alpha_{T}(j)$

- Time complexity
 - $\bullet O(N^2T)$

Illustration

• Operations for computing $\alpha_{t+1}(j)$ from $\alpha_t(j)$

• Computing $\alpha_t(j)$ as a lattice

The Decoding Problem

- Given an HMM $\lambda = (A, B, \pi)$ and an observation sequence $\mathbf{x} = (x_1 x_2 \dots x_T)$, find the most probable sequence of states $\mathbf{y} = (y_1 y_2 \dots y_T)$
 - $\mathbf{y} = argmax_{\mathbf{y}}P(\mathbf{y}|\mathbf{x},\lambda) = argmax_{\mathbf{y}}P(\mathbf{x},\mathbf{y}|\lambda)$
- Brute-force computation
 - Enumerate all the possible state sequences, and pick the one with the maximum likelihood
 - Challenge: the same as before, N^T possible sequences!

The Viterbi Algorithm

- Also a dynamic programming algorithm A special case of max product
- Define $v_t(j)$ as the probability of the most probable path accounting for the first t observations and ending in state j
 - $v_t(j) = \begin{cases} \text{Almost identical to the forward algorithm,} \\ \text{except replacing sum with max} \\ \text{max} \\ y_1, y_2, \dots, y_{t-1} \end{cases} P(y_1, y_2, \dots, y_{t-1}, y_t = j, x_1, x_2, \dots, x_t | \lambda)$
- $v_t(j)$ can be recursively defined as
 - $v_t(j) = \max_{i} v_{t-1}(i) a_{ij} b_{jx_t} (1 < t \le T)$
- Backtracking the best path
 - Keep the maximizing argument for each t and j

Major Steps

- 1. Initialization (when t = 1):
 - $v_1(j) = \pi_j b_{jx_1}$, for $1 \le j \le N$
- 2. Recursion (when $1 < t \le T$):
 - $v_t(j) = \max_i v_{t-1}(i) a_{ij} b_{jx_t}$, for $1 \le j \le N$
 - $ptr_t(j) = argmax_i v_{t-1}(i)a_{ij}b_{jx_t}$, , $for 1 \le j \le N$
 - Termination:
 - $P^* = \max_{i} P(\mathbf{y}|\mathbf{x}, \lambda) = \max_{i} v_T(i)$
 - Backtracking from $argmax_iv_T(j)$
- Time complexity
 - $\bullet O(N^2T)$

Content

- Preliminary: Markov Chains
- The Hidden Markov Model

- Inference
 - Likelihood Computation: The Forward Algorithm
 - Decoding: The Viterbi Algorithm
- Learning
 - The Forward-Backward Algorithm
- Summary

Learning the Parameters of an HMM

- Given an observation sequence \mathbf{x} and the set of possible states in the HMM, learn the HMM parameters $\lambda = (A, B, \pi)$
 - Find $\lambda = (A, B, \pi)$ that locally maximizes $P(x|\lambda)$ (Maximum Likelihood Estimation, MLE)
 - Gradient techniques
 - Forward-backward algorithm (Baum-Welch algorithm)
 - A special case of EM (Expectation-Maximization) algorithm

How to Estimate Parameters for an Observed Markov Chain Model?

- MLE estimation
 - Find $\lambda = (A, \pi)$ that locally maximizes $P(y|\lambda)$
 - $L(\lambda; \mathbf{y}) = P(\mathbf{y}|\lambda) = \pi_{y_1} \prod_{t=2} a_{y_{t-1}y_t}$
 - Constraints:
 - $\pi_i \geq 0$ and $\sum_i \pi_i = 1$
 - $a_{ij} \ge 0$ and $\sum_i a_{ij} = 1$
 - Lagrange multiplier method
 - $\widehat{\pi}_i = 1$ if $y_1 = i$
 - $\widehat{a_{ij}} = \frac{C(i \to j)}{\sum_{k \in S} C(i \to k)}$, where $C(i \to j)$ is the number of times state i transits to state j

How to Estimate Parameters B If Both y and x are observed?

- MLE estimation
 - Find B that maximizes P(x, y|B)
 - Equivalently find B that maximizes P(x|y,B)

Backward Procedure

• Define backward probability $\beta_t(i)$ as the probability of seeing the observations from time t+1 to the end, given state at time t is i

•
$$\beta_t(i) = P(x_{t+1}, x_{t+2}, ..., x_T | y_t = i, \lambda)$$

- $\beta_t(i)$ can be recursively defined as
 - $\bullet \, \beta_t(i) = \sum_j a_{ij} b_{jx_{t+1}} \beta_{t+1}(j)$

•
$$P(x_{t+1}, x_{t+2}, ..., x_T | y_t = i, \lambda) =$$

 $\sum_j P(x_{t+1}, x_{t+2}, ..., x_T, y_{t+1} = j | y_t = i, \lambda) =$
 $\sum_j P(x_{t+1}, x_{t+2}, ..., x_T | y_t = i, y_{t+1} = j, \lambda) P(y_{t+1} = j | y_t = i, \lambda) =$
 $= \sum_j P(x_{t+1} | y_{t+1} = j, \lambda) P(x_{t+2}, ..., x_T | x_{t+1}, y_{t+1} = j, \lambda)$
 $P(y_{t+1} = j | y_t = i, \lambda)$

Major Steps

- 1. Initialization (when t = T):
 - $\beta_T(j) = 1$, for $1 \le j \le N$
- 2. Recursion (when $1 < t \le T$):

•
$$\beta_t(i) = \sum_j a_{ij} b_{jx_{t+1}} \beta_{t+1}(j)$$
, for $1 \le j \le N$

- 3. Termination:
 - $P(\mathbf{x}|\lambda) = \sum_{j} \pi_{j} b_{jx_{1}} \beta_{1}(j)$

- Time complexity
 - $\bullet O(N^2T)$

The Forward-Backward Algorithm

- Also called Baum-Welch algorithm
- A special case of EM algorithm
 - Repeat until converge
 - E-step:
 - Expected state occupancy count $\gamma_t(j) = P(y_t = j | x, \lambda)$
 - Probability of being in state j at time t
 - Expected state transition count $\xi_t(i,j) = P(y_t = i, y_{t+1} = j | x, \lambda)$
 - Probability of being in state i at time t and in state j at time t+1
 - M-step:
 - Estimate π_i , a_{ij} , b_{ik}

E-Step: Compute $\gamma_t(j)$

•
$$\gamma_t(j) = P(y_t = j | \mathbf{x}, \lambda) = \frac{P(y_t = j, \mathbf{x} | \lambda)}{P(\mathbf{x} | \lambda)}$$

$$P(y_t = j, \mathbf{x} | \lambda) = P(x_1, \dots, x_t, y_t = j | \lambda) P(x_{t+1}, \dots, x_T | x_1, \dots, x_t, y_t = j, \lambda)$$
$$= \alpha_t(j) \beta_t(j)$$

•
$$P(\mathbf{x}|\lambda) = \sum_{i} \alpha_{t}(j)\beta_{t}(j)$$

• Therefore,
$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{\sum_i \alpha_t(i)\beta_t(i)}$$

E-Step: Compute $\xi_t(i,j)$

- $\xi_t(i,j) = P(y_t = i, y_{t+1} = j | \mathbf{x}, \lambda) = \frac{P(y_t = i, y_{t+1} = j, \mathbf{x} | \lambda)}{P(\mathbf{x} | \lambda)}$
 - $P(y_t = i, y_{t+1} = j, \mathbf{x} | \lambda) =$ $P(x_1, ..., x_t, y_t = i | \lambda) P(y_{t+1} = j, x_{t+1}, ..., x_T | x_1, ..., x_t, y_t = i, \lambda)$ $= P(x_1, ..., x_t, y_t = i | \lambda) P(y_{t+1} = j | y_t = i, \lambda) P(x_{t+1}, ..., x_T | y_{t+1} = j)$ $= \alpha_t(i) a_{ij} b_{jx_{t+1}} \beta_{t+1}(j)$
 - $P(\mathbf{x}|\lambda) = \sum_{i} \sum_{j} \alpha_{t}(i) a_{ij} b_{jx_{t+1}} \beta_{t+1}(j)$
 - Therefore, $\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_{jx_{t+1}}\beta_{t+1}(j)}{\sum_i\sum_j\alpha_t(i)a_{ij}b_{jx_{t+1}}\beta_{t+1}(j)}$

M-Step

- $\bullet \pi_i$
 - $\widehat{\pi}_i = \gamma_1(i)$
- $\bullet a_{ij}$
 - $\widehat{a_{ij}} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_k \sum_{t=1}^{T-1} \xi_t(i,k)}$
- $\bullet b_{ik}$
 - $\bullet \widehat{b_{ik}} = \frac{\sum_{x_t = v_k} \gamma_t(i)}{\sum_{t=1}^T \gamma_t(i)}$

More on EM Algorithm

- E-Step: computing a **tight** lower bound L of the original objective function / at θ_{old}
- M-Step: find θ_{new} to maximize the lower bound
- $l(\theta_{new}) \ge L(\theta_{new}) \ge L(\theta_{old}) = l(\theta_{old})$

How to Find Tight Lower Bound?

$$\ell(\theta) = \log \sum_{h} p(d, h; \theta)$$

$$= \log \sum_{h} \frac{q(h)}{q(h)} p(d, h; \theta)$$

$$= \log \sum_{h} q(h) \frac{p(d, h; \theta)}{q(h)}$$

q(h): a distribution function over h, the key to tight lower bound we want to get

Jensen's inequality

$$\log \sum_{h} q(h) \frac{p(d, h; \theta)}{q(h)} \ge \left(\sum_{h} q(h) \log \frac{p(d, h; \theta)}{q(h)} \right)$$

- When "=" holds to get a tight, lower bound?
 - $q(h) = p(h|d, \theta)$ (why?)

Content

- Preliminary: Markov Chains
- The Hidden Markov Model

- Inference
 - Likelihood Computation: The Forward Algorithm
 - Decoding: The Viterbi Algorithm
- Learning
 - The Forward-Backward Algorithm
- Summary

Summary

- Preliminary: Markov Chains
 - Generative model for observed state sequence
- The Hidden Markov Model
 - Generative model for sequence where states are unseen
- Inference
 - Likelihood Computation: The Forward Algorithm
 - Dynamic programming; Forward variable: $\alpha_t(i)$
 - Decoding: The Viterbi Algorithm
 - $v_t(j)$
- Learning
 - The Forward-Backward Algorithm
 - Backward variable: $\beta_t(i)$

References

• Matlab Code:

https://www.mathworks.com/help/stats/hidde n-markov-models-hmm.html

- Lawrence R. Rabiner. A Tutorial on Hidden Markov Models. 2009
- Daniel Jurafsky & James H. Martin. Speech and Language Processing, Chapter 9. 2017