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From I.1.D. Data to Sequence

- Dependency exists among data points, which
form a sequence

» Examples
- Speech recognition

- Handwriting recognition
Note: this is a data
@ TUVTE®—C©—@® nowetnoie
X1 x5 graphical model

R

IsitaVoraUu?

- Named-entity recognition (NER)



(Discrete) Markov Chain

»Sequence

- Ordered elements or events
o K xl,xz,'”,xT >

- Examples:
« A word, where each element is a letter
» A sequence of text, where each element is a word

- Markov chain (also called observed Markov
chain)
- A probabilistic graphical model
- Model how an observed sequence Is generated



Definition of a First-Order Markov Chain

N States: S = {51,5,, ..., Sy}
- Sometimes, a start state S, and an end state Sz are included
- Examples:
» For a word sequence, 26 states are 26 letters
» For a text sequence, |V| states are |V| words in the dictionary
N
,j=1
- First order: P(xt = Sj|xt_1 = S8;, Xy = S, )
P(xt = Sj|xt_1 = Sl-) (Markov Assumption)
° aij — P(.’Xft — Sj|xt_1 — Sl)
*a;;=0and };a;; =1
Initial distribution: m = {m{, w5, ..., Ty}

- m; = P(xq = S;), the probability that the Markov chain starts
with state S;

em;=0and );m; =1

Transition probability matrix: A = {aij}




Generation of a Sequence

- To generate an observed sequence: X =
(xle XT)
- Fort =1, sample x;~m
cFort=2:T

» Sample a new state x;|x;_1~ay, ..



The Probability of a Sequence

« Under first-order Markov chain model

'P(leXZ""’xT)
= P(x1)P(xzlx1) .. P(X7|X7—1, X7-2, 200, X1)

= PG [ [ Preles) =y, [ [ arin
t=2

t=2



The Weather Example

- Three states: Sunny, Rainy, and Foggy

 Transition probability matrix
Tomorrow’s Weather
1 Sunny | Rainy | Foggy represented as a
Sunny 0.8 0.05 0.15 table
Today’s Weather | Rainy 0.2 0.6 0.2
Foggy 0.2 0.3 0.5
.f:..' Sunny Fogby
‘ ' ' } represented as a
x\ 0
Ramy



The Weather Example (Continued)

- Question 1: What'’s the probability that tomorrow
is sunny and the day after is rainy, given today is
sunny?

« P(x, = Sunny, x; = Rainy|x; = Sunny) =
P(x, = Sunny|x; = Sunny) X
P(x3 = Rainy|x, = Sunny) = 0.8 X 0.05 = 0.04
- Question 2: What’s the probability it will be rainy
two days from now, given today is foggy?

* P(x3 = Rainy|x, = Foggy) =
¥ P(x3 = Rainy, x, = S;|x; = Foggy) =
P(x3 = Rainy,x, = Sunny|x; = Foggy) +
P(x3 = Rainy,x, = Rainy|x; = Foggy) +
P(x3 = Rainy,x, = Foggy|x; = Foggy) = 0.34
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Hidden Markov Model

- States are not observable, observations are generated
from a hidden state

- Hidden state sequence

¢ < Y, Y2, 0 YT >
- Observation seguence

o < X1,X2, e, XT >
« Examples

- Speech recognition
- Handwriting recognition

JITtiT

- Named- entlty recognition (NER)
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Definition of a Discrete Hidden Markov
Model

L C Can be extended to
* N States: S = {51, 52, -, Sw} numerical values

« M observation symbols: V = {v, v,, ..., vy}
N
i,j=1

» Transition probability matrix: A = {a;;}

ca;; =Py = Si|ye-1 = Si)
* a;; = 0and Zjaijzl

- Observation symbol probability distribution: B =
(b, 1<i<N,1<k<M

e by, = P(x; = vy |ye = S;) Multinoulli: Can be
_ extended to other
-biRZOandebik—l —
. C : probabilistic
« Initial distribution: m = {m{, Ty, ..., Ty } distribution

» =Py = 5)
em;=20and );m; =1
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Generation of a Sequence

- To generate an observed sequence: X =
(xle XT)

- Fort = 1, sample y, ~m, sample x;|y,~b,, .

cFort=2:T
* Sample a new state y;|y;_1~ay, ..

» Sample an observation x;|y;~b,,.

ailz2 a23
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Three Basic Questions

- [Likelihood Computation] How likely is a given
sequence?
- The Forward algorithm
- [Decoding] What is the most probable “path”
for generating a given sequence?
- The Viterbi algorithm
- [Learning] How can we learn the HMM
parameters given a set of sequences?
- The Forward-Backward (Baum-Welch) algorithm

14
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Likelihood Computation

»Given an HMM A = (4, B, ™) and an
observation sequence x = (X1X5 ... XT),
determine the likelihood P(x]|A)

- P(x[1) = 2y P(x, ¥|4) = 2y P(x]y, 1) P(y|2)

« P(x|y, A): the conditional probability of observation
sequence when a state sequence known

* P(xly,A) = [1¢ P(xt|ye, D) = 11 by,
« P(y|A): the probability of a state sequence y
* PN = P(yy) [e=2 PWelye—1) = Ty, [1:=2 Ay, _1v;

16



Challenge of Brute-force Computation

*P(x|1) = Ly P(x,y|1) = Xy P(x]y, 1) P(y|2)

- Sum over all the possible state sequences

- How many of them?
« NT (why?)

17



The Forward Algorithm

. . . A special case of
» A dynamic programming algorithm variable elimination

- Use table to store intermediate results

- Define forward variable a;(j) as the probability
of seeing the first t observations and the t-th
state isj

‘ at(j) — P(xlrxz' v Xty Vit :,Il/l)

— Z P()’1»3’2» ""yt—lryt=j'x1’x21""xt|/1)
Y1,Y2,0 Yt-1

¢ (j) can be recursively defined as
car(j) = niar—1(D)a;ibj,, (Whenl1l <t <T)

a
==

P(x1, %2, s Xt—1, V-1 = 1) Py: =jlyt—1 =1) P(x¢|ly: = J) 18




Major Steps

1. Initialization (whent = 1):

cay(j) =mibjy, for 1< j <N
2. Recursion (When1 <t <T):

ca;(j) = X ar_1(Dayjbjy, , for 1< j <N
3. Termination:

- P(x|1) = 2 ar ()

» Time complexity
- O(N2T)

19



lllustration

» Operations for computing a;41(j) from a;(j)

t t+1
a (i) ay 440

- Computing a;(j) as a lattice
il 7

STATE

LV Y

1 1
2 3
OBSERVATION, t



The Decoding Problem

»Given an HMM A1 = (4, B, ™) and an
observation sequence x = (x1X5 ... x7), find
the most probable sequence of states y =

(Y1Y2 - ¥1)
-« y = argmaxy,P(y|x,1) = argmax,P(x,y|1)

- Brute-force computation

- Enumerate all the possible state sequences, and
pick the one with the maximum likelihood

- Challenge: the same as before, N' possible
sequences!

21



The Viterbi Algorithm

. . . A special case of
* Also a dynamic programming algorithmyax product

- Define v:(j) as the probability of the most
probable path accounting for the first t

observations and ending in state j

. (]) . Almost identical to the forward algorithm,
Ve o except replacing sum with max

max P(leyZJ""yt—l'yt =j'x1)x2' ,thﬂ)
Y1,Y2,-»Yt—-1

> v:(j) can be recursively defined as
cv:(j) = max Ve—q(Da;jbjy, (1 <t <T)

- Backtracking the best path
- Keep the maximizing argument for each tand

22



Major Steps

1. Initialization (whent = 1):
cv1(Jj) =mbjy, for 1< j <N

2. Recursion (When1l <t <T):
cv:(j) = max Ve—q(D)aijbjx,, for 1< j< N
- ptre(j) = argmax; ve_1(1)a;jbjy,,, for 1 < j < N
- Termination:
* P* = maxP(y|x, 1) = mjax vr(j)

- Backtracking from argmax;vy(j) * CEuty
¢ Ti m e CO m p I eX i ty g :?‘;tal numbar Zzpaﬂr»: 4"G=E;ﬁ: '.‘1'11n1ba'1:t“4ca.1.1didate pii:'\-’i?erhij
- O(N2T)
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Learning the Parameters of an HMM

- Given an observation sequence x and the set of
possible states in the HMM, learn the HMM
parameters A = (4, B, )

- Find A = (4, B, ™) that locally maximizes P(x|A)
(Maximum Likelihood Estimation, MLE)

» Gradient techniques

» Forward-backward algorithm (Baum-Welch algorithm)
* A special case of EM (Expectation-Maximization) algorithm

25



How to Estimate Parameters for an
Observed Markov Chain Model?

* MLE estimation

- Find A2 = (4, ) that locally maximizes P(y|A)

¢ L(A; Y) — P(:Yl/l) — T[yl Ht=2 ayt_lyt
« Constraints:
em; =20and );m; =1
*aq;j=0and %;a;; =1
» Lagrange multiplier method
cmy=1ify; =1
C(i-))
ZkeS C(i—k) ’
transits to state j

T where C(i = j) is the number of times state i

26



How to Estimate Parameters B If Both y

and x are observed?
* MLE estimation

- Find B that maximizes P(x,y|B)
- Equivalently find B that maximizes P(x|y, B)

27



Backward Procedure

- Define backward probability S;(i) as the
probability of seeing the observations from time
t + 1 to the end, given state attime t is i

* Be(D) = P(Xpy1, Xpa2) —r X7 |Ye = 1, 1)
» B (i) can be recursively defined as

« Be (i) = Zj aijbjxt+1,8t+1 U)

* P(Xti41, Xtaoy vy Xp|Ye = 1, A) =
ij(xt+1'xt+2' ---;xT;yt+1 :jlyt — i; A) —
ij(xt+1:xt+2: oy XT |Xr/z/l; Yer1 = LDPYer1 =jlye =1,40) =

= i P(Xer1lyers = o ) P(Xe42, s X7 | X451, Vw1 = Jo A)
P(Yes1 = Jjlye =1, 4)
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Major Steps

1. Initialization (whent =T):
Br(G)=1,for1<j<N
2. Recursion (When1 <t <T):
(i) = Zj aijbjxt+1,8t+1(f) for1<j<N
3. Termination:

*P(x|A) = Xjmibj, B1()

» Time complexity

’ O(NZT) Biti)

29



The Forward-Backward Algorithm

» Also called Baum-Welch algorithm

» A special case of EM algorithm

- Repeat until converge
 E-step:

* Expected state occupancy count y;(j) = P(y; = j|x, 1)
* Probability of being in state j at time t

* Expected state transition count é:(i,j) = P(yy = [, Vi1 = j|x, A)
* Probability of being in state i at time t and in state j at time t+1
* M-step:

* Estimate g, Clij, bik

30



E-Step: Compute y,(j)

. ) P(ye=j,x|A)
ve(j) = Py = jlx, A) = Pt(x|/1)

'P(yt =j,x|/1) —
P(xl' ---;xt;_Vt :jl/l)P(xt+1' ""leW?’yt :].,/1)
= a:(J))B:(j)
*P(x|4) = 2Zjac(j)Be ()

(]) — ar())Bt(J)

- Therefore, y; > (OBD)
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E-Step: Compute &, (i, j)

P(Y: =

L Yer1 = J, X|A)

& (L)) =P =1LYee1 = Jlx, 1) =
¢ P(yt = i'yt+1 :j'xl/l) —

P(x1, o, X0, Ye = HDPYe41 = J) Xe1) - X7 g

P(x|4)

)x%J}% ::iJA)

=P(xy, e, 6, Ve = UDP Y41 = Jlye = LDPXpgq, o X7 |Yeg1 = J)

= at(i)aijbjxt+1ﬁt+1 (])

« P(x|2) = ZiZj “t(i)aijbjxtﬂﬁtﬂ(]')

oo~ aeDaijbjx, i Be+1(J)
Therefore, &(i ) = 5 ay bz fen )

t+1 t+2
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M-Step

PO Y=g )
Vi Siei Ee(ik)

. b/\ _ th=vk yt(l)
e ST (@
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More on EM Algorithm

- E-Step: computing a tight lower bound L of the
original objective function / at 8,4

- M-Step: find 6,,.,, to maximize the lower bound
¢ I(Hnew) = L(Hnew) = L(Qold) — l(gold)

34



How to Find Tight Lower Bound?

00) = log) p(d,h;06)

— ] 3 'p(d: h;8) q(h): a distribution function over h,
N Dgz a(h) q(h) the key to tight lower bound
h we want to get

- Jensen’s inequality

ngth dhﬂ} > th}lc:-cf dh)ﬂ}

o When “=7 holds to get a tight lower. bound?
* q(h) = p(hl|d, 8) (why?)
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Summary

* Preliminary: Markov Chains

- Generative moo
 The Hidden Mar

el for observed state sequence
kov Model

- Generative mod
unseen

» Inference

el for sequence where states are

- Likelihood Computation: The Forward Algorithm

« Dynamic programming; Forward variable: a; (i)

- Decoding: The Viterbi Algorithm

* ve(J)
* Learning

- The Forward-Backward Algorithm
 Backward variable: £, (i)
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