

CS145 Project Introduction COVID19 Prediction

Instructor: Yizhou Sun

TAs: Junheng Hao, Shichang Zhang, Yue Wu, Zijie Huang

10/12/2020

Project Introduction

- Background & Motivation
- Project Task and Dataset
- Evaluation
- Project Deadlines and Grading

Background

COVID19 Prediction:

The rapid spread of COVID-19 has had and continues to have a significant impact on humanity. Accurately forecasting the progression of COVID-19 can help government monitor and take actions to combat it.

Background Motivation

- Based on various daily monitoring data of each U.S. state for a given time period (e.g. Apr-Aug), for an unseen time period (Sept), can you predict the daily #case and #death for each state?
- Timeseries Prediction with various types of data.
- A good fit for our class!

Province_State	Confirmed	Deaths	Recovered	Active
Alabama	3563	93		3470
Alaska	272	8	66	264
Arizona	3542	115		3427
Arkansas	1280	27	367	1253
California	22795	640		22155
Colorado	7307	289		7018
Connecticut	12035	554		11481

Task

Based on the information from Apr.12 to Aug.31 of :

- Timeseries data for each state :
 - 10 features with full description on JHU github

USA daily state reports (csse_covid_19_daily_reports_us)

This table contains an aggregation of each USA State level data.

- Peatures: 'Confirmed', 'Deaths', 'Recovered', 'Active', 'Incident_Rate', 'People_Tested',
 'People Hospitalized', 'Mortality Rate', 'Testing Rate', 'Hospitalization Rate'
- Daily mobility data among different states [1]
- (Optional) Datasources can be added by yourselve :D (e.g. <u>Placekey community</u> <u>data product</u>)
 - Additional data can be used after permission by TAs. (Overall, any data that is befor Sep.01.2020 should be fine.)

UCLA

Task

Aim: Predict #case, #death (cumulative value) for each state from Sep.1-26:

- Output 1: Daily predicted # case, # death for each state
 - # of predication values: 26*50*2
- Output 2: Daily predicted #case, # deaths on the final week data which would have ground truth only after you submitted your predictions. (can use data up to the prediction starting date to finetune your model.)
 - # of prediction values: 7*50*2
- Ground Truths are accessible online for Output 1. DO NOT use them!
 (Test set leakage will be scored 0 for Output 1).
- We will test your model's performance on Output 2, also possibly reproduce you reported results for Output1 and Output2.

Task

$$APE = \frac{|Predicted - Truth|}{|Truth|}$$

How to evaluate:

- MAPE: mean absolute percentage error (take the average over all datapoints)
- Leaderboard ranking depends on Output1, but final projects score would depends on both Output 1 and Output 2.

Try your model on the Kaggle competition (limited 3 submissions per day): https://www.kaggle.com/t/ff4c063c7b844ac29e5b709801766038

Submission file name: TeamNumber_Model.csv (e.g. Team1.csv) More details read the information on Kaggle website.

Project Grading (Total 25 Points)

- Midterm Report (2 points)
- Final Report (10 points)
 - Clairity in model explanation, different implemented model variants, etc.
- Performance on Kaggle (13 points)
 - Evaluated by the results both from Output 1 and Output 2
 - Both MAPE score and rankings among all groups
 - Passing scores (~60%, 7 points) for models outperforming the given baselines; scores of most groups will range between 80%-100% (9-13 points).

Project Group Formation

- Submit group information and register your group on Kagge by the end of Week 2.
- Team name, Group ID (will be assigned), member info (names, UIDs, emails)

Project Midterm Report

- Approximately 3 pages
- Current progress about project, including
 - Data processing and transformation
 - Designed & tested models / methods
- Discussion and future project plan
 - Some conclusions and findings
 - Analysis of current models and techniques
 - Timeline of future project plan (around the next 4 weeks)

Project Final Report

- No longer than 10-page PDF in ACM paper format: https://www.acm.org/publications/proceedings-template
- Must include:
 - Group member information
 - Data selection and pre-processing
 - Model and techniques
 - Evaluation, observations and insights, conclusion
 - Current leaderboard rank and score
 - References and credit (papers, other's codes, maximum 1 page)
 - Related work (maximum ½ page)
 - Task distribution form
 - Peer evaluation form (separately submitted by individuals)
- Must NOT include:
 - Background or too much description on given original datasets
 - Any source code

UCLA Task Distribution Form: Example

Task	People
Data processing	Student A
Implementation: Algorithm 1	Student B, C
Implementation: Algorithm 2	Student B, D
Implementation: Algorithm 3	Student A, D
Writing final report	Student C

Peer Evaluation Form: Example

CRITERIA		NAMES		
		Alice	Bob	
Attendance at group meetings	4	4	3	
Availability when needed	5	4	3	
Highly contributed to writing and proof reading of the final report.	5	5	1	
Reliability	5	5	2	
Contributed ideas that were of high quality.	4	5	2	
Approximately, the amount of time spent on this project was comparable to other group members.		5	2	
Overall (Would you work with them again?)		5	2	

Question:

Do you think some member in your group should be given a lower score than the group score? If yes, please list the name, and explain why.

Important Dates & Milestones

- Oct.18: Group formation due
- Nov. 9: Midterm project report due
- Dec.10: Kaggle Submission Due (release new data for Output2 around a week before)
- Dec.18: Final project report due (together with all codes)

Note that the deadlines are subject to change according to the class schedule (avoid other deadlines of homework and exams).

Q & A

Thank you!

Enjoy "mining" and good luck!