PROBABILISTIC MODELS FOR STRUCTURED DATA

06: Factor Graph

Instructor: Yizhou Sun
yzsun@cs.ucla.edu

February 5, 2020
Content

• Unifying Everything: Factor Graph
• Inference
 • Sum-product message passing for factor graphs
• Learning
• Summary
Limitations of Current Graph Representations

- Ambiguous
 - E.g., do we model pairwise interaction only or model size-4 clique?
A Clearer Representation

• Factor graph
 • Use square nodes to denote factors, which explicitly tell which variables are involved

Size-2 clique

Size-4 clique
A Formal Definition of Factor Graph

• A bipartite graph
 • Variable nodes: denote each variable x_i
 • Factor nodes: denote each factor f_j
 • Edges: an edge connects variable x_i and f_j if f_j takes x_i as an argument

• The distribution represented by a factor graph:
 • $p(x_1, x_2, ..., x_n) \propto \prod_{j \in J} f_j(X_j)$
 • where X_j is a subset of $\{x_1, x_2, ..., x_n\}$, and $f_j(X_j)$ is a function having elements of X_j as arguments
Example

• A factor graph with 5 variables

\[p(x_1, x_2, \ldots, x_5) \propto f_A(x_1)f_B(x_2)f_C(x_1, x_2, x_3)f_D(x_3, x_4)f_E(x_3, x_5) \]
Other Models Represented as Factor Graph

Markov Chain

HMM

MRF or Bayesian Network

Conditional Random Field
Content

• Unifying Everything: Factor Graph
• Inference
 • Sum-product message passing for factor graphs
• Learning
• Summary
Sum-Product Message Passing

- **Purpose:** compute marginal distribution
- **Two types of messages**
 - Variable to function: \(\mu_{x \rightarrow f}(x) = \prod_{h \in n(x) \setminus \{f\}} \mu_{h \rightarrow x}(x) \)
 - Function to variable: \(\mu_{f \rightarrow x}(x) = \sum_{\sim \{x\}} f(X) \prod_{y \in n(f) \setminus \{x\}} \mu_{y \rightarrow f}(y) \)
 - \(X = n(f) \)
 - \(\sim \{x\} \) means \(X \setminus \{x\} \)
Example

- \(p(x_1, x_2, \ldots, x_5) \propto f_A(x_1)f_B(x_2)f_C(x_1, x_2, x_3)f_D(x_3, x_4)f_E(x_3, x_5) \)

- **Step 1 (leaf nodes):**
 \[
 \mu_{f_A \rightarrow x_1}(x_1) = \sum_{\sim \{x_1\}} f_A(x_1) = f_A(x_1)
 \]
 \[
 \mu_{f_B \rightarrow x_2}(x_2) = \sum_{\sim \{x_2\}} f_B(x_2) = f_B(x_2)
 \]
 \[
 \mu_{x_4 \rightarrow f_D}(x_4) = 1
 \]
 \[
 \mu_{x_5 \rightarrow f_E}(x_5) = 1.
 \]

- **Step 2:**
 \[
 \mu_{x_1 \rightarrow f_C}(x_1) = \mu_{f_A \rightarrow x_1}(x_1)
 \]
 \[
 \mu_{x_2 \rightarrow f_C}(x_2) = \mu_{f_B \rightarrow x_2}(x_2)
 \]
 \[
 \mu_{f_D \rightarrow x_3}(x_3) = \sum_{\sim \{x_3\}} \mu_{x_4 \rightarrow f_D}(x_4)f_D(x_3, x_4)
 \]
 \[
 \mu_{f_E \rightarrow x_3}(x_3) = \sum_{\sim \{x_3\}} \mu_{x_5 \rightarrow f_E}(x_5)f_E(x_3, x_5).
 \]
Example (Cont.)

- \(p(x_1, x_2, \ldots, x_5) \propto f_A(x_1)f_B(x_2)f_C(x_1, x_2, x_3)f_D(x_3, x_4)f_E(x_3, x_5) \)

- **Step 3:**
 \[\mu_{f_C \rightarrow x_3}(x_3) = \sum_{\sim \{x_3\}} \mu_{x_1 \rightarrow f_C}(x_1)\mu_{x_2 \rightarrow f_C}(x_2)f_C(x_1, x_2, x_3) \]
 \[\mu_{x_3 \rightarrow f_C}(x_3) = \mu_{f_D \rightarrow x_3}(x_3)\mu_{f_E \rightarrow x_3}(x_3). \]

- **Step 4:**
 \[\mu_{f_C \rightarrow x_1}(x_1) = \sum_{\sim \{x_1\}} \mu_{x_3 \rightarrow f_C}(x_3)\mu_{x_2 \rightarrow f_C}(x_2)f_C(x_1, x_2, x_3) \]
 \[\mu_{f_C \rightarrow x_2}(x_2) = \sum_{\sim \{x_2\}} \mu_{x_3 \rightarrow f_C}(x_3)\mu_{x_1 \rightarrow f_C}(x_1)f_C(x_1, x_2, x_3) \]
 \[\mu_{x_3 \rightarrow f_D}(x_3) = \mu_{f_C \rightarrow x_3}(x_3)\mu_{f_E \rightarrow x_3}(x_3) \]
 \[\mu_{x_3 \rightarrow f_E}(x_3) = \mu_{f_C \rightarrow x_3}(x_3)\mu_{f_D \rightarrow x_3}(x_3). \]
Example (Cont.)

- \(p(x_1, x_2, \ldots, x_5) \propto f_A(x_1)f_B(x_2)f_C(x_1, x_2, x_3)f_D(x_3, x_4)f_E(x_3, x_5) \)

- **Step 5:**

 \[
 \mu_{x_1 \rightarrow f_A}(x_1) = \mu_{f_C \rightarrow x_1}(x_1)
 \]

 \[
 \mu_{x_2 \rightarrow f_B}(x_2) = \mu_{f_C \rightarrow x_2}(x_2)
 \]

 \[
 \mu_{f_D \rightarrow x_4}(x_4) = \sum_{\sim \{x_4\}} \mu_{x_3 \rightarrow f_D}(x_3) f_D(x_3, x_4)
 \]

 \[
 \mu_{f_E \rightarrow x_5}(x_5) = \sum_{\sim \{x_5\}} \mu_{x_3 \rightarrow f_E}(x_3) f_E(x_3, x_5).
 \]

- **Termination**

 \[
 g_1(x_1) = \mu_{f_A \rightarrow x_1}(x_1) \mu_{f_C \rightarrow x_1}(x_1)
 \]

 \[
 g_2(x_2) = \mu_{f_B \rightarrow x_2}(x_2) \mu_{f_C \rightarrow x_2}(x_2)
 \]

 \[
 g_3(x_3) = \mu_{f_C \rightarrow x_3}(x_3) \mu_{f_D \rightarrow x_3}(x_3) \mu_{f_E \rightarrow x_3}(x_3)
 \]

 \[
 g_4(x_4) = \mu_{f_D \rightarrow x_4}(x_4)
 \]

 \[
 g_5(x_5) = \mu_{f_E \rightarrow x_5}(x_5).
 \]
Max-Product Message Passing

• Purpose: compute maximal probability

• Two types of messages
 • Variable to function:
 \[
 \mu_{x \rightarrow f}(x) = \prod_{h \in n(x) \setminus \{f\}} \mu_{h \rightarrow x}(x)
 \]
 • Function to variable:
 \[
 \mu_{f \rightarrow x}(x) = \max_{\sim \{x\}} f(X) \prod_{y \in n(f) \setminus \{x\}} \mu_{y \rightarrow f}(y)
 \]
Content

- Unifying Everything: Factor Graph
- Inference
 - Sum-product message passing for factor graphs
- Learning
- Summary
Learning

- Follows solutions in MRF and CRF
- MLE on Exponential family
- Two cases:
 - Fully observed data
 - Partially observed data
- Need inference computation in the learning algorithm
Content

• Unifying Everything: Factor Graph
• Inference
 • Sum-product message passing for factor graphs
• Learning
• Summary
Summary

• Unifying Everything: Factor Graph
 • A bipartite representing a distribution
 • Variable node and function node

• Inference
 • Sum-product message passing
 • Max-product message passing

• Learning
References

• https://ermongroup.github.io/cs228-notes/inference/jt/

Guidelines For Presentation

• For presenters
 • Send slides and HW questions with answers to me one day ahead (post slides and HW questions on Piazza)

• Presentation should
 1. With enough background knowledge
 2. Well structured and organized
 3. With enough details and the methodologies are clearly explained
 4. With running examples
 5. Summarize main messages delivered in the paper(s), and your thoughts
 6. With references

• Handle questions
• Give homework and provide solution in class
• Grading homework
Guidelines For Presentation

- For other students
 - browse the paper before hand
 - Raise question and participate in the discussion
 - Finish homework in class
 - Rate the presentation